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PREFACE

For years, I have been thinking about writing an introductory book on
traffic flow theory. The main purpose is to help readers who are new
to this subject and who do not have much knowledge of mathematics
and traffic flow. To serve this purpose, I have tried to make the con-
tents self-contained and assume minimal knowledge of mathematics and
traffic flow.

This book is derived from my lecture notes for CEE520 Traffic Flow
Theory and Simulation I (formerly offered as CEE590T Traffic Flow
Theory on an experimental basis before it was assigned a permanent course
number) at the University of Massachusetts Amherst. Hence, the chapters
are more like lectures, with focused topics, each of which fits in a class
meeting. The book takes a unified perspective on traffic flow modeling and
consists of five parts which are coherently connected. Each part is briefly
described as follows.

Part I focuses on traffic flow characteristics. It starts with intelligent
transportation systems and traffic sensing technologies to illustrate how to
quantify traffic flow and collect such data. This is followed by three chapters
with in-depth discussion of traffic flow characteristics, on the basis of which
their relationships are developed and a few equilibrium traffic flow models
are introduced.

Part II is about traffic flow modeling at the macroscopic level. The goal
is to solve for temporal-spatial evolution of traffic flow characteristics given
initial and boundary conditions. The first few chapters provide a jump start
on mathematical modeling, especially partial differential equations. With
such knowledge, the domain knowledge of traffic flow is integrated into
mathematical modeling, resulting in a first-order quasi-linear partial differ-
ential equation problem known as the Lighthill, Whitham, and Richards
(LWR) model in the traffic flow community. Solutions to the problem
are introduced, including a graphical technique that uses the method of
characteristics and numerical techniques that involves a few discretization
schemes.

Part III is devoted to traffic flow modeling at the microscopic level.
The emphasis is on drivers’ car-following behavior involving operational
control in the longitudinal direction. A series of car-following models with
differing modeling philosophies and complexity are introduced. To provide
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xiv Preface

an opportunity to cross-compare the relative performance of these models, a
common ground is set up so that these models can demonstrate themselves.
Such a process is called benchmarking, and the common ground consists of
two scenarios, onemicroscopic and the other macroscopic. Themicroscopic
scenario is a hypothetical driving process aimed at testing these models
under various driving regimes (such as free flow and car following); the
macroscopic scenario is a set of empirical data focusing on examining the
macroscopic properties of thesemodels (e.g., how their implied fundamental
diagrams compare with the observed diagrams).

Part IV extends traffic flow modeling to the picoscopic level. A mod-
eling framework called a driver-vehicle-environment closed-loop system
is introduced to capture the ultrafine level of detail of traffic flow. Such
a framework involves a driver model, a vehicle model, and the driving
environment. The driver model collects and processes information from its
vehicle and the driving environment and makes control decisions on motion
in longitudinal and lateral directions. The vehicle model executes its driver’s
control decision and moves dynamically on the road. The driver-vehicle
unit constitutes one of the entities in the environment whose dynamic
change affects driver control in the next step. As an example of this modeling
framework, a simple engine model and further a dynamic interactive
vehicle model are proposed, and a field theory is formulated to model
the driver.

All things come together in Part V. With the field theory as the basis, a
unified perspective can be cast on traffic flow theory. The macroscopicmod-
els and microscopic models introduced thus far can be related to each other,
all linked directly or indirectly to the field theory. Hence, a unified diagram
is constructed to highlight such relations. In addition, benchmarking is
done to cross-compare the performance of some of the macroscopic models
and microscopic models in the diagram. Further, a multiscale modeling
approach is presented which involves traffic flow modeling at four levels
of detail—namely, macroscopic, mesoscopic, microscopic, and picoscopic.
The emphasis of multiscale modeling is to ensure modeling consistency—
that is, how less detailed models are derived from more detailed models
and, conversely, how more detailed models are aggregated to less detailed
models. The proposed approach may establish the theoretical foundation for
traffic modeling and simulation at multiple scales seamlessly within a single
system.

This book is ideal for use by entry-level graduate students in transporta-
tion engineering as a textbook for a traffic flow theory course. In addition,
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civil engineering juniors and seniors may find some in-depth information
about traffic flow fundamentals in this book. Further, applied mathematics
majors may find concrete examples of mathematical modeling with specific
domain knowledge. Advanced readers are referred to other traffic flow
theory books for in-depth coverage; a few of them are as follows:
• G.F. Newell, Theory of Highway Traffic Flow, 1945-1965, Course

Notes UCB-ITS-CN-95-1, 1996.
• A.D. May, Traffic Flow Fundamentals, Prentice-Hall, New York, 1989.
• C.F. Daganzo, Fundamentals of Transportation and Traffic Operations,

Pergamon-Elsevier, Oxford, UK, 1997.
• N. Gartner, C.J. Messer, A.K. Rathi, Revised Monograph on Traffic

Flow Theory: A State-of-the-Art Report, TRB, 2001.
• D.L. Gerlough,M.J. Huber, Traffic FlowTheory—AMonograph, TRB

Special Report 165, 1975.
• D.L. Gerlough, D.G. Capelle, An Introduction to Traffic Flow Theory,

HRB Special Report 79, 1964.
• D.R. Drew, Traffic Flow Theory and Control, McGraw-Hill,

New York, 1968.
• W. Leutzbach, Introduction to the Theory of Traffic Flow, Springer-

Verlag, New York, 1988.
• M. Treiber, A. Kesting, Traffic Flow Dynamics, Springer, New York,

2013.
• L. Elefteriadou, An Introduction to Traffic Flow Theory, Springer,

New York, 2014.
• B.S. Kerner, Introduction to Modern Traffic Flow Theory and Control,

Springer, New York, 2009.
I thank Professor John D. Leonard at Georgia Institute of Technology

and Professor Billy M. Williams at North Carolina State University, who
introduced me to this field and sparked my interest in traffic flow theory.
Thanks also go to former students in my traffic flow theory classes—their
insightful discussion and kind encouragement made this work possible.

Finally, I acknowledge my limitations. Though I have tried hard to
ensure the quality and accuracy of information, I can make mistakes.
Therefore, readers should use this book with discretion.

Daiheng Ni
Amherst, MA

September, 2015
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CHAPTER 1

Traffic Sensing Technologies

Safe and efficient operations of transportation systems rely heavily on
applications of advanced technologies. As a result, recent decades have
witnessed wide applications of communication, sensing, and computing
technologies in traffic surveillance, incident detection, emergency response,
fleet management, and travel assistance. Figure 1.1 illustrates an example of
these technologies at an intersection.

“Intelligent transportation systems” (ITS) refers to efforts that apply
information, communication, and sensor technologies to vehicles and
transportation infrastructure in order to provide real-time information for
road users and transportation system operators to make better decisions.
ITS aim to improve traffic safety, relieve traffic congestion, reduce air
pollution, increase energy efficiency, and improve homeland security. ITS
encompass a suite of measures that address the above objectives: advanced
traffic management systems, advanced traveler information systems, ad-
vanced public transportation systems, the intelligent vehicle initiative, the
commercial vehicle operations program, etc. The recent development of
ITS emphasizes the application of dedicated short-range communications
in vehicle-to-vehicle and vehicle-to-roadside wireless communications—
that is, connected vehicle technology according to the US Department of
Transportation.

1.1 TRAFFIC SENSORS

This section describes a few types of traffic sensors that are often employed in
ITS and other traffic surveillance and data collection systems. The discussion
of each type of sensor focuses on how it works, what traffic data it is capable
of collecting, its advantages, and its disadvantages.

1.1.1 Inductive-Loop Detector
Inductive-loop detectors are widely used at intersections with traffic-
actuated signals, freeway entrances with automatic ramp metering, highway
segments monitored by traffic counting programs, and entrances of gated
parking facilities.

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
http://dx.doi.org/10.1016/B978-0-12-804134-5.00001-5 All rights reserved. 3
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Figure 1.1 An example application of connected vehicles at an intersection.

How It Works
As illustrated in Figure 1.2, an inductive-loop detection system consists of
an inductive loop, which is simply a coil of wire embedded in the road’s
pavement, and a detector, which typically sits in a signal cabinet and links
the signal controller to the inductive loop. The detector drives an alternating
flow of current through the loop at or below the resonant frequency. All
wire conductors carrying an electrical current produce a magnetic field,
and the magnetic flux induces the electrical property called inductance.
Note that the metal body and frame provide a conductive path for the
magnetic field. Therefore, when a vehicle enters the detection zone or
crosses the loop, this produces a loading effect, which in turn causes the
loop inductance to decrease. The decreased inductance causes the resonant
frequency to increase from its nominal value. If the frequency change
exceeds the threshold set by the sensitivity setting, the detector module
will output a detect signal—that is, an “on” state. Otherwise, the detector
does not output a signal—that is, an “off” state.

The output of the detector can be used for many applications. For
example, an actuated signal controller relies on the detector output to decide
whether a green indication is granted to the approach that is monitored
by the detector. As another example, when a vehicle exits a gated parking
garage, an inductive loop is able to detect the vehicle in advance so that the
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Figure 1.2 An inductive-loop detection system.

gate automatically opens for the vehicle. Yet another innovative application
is a red-light-running camera. An intersection with such a system has the
detector connected to the signal controller and an overhead camera. As a
result, when a vehicle is running a red light, the camera will be triggered
and a picture of the vehicle will be taken as evidence of red light violation.

Data Collected
An inductive-loop detector monitors a point of the roadway and is able
to collect time-stamped traffic counts with vehicle classification, vehicle
instantaneous speed, headway (temporal separation between two consec-
utive vehicles), on time (time during which the detector outputs an “on”
state), etc.

Advantages
An inductive-loop detector is able to monitor traffic on a regular basis (i.e.,
day-round and year-round) under all weather and lighting conditions.
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Disadvantages
Installation of inductive-loop detectors is intrusive to traffic (i.e, the traffic
must be interrupted in order to put the loop in the pavement). In addition,
setup andmaintenance costs of inductive-loop detectors are high. Inductive-
loop detectors can fail under some weather conditions, especially snow
and ice.

1.1.2 Video Image Processing System
A video image processing system (VIPS) is widely used for traffic surveil-
lance and hence is an essential component of ITS.

How It Works
A VIPS comprises (1) an image capturing system (e.g., a video camera
mounted above the roadway that captures real-time images/video streams
of the traffic under surveillance), (2) a telecommunication system (e.g., a
modem and a telephone line that transmit images/video streams to the
image processing system), and (3) an image processing system (e.g., a
computer that processes frames of a video clip to extract traffic data).

The left panel in Figure 1.3 illustrates a video camera which is monitor-
ing traffic. The right panel shows an image of roadway traffic (not necessarily
a match of the view of the video camera in the left panel) with detection
zones set up on the screen.When a vehicle enters a detection zone, the VIPS
outputs an “on” signal, which remains until the vehicle exits the detection
zone, at which time the VIPS switches to an “off” signal. Multiple detection
zones can be set up—for example, one for each lane. Hence, these detection
zones constitute a detection station.

Figure 1.3 Video imageprocessing system. (Photos fromhttp://www.imagesensing.com/)
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Data Collected
Similarly to inductive-loop detectors, the VIPS monitors a point of the
roadway and is able to collect time-stamped traffic counts with vehicle
classification, vehicle instantaneous speed, headway, on time, etc.

Advantages
The VIPS is an automatic system and is able to collect traffic data on a
regular basis. Its overhead installation makes this technology nonintrusive to
traffic flow. It is flexible in the setting up of detection zones and aggregation
intervals. It provides video footage in addition to traffic monitoring.

Disadvantages
The VIPS is expensive and its setup cost is high. It is vulnerable to visual
obstruction—for example, inclement weather, shadows, poor-lighting con-
ditions, and strong winds.

1.1.3 Pneumatic Tubes
Pneumatic tubes are portable traffic data collection devices and are ideal for
short-term traffic engineering studies.

How It Works
A rubber tube with a diameter of about 1 cm is placed on the surface of a
road. When a vehicle passes, the wheel presses the tube and the air inside
the tube is pushed away. One end of the tube is connected to a box that
contains a membrane and an electrical switch. The air pressure moves the
membrane and engages the switch. The other end of the tube has a small
opening, to prevent reflection of the air wave. The box counts axles that
travel over the tubes and stores the data for later analysis.

Figure 1.4 illustrates how pneumatic tubes are installed: from left to right,
a technician is nailing tubes on the road; the technician is programming the
data recorder with a laptop computer to collect the desired information;
the technician is connecting the pneumatic tubes to the data collector; the
installation is complete and the system is collecting traffic data.

Figure 1.4 Installation of pneumatic tubes. (Photos fromhttp://www.arlingtonva.us.)
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Data Collected
Rather than collecting traffic counts as in the previous two types of
sensors, pneumatic tubes are able to collect time-stamped axle counts, from
which vehicle classification, direction of flow, traffic counts, flow, vehicle
instantaneous speed, headway, and on time can be inferred.

Advantages
Pneumatic tubes are portable devices for automatic traffic data collection.
The cost is moderate, and the system can be reused at other locations.
Installation can be done by one or two persons.

Disadvantages
The system has a limited lane coverage and is not intended for use on
a regular basis (year-round). The system can be damaged by vehicles or
roadway maintenance, causing inaccurate data collection. The system may
be intrusive to traffic and nearby properties.

1.1.4 Global Positioning System Receiver
The global positioning system (GPS) is widely used in automotive nav-
igation and traffic engineering studies such as traffic time studies. Many
cell phones are equipped with positioning functions, and hence they are
considered in the same category as the GPS.

How It Works
The GPS is a satellite-based navigation system made up of a network
of 24 satellites placed in orbit by the US Department of Defense. GPS
satellites circle Earth twice a day in a very precise orbit and transmit
signal information to Earth. GPS receivers take this information and use
triangulation to calculate the user’s exact location (see Figure 1.5 for an
illustration). Essentially, the GPS receiver compares the time when a signal
was transmitted by a satellite with the time when it was received. The

Figure 1.5 The global positioning system. (Photos from https://en.wikipedia.org/wiki/
Global_Positioning_System.)
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time difference tells the GPS receiver how far away the satellite is. Now,
with distance measurements from a few more satellites, the receiver can
determine the user’s position and display it on the unit’s electronic map.

If a vehicle carries a GPS receiver on board and it is set up to log GPS
signals, it is possible to record the positions of the vehicle and the time
when a location is passed as the vehicle moves along the road. Therefore,
the vehicle would leave a trace of spatial-temporal points in the time-space
diagram, and a curve that connects these points depicts the vehicle’s spatial-
temporal trajectory. From this trajectory, the motion of this vehicle can be
understood.

Data Collected
Vehicle-specific motion data such as instantaneous speed, average running
speed, distance traveled, and travel time are collected.

Advantages
GPS has become an affordable technology since one only needs a GPS
receiver to receive positioning signals. GPS receivers are simple to install
and operate. They work under all weather and lighting conditions.

Disadvantages
GPS receivers provide only vehicle-specific data. Traffic information has to
be obtained from all vehicles in the traffic stream. In addition, GPS signals
can be obstructed by tall buildings and trees.

1.1.5 Acoustic/Ultrasonic Sensor
Acoustic/ultrasonic sensors can be used for vehicle detection, automotive
radar, and assisting vehicle parking.

How It Works
The sensor shoot a beam of sound, like radar, which travels until it hits
an object. The sound wave then bounces back and returns to the sensor.
The sensor then measures the time it takes the sound wave to travel.
Knowing the speed of sound, the sensor outputs the distance between
the sensor and the object. In traffic applications, these sensors can be
used to count pedestrians and vehicles by knowing the distance between a
pedestrian/vehicle and the sensor. In mechanical applications, these sensors
can be used to measure fluid levels. The photo in Figure 1.6 shows them
installed in the rear of a vehicle as a parking sensor. The sensors measure
the distance between the vehicle and an object behind the vehicle, and then
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Figure 1.6 Acoustic/ultrasonic sensors. (Photo from http://autoteksheffield.co.uk/
security/parking-sensors/.)

display a color corresponding to the distance on the dashboard panel. When
the display turns red, the driver can stop and is perfectly parked.

Data Collected
The sensor collects the time of sound wave travel, and then converts it to
distance.

Advantages
The sensor is inexpensive in general and involves relatively simple hardware.

Disadvantages
The sensor covers only a short range and has slow response times. Accuracy
is limited by the surface of the objects. Sound waves may bounce off various
surfaces differently, which may throw off readings on the sensor.

1.1.6 Aerial/Satellite Imaging
How It Works
This technology usually requires the use of either manned or unmanned
helicopters in the sky to monitor and observe traffic on the ground for data
collection purposes. Illustrated in Figure 1.7, the helicopter can be used to
capture images of the ground, and the images are stored or transmitted to a
workstation for analysis. The information obtained includes vehicle counts,
vehicle speeds, and traffic density.
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Figure 1.7 Unmanned helicopter as a traffic sensor.

Data Collected
The captured aerial photos contain snapshots of traffic on roadways, from
which spatial traffic data such as spacing (i.e., spatial separation between two
consecutive vehicles), vehicle counts over a segment of roadway, and traffic
density can be obtained. In addition, analysis of consecutive aerial photos
may yield information about vehicle speeds and mean traffic speed.

Advantages
Traffic surveillance can be done at high accuracy. There is no need for
hardware installation on or near roadways—that is, it is a nonintrusive and
noninterruptive technology. It can provide a bird’s eye view of system-wide
traffic conditions.

Disadvantages
Helicopters are expensive and may require pilots to operate them. It is time-
consuming and resource-consuming to collect traffic data. Analysis of aerial
photos is complicated—for example aligning aerial photos captured from
different angles and extracting traffic data from these photos.
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1.1.7 Radio-Frequency Identification Technology
Radio-frequency identification (RFID) is the core technology of many
traffic sensors known as transponders (e.g., E-ZPass tags), and is used for
automatic vehicle identification, etc.

How It Works
RFID is a technology that uses radio waves to exchange data between
a reader and an electronic tag attached to an object for the purpose of
identification and tracking. Figure 1.8 illustrates an electronic toll collection
system which consists of (1) a transponder on the vehicle, (2) a tag reader
antenna at each plaza toll lane, (3) lane controllers that control the lane
equipment and track vehicles passing through, and (4) a host computer
system. All of the toll plaza controllers are connected to a central database.
When a vehicle comes to the toll booth, the tag reader detects the
transponder and records its unique ID, the time instant, and other account-
related information such as balance and toll paid.

Data Collected
RFID technology is able to record the IDs of equipped vehicles and time-
stamp the arrival of these vehicles.

Advantages
RFID technology is inexpensive. It does not interrupt traffic.

Disadvantages
RFID only detects equipped vehicles at a point of roadway.

Figure 1.8 Electronic toll collection system.
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1.2 TRAFFIC SENSOR CLASSIFICATION

Traffic sensors can be classified in many ways. For example, according to its
working principle, a traffic sensor can be a
• mobile sensor if it resides in a vehicle and collects data only specific to this

vehicle. GPS receivers, acoustic/ultrasonic sensors, and cell phones are
examples of mobile sensors.

• point sensor if it is mounted at a fixed location along the roadway and
observes traffic only at this particular location. Inductive-loop detectors,
VIPS, pneumatic tubes, and RFID technology (e.g., transponder-reader
system) are examples of point sensors.

• space sensor if it is up in the air and is able to take a snapshot of traffic on
a stretch of road. Helicopters and satellites are examples of space sensors.
According to the extent to which a sensor intrudes into the roadway and

traffic, the sensor can be
• intrusive if installation of the sensing system requires pavement work and

interruption of traffic. Inductive-loop detectors and pneumatic tubes are
examples of intrusive sensors.

• nonintrusive if installation of the sensing system does not require pavement
work and interruption of traffic. VIPS and RFID technology are
example of intrusive sensors.

• off-roadway if the sensor is not fixed to a location on the roadway—that
is, the sensor can move with vehicles or float in the sky. GPS receivers,
acoustic/ultrasonic sensors, cell phones, helicopters, and satellites are
examples of space sensors.

1.3 DATA SOURCES

As example products of traffic sensors, two sets of data are presented below—
Georgia State Route 400 (GA400) data and Next Generation Simulation
(NGSIM) data. These data sets will be used in later chapters.

1.3.1 GA400 Data
GA400 is a toll road in Atlanta (Georgia, USA). Part of the road is freeway
by design and is monitored by the NaviGAtor system-the—Georgia De-
partment of Transportation’s intelligent transportation system. NaviGAtor’s
video detection system (VDS) is the primary source of real-time information
about current travel conditions. Approximately 1645 VDS stations are
installed approximately every third of a mile along most major interstate
highways in the Atlanta Metropolitan Area. These VDS cameras provide
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continuous speed and volume data to the traffic management center and
allow the system to generate travel times for the changeable message signs.
NaviGAtor also uses about 500 full-color closed-circuit television cameras,
positioned about every 1 mile on most major interstate highways in Atlanta.
The closed-circuit television cameras have tilt, pan, and zoom capabilities,
and serve as traffic cameras sending real-time footage to the operators at the
trafficmanagement center for enhanced situational awareness. The informa-
tion collected from these cameras allows the operators to confirm incident
details, dispatch rescue units, and request appropriate emergency resources.

Figure 1.9 shows a real-time traffic map of NaviGAtor in the Atlanta
Metropolitan Area. On this map, roadway links are color-coded to highlight
the level of congestion. In addition, the locations of some of the video
cameras and changeable message signs are labeled on the map. A sample
image from a video camera on GA400 is illustrated in the top left corner of
the figure.

The data collected by the automated surveillance systems on GA400
were archived every day in the form of a single compressed file. This
archived file contains observations at each station during the day. Each
data entry represents 20 s of aggregation of classified vehicle counts, time

Figure 1.9 Georgia NaviGAtor. (Photo fromhttp://www.511ga.org/)
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Figure 1.10 GA400 data sample.

mean speed, occupancy, etc. Figure 1.10 illustrates three-dimensional traffic
density (converted from field data collected on Friday, October 11, 2002)
over time and space.

1.3.2 NGSIM Data
The NGSIM program was initiated by the Federal Highway Administration
of the US Department of Transportation around 2000. The program
developed a core of open behavioral algorithms in support of traffic
simulation with a primary focus on microscopic modeling. To support
the research and testing of the new algorithms, high-quality primary
traffic and trajectory data were collected at multiple locations nationwide.
The NGSIM program also actively engaged traffic simulation vendors
to accelerate the inclusion of advanced or improved algorithms in the
commercial models used across the world.

NGSIM vehicle trajectory data were collected for a set of sites including
freeways, arterial roadways, and urban streets. Figure 1.11 illustrates one
of the sites on Interstate 80 in California. The left panel shows an aerial
photo of the site where seven video cameras were set up on top of a 30-
story building with each camera covering part of the study area. The right
panel visualizes a camera and its perspective. These cameras shot the site
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Figure 1.11 NGSIM data collection site. (Photos from http://www.fhwa.dot.gov/.)

Figure 1.12 NGSIM data sample.

at different angles such that a vehicle entering from upstream is monitored
continuously and consecutively by these cameras until it exits the study area.

Videos captured by these cameras were then processed by a customized
software application which identifies, tracks, and records every vehicle’s
temporal-spatial positions as the vehicle traverses the study areas. The
resultant vehicle trajectory data provided the precise location of each vehicle
within the study areas every 0.1 s, resulting in detailed lane positions and
locations relative to other vehicles. Figure 1.12 illustrates a sample result of
such vehicle trajectory data. The y-axis (not shown) is the highway running
from south to north and the x-axis (not shown either) is time. Vehicle
trajectories are so fine and dense that disturbances of traffic flow and its
propagation are clearly visible like ripples in water.

PROBLEMS

1. Explain what an ITS is. What are the components of an ITS? Name a
direction of recent development of ITS in the United States.

2. According to their working principle, traffic sensors can be classified into
three types, what are they?
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3. Provide an example of a mobile sensor. With a sketch, explain how it
works, what kind of traffic data it is capable of collecting, and what
advantages and disadvantages it has.

4. Provide an example of a point sensor. With a sketch, explain how it
works, what kind of traffic data it is capable of collecting, and what
advantages and disadvantages it has.

5. Provide an example of a space sensor. With a sketch, explain how it
works, what kind of traffic data it is capable of collecting, and what
advantages and disadvantages it has.



CHAPTER 2

Traffic Flow Characteristics I

According to their reporting mechanisms, traffic sensors can be classified
into three categories: mobile sensors, point sensors, and space sensors. A
mobile sensor resides in a vehicle, moves along with the vehicle, and logs
the location of this particular vehicle over time. A point sensor sits at a
fixed location on a roadway, sees the passage of vehicles above or under it,
and reports traffic data only at this particular location over time. A space
sensor flies in the sky, observes traffic on a stretch of road, and records the
positions of vehicles at an instant of time over this particular stretch of road.
It is interesting to see what traffic data reported by these sensors look like
and, further, how traffic flow characteristics are determined from these data.

2.1 MOBILE SENSORDATA

Let us start with mobile sensors. If a vehicle is equipped with a global
positioning system (GPS) device, the device can report the vehicle’s position
as time progresses. Since GPS signals typically come once every second (i.e.,
at a frequency of 1Hz), the GPS data may look similar to the data in Table
2.1, where the vehicle’s longitudinal x and lateral y displacements are relative
to the vehicle’s position at 09:00:00.

Figure 2.1 shows the scenario in which a vehicle (with an on-board GPS
device and ID number i) is moving on a roadway (drawn on the left) and the
associated time-space diagram (drawn on the right). Every circle represents a
GPS reading (only x is shown). If one connects these circles, the trajectory
of this vehicle is obtained—that is, the location of the vehicle as a function
of time: xi = xi(t). It is easy to calculate the speed of the vehicle, ẋi, from
the GPS data as illustrated in Figure 2.1:

ẋi = �x
�t

.

If the vehicle’s trajectory is known and smooth, we can determine ẋi by
taking the first derivative of the trajectory:

ẋi = dx
dt

.

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
http://dx.doi.org/10.1016/B978-0-12-804134-5.00002-7 All rights reserved. 19
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Table 2.1 GPS data
Time x (feet) y (feet) x (m) y (m)
09:00:00 0 0 0.0 0.0
09:00:01 3 0 0.9 0.0
09:00:02 5 0 1.5 0.0
09:00:03 7 0 2.1 0.0
09:00:04 10 1 3.0 0.3
09:00:05 15 4 4.6 1.2
09:00:06 18 9 5.5 2.7
09:00:07 21 12 6.4 3.7
09:00:08 23 12 7.0 3.7
09:00:09 27 12 8.2 3.7
09:00:10 30 12 30 12

Time, t

R
oa

dw
ay

S
pa

ce
, x

Δx
Δt

Vehicle
i

Vehicle speed
vi

i

Travel time, Γi

A

B

Figure 2.1 A trajectory.
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x

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.2 Vehicle trajectories.

The vehicle’s travel time, ti, between two points A and B can be directly
read from the trajectory:

�i = tBi − tAi .

Figure 2.2 illustrates some hypothetical vehicle trajectories, some of
which are valid (i.e., trajectories that make sense), while some are not. Test
yourself and see if you are able to identify which trajectories are valid and
understand how these vehicles move. Plot (a) is valid, and it shows a vehicle
moving in the positive x direction over time. Plot (b) is not a valid trajectory
for the following reasons. If one draws a vertical line, it may intersect the
trajectory several times. This means that at an instant of time the vehicle
can appear at multiple locations simultaneously, which is impossible. For the
same reason, plots (c) and (j) are not valid either. Plot (d) is valid, and the
trajectory suggests that the vehicle first moves forward (i.e., in the positive x
direction) and then, at some point in time, reverses. Plot (e) is valid, and sim-
ply suggests that the vehicle does not move (maybe parked). Plot (f) is impos-
sible because it suggests an infinite speed (i.e., the tangent of the trajectory).
Plot (g) is a valid since the vehicle just moves backward at a time-varying
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speed. Plot (h) is likely but very unusual because the vehicle first moves at
reasonable speeds and then almost flies at the end. Plot (i) is valid, and the
vehicle gradually comes to a stop. Plot (k) can be interpreted in two ways:
one is a two-lane scenario where a fast vehicle overtakes a slow vehicle; the
other is a one-lane scenario where the fast vehicle collides with the slow
vehicle and they exchange momentum. Plot (l) suggests that a fast vehicle
catches up with a slow vehicle and then they move as a single unit thereafter.

2.2 POINT SENSOR DATA

If a point sensor (such as a loop detector or a video camera) is installed on
the road at location x, this sensor will be able to observe vehicles passing
above or under it. In a time-space diagram as illustrated in Figure 2.3, each
vehicle will be counted (e.g., the tick marks) at this location. For example,
during an observation period T , a total of N vehicles are counted by the
sensor.N is referred to as the traffic count, which can be converted to the
hourly equivalent rate of flow (referred as “flow” q hereafter) as follows:

q = N
T
.

T

i

R
oa

dw
ay

Time, t

S
pa

ce
,
x

1 2 N

v1 v2 vi vN

i
x

Figure 2.3 Point sensor data.
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Headway hi is defined as the temporal separation between two consec-
utive vehicles, and can be determined as:

hi = ti − ti−1.

If one ignores the error due to incomplete headways of the first and last
vehicles, the observation duration T can be expressed as

T =
N∑
i=1

hi.

Both vehicles and point sensors have physical dimensions. If the sizes of
the vehicles and sensors are taken into consideration, more information can
be obtained from the time-space diagram (see Figure 2.4).

When a vehicle’s front bumper enters the detection zone of a loop
detector, a detection signal will be generated in the detector according to
electromagnetism.When the vehicle’s rear bumper exits the detection zone,
the signal will drop. For an illustration of this effect, see the lower plot above

i

R
oa

dw
ay

Time, t

S
pa

ce
, x

x

on
i–1 i–1t offt on

it
off
it

i

i-1

t

tOff

On

Current in field loop

Output of detector

Figure 2.4 Loop detector data.
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the two trajectories in Figure 2.4. If a threshold is set properly, the loop
detector outputs two states: “on” when a vehicle is above the loop and “off”
when the loop detects no vehicle over it. When the loop outputs “on,” the
loop is said to be “busy.”With the above setup, let us revisit some of the traf-
fic flow characteristics discussed above and determine more characteristics:

Traffic count N : Since the on state consists of an upward transition
and a downward transition of the detector output, one need only count
either the upward transition or the downward transition consistently over
all vehicles in order to obtain the traffic count.

Headway hi: If one chooses reference points on all vehicles consistently
(e.g., front bumpers), the headway between vehicles i − 1 and i can be
calculated as hi = toni − toni−1 and the time gap between them is toni − toffi−1.

On time ξi: The duration from the moment when a vehicle’s front
bumper enters the detection zone to the moment when the vehicle’s rear
bumper exits the detection zone: ξi = toffi − toni .

Vehicle speed ẋi: During the on time, vehicle i travels a distance of
d + li where d is the width of the loop (typically 6 feet or 1.8m for small
loops) and li is the length of the vehicle. Hence, the vehicle’s instantaneous
speed can be determined as

ẋi = d + li
ξi

= d + li
toffi − toni

.

Occupancy o: In traffic flow theory, occupancy is defined as the
percentage of time when a loop is busy—that is, when the loop detects
vehicles above it. Hence, if the observation period is T , during which N
vehicles are detected, the total on time is

∑N
i=1 ξi and the occupancy is

determined as

o =
∑N

i=1 ξi

T
.

Time-mean speed vt: If one averages vehicle speeds observed at a point
of roadway, one obtains a mean speed in the time domain, and hence such
a mean speed is termed “time-mean speed.”

vt = 1
N

N∑
i=1

ẋi...in the time domain.

Interested readers are referred to [1], where there is detailed discussion of
how various traffic flow characteristics are measured and calculated as well
as how errors inherent in point sensors are introduced.
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2.3 SPACE SENSOR DATA

If one takes aerial photos of a roadway from a helicopter, one is able to
locate vehicles in each of these snapshots. For example, Figure 2.5 illustrates
a snapshot taken at time t where vehicles are labeled as triangles. Some
space-related traffic flow characteristics can be determined from these aerial
photos:

Spacing si is defined as the spatial separation between two consecutive
vehicles and can be determined as

si = xi−1 − xi.

Density k is defined as the number of vehicles observed on a unit length
of road and can be determined as

k = N
L
,

where L is the length of the stretch of road under observation and N is
number of vehicles observed on this stretch of road. If one ignores the

t
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, x
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N

i

vN

vi

v2

v1

L

s i
x i

-1
x i

i

Figure 2.5 A snapshot of roadway.
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error due to incomplete spacings of the first and last vehicles, the length
of roadway L can be expressed as

L =
N∑
i=1

si.

Unfortunately, one is unable to determine the vehicle speed vi from
a single snapshot, but with two snapshots (at t1 and t2, respectively), one is
able to compare vehicle locations and find the distance traversed by each
vehicle—that is, �xi = xi(t2) − xi(t1). Since the time between the two
snapshots�t = t2−t1 is known, the speed of each vehicle can be determined
accordingly:

vi(t) = �xi
�t

.

Space-mean speed vs: If one averages vehicle speeds obtained from
aerial photos, a mean speed in the space domain results, and hence such a
mean speed is termed the “space-mean speed.”

vs = 1

N

N∑
i=1

ẋi... in the space domain.

2.4 TIME-SPACE DIAGRAMAND CHARACTERISTICS

The discussion so far has covered the three types of sensors (mobile,
point, and space sensors), data reported by these sensors, and traffic flow
characteristics determined with use of these data. It is informative to put
everything together and form a complete picture. Figure 2.6 shows a time-
space diagram with vehicle trajectories where data reported by the three
types of sensors are illustrated.

Table 2.2 relates traffic flow characteristics to sensor types. Three
categories of traffic flow characteristics are presented: flux, speed, and
concentration. The characteristics are considered at two levels of detail:
microscopic characteristics are vehicle specific and hence all bear subscript i,
and macroscopic characteristics are aggregated measures and the aggregation
can be done over vehicles, time, or space.

2.5 RELATIONSHIPS AMONGCHARACTERISTICS

So far, traffic flow characteristics have been introduced with the aid of field
observations. It is interesting to investigate further the relationships among
these traffic flow characteristics.
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Figure 2.6 Time-space diagram and three types of sensors.

Table 2.2 Sensors and traffic flow characteristics
Macroscopic

Category Sensors Microscopic characteristics characteristics

Flux
Mobile – –
Point hi N , q
Space – –

Speed
Mobile ẋi –
Point ẋi vt
Space ẋi vs

Concentration
Mobile – –
Point ξi o
Space si N , k

2.5.1 Flow, Speed, and Density
By definition, the following relationship holds as an identity:

q = k× vs;

that is, flow q is the product of density k and space-mean speed vs.
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2.5.2 Flow and Headway
From the above discussion, it follows that

q = N
T
,

T =
n∑
i=1

hi,

q = N∑n
i=1 hi

= 1
1
N

∑n
i=1 hi

= 1
h
.

Therefore, flow q is the reciprocal of average headway h. For example, a
flow of 1200 vehicles per hour suggests an average headway of

1
1200 vehicles per hour

= 3600 s/h
1200 vehicles per hour

= 3 s.

2.5.3 Density and Spacing
Similarly,

k = N

L
,

L =
n∑
i=1

si,

k = N∑n
i=1 si

= 1
1
N

∑n
i=1 si

= 1
s
.

Therefore, density k is the reciprocal of average spacing s. For example,
a density of 40 vehicles per mile (or 25 vehicles per kilometer) suggests an
average spacing of

1
40 vehicles per mile

= 5280 feet per mile
40 vehicles per mile

= 132 feet

or

1
25 vehicles per kilometer

= 1000m/km
25 vehicles per kilometer

= 40m.
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2.5.4 Time-Mean Speed and Space-Mean Speed
As discussed before, time-mean speed is vehicle speed averaged in the time
domain, whereas space-mean speed is vehicle speed averaged in the space
domain. Below we give an example that illustrates the difference between
the two mean traffic speeds. Consider two lanes of traffic which is perfectly
controlled so that there are only two streams of traffic: fast vehicles all travel
at 60 miles per hour (or 96 km/h) in the inner lane and slow vehicles all
move at 30 miles per hour (or 48 km/h) in the outer lane. Traffic flow in
each lane is 1200 vehicles per hour, and lane change is prohibited. What is
the time-mean speed and space-mean speed of traffic in both lanes?

Calculation of space-mean speed is straightforward, one simply averages
the speed of vehicles observed on the road (see Figure 2.7). In 1 mile of
the road, one observes a total of 60 vehicles, of which 20 vehicles are in
the inner lane (1200 vehicles per hour/60 miles per hour) and 40 vehicles
in the outer lane (1200 vehicles per hour/30 miles per hour). Therefore,
space-mean speed is determined as

vs = 20 × 60mi/h + 40 × 30mi/h
60

= 40mi/h.

Or in 1 km of the road, one observes a total of 37.5 vehicles, of which
12.5 vehicles are in the inner lane (1200 vehicles per hour/96 km/h) and
25 vehicles in the outer lane (1200 vehicles per hour/48 km/h). Therefore,
space-mean speed is determined as

vs = 12.5 × 96 km/h + 25 × 48 km/h

37.5
= 64 km/h.

Figure 2.7 Time-mean speed versus space-mean speed. mph, miles per hour; vph,
vehicles per hour.
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For time-mean speed, one has to imagine a hypothetical observer
standing at the roadside watching vehicles passing in front of him or her. As
a result, the observer records 2400 vehicles in 1 h, of which 1200 vehicles
are in the inner lane and 1200 vehicles are in the outer lane. Hence, by
definition, time-mean speed is

vt = 1200 × 60mi/h + 1200 × 30mi/h
2400

= 45mi/h,

or

vt = 1200 × 96 km/h + 1200 × 48 km/h

2400
= 72 km/h.

Obviously, the results show that the two mean speeds are not equal.
Wardrop [2] demonstrated that the following relationship between time-
mean speed and space-mean speed always holds:

vt = vs + σ 2

vs
,

where σ is the variance of vehicle speeds. It can be seen that time-mean
speed vt is always greater than or equal to space-mean speed vs and they are
equal only if the traffic is uniform—that is, all vehicles are traveling at the
same speed (σ = 0).

Note that, in the above example, fast vehicles are overrepresented in the
time-mean speed, with a fast to slow ratio of 1:1, while in reality the correct
ratio is 1:2, which is the case in the calculation of space-mean speed. It can
be further demonstrated that the space-mean speed is an unbiased estimate
of the true traffic mean speed, while the time-mean speed is not.

2.5.5 Occupancy and Density
The following is reproduced from Ref. [3, Chapter 2]:

o = 1
T

N∑
i=1

τi = 1
T

N∑
i=1

d + li
ẋi

≈ d + l
T

N∑
i=1

1
ẋi

(assumeli → l)

= (d + l)
1
T

N∑
i=1

1
ẋi

= (d + l)
(
N
T

)(
1
N

N∑
i=1

1
ẋi

)
= (d + l)q

1
vs

= (d + l)k = ckk.
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The approximately equal sign is based on the assumption of uniform vehicle
length, li = l. With such an assumption, occupancy o is proportional to
density k, and the proportion coefficient ck is the sum of loop width d and
uniform vehicle length l.

2.6 DESIRED TRAFFIC FLOWCHARACTERISTICS

Control and optimization of traffic operations rely on an accurate under-
standing of traffic flow conditions, which in turn comes from field data
collection.

Though the three types of sensors have their relative merits in terms of
traffic data collection, they are practically very different, especially in terms
of large-scale applications on a regular basis. Mobile sensors are not practical
because not every vehicle is equipped with a GPS device. Though some
vehicles may have GPS navigation systems or GPS-enabled cell phones, they
are generally not intended for logging vehicle trajectories. Even if every
vehicle had a GPS device and it were turned on to log vehicle trajectories,
it would be prohibitive to make every driver comply with data extraction,
let alone processing the data to generate a time-space diagram like that in
Figure 2.6. Space sensors are not suitable for applications on a regular basis.
Think about the cost of hiring a helicopter flying over a road to observe
traffic 24 hours a day and 7 days a week, not to mention the complexity of
and time spent extracting traffic data from the huge number of aerial photos.
Therefore, the only type of sensor that is feasible for automatic, regular, and
large-scale applications is a point sensor such as a loop detector or a video
camera (see Chapter 1 for details).

Traffic flow characteristics are not equally attractive when traffic control
and management is concerned. For example, space-mean speed is preferred
over time-mean speed as an unbiased estimate of the true mean traffic speed.
In addition, space-mean speed is required in the identity q = k × vs to
calculate density or flow. Density is preferred over occupancy as a measure
of traffic concentration. For example, the Highway Capacity Manual uses
density as the measure of effectiveness to determine the level of service on
freeways and multilane highways.

Hence, we have the following dilemma. On the one hand, space-
based traffic flow characteristics such as space-mean speed and density are
preferred. Therefore, space sensors are called for to providemeasures of these
traffic flow characteristics. On the other hand, space sensors are prohibitive
to deploy on a large scale on a regular basis, while point sensors are
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widespread (most intelligent transportation systems use point sensors), but
report less attractive traffic flow characteristics such as time-mean speed and
occupancy. Therefore, such a dilemma inevitably results in the estimation
of space-based characteristics from point sensor data.

2.6.1 Determining Space-Mean Speed from Point Sensor Data
If individual vehicle speeds (ẋi, i = 1, 2, . . . ,N ) are available from a point
sensor, these speeds can be used to determine space-mean speed as follows:

vs = 1
1
N

∑N
i=1

1
ẋi

.

This mean is called the harmonic mean, in contrast to the arithmetic
mean, which is the time-mean speed:

vt = 1
N

N∑
i=1

ẋi.

Unfortunately, many point sensor systems log only aggregated measures
such as time-mean speed. In these systems, individual vehicle speeds are
measured, but they are discarded after aggregation. As such, one has to resort
to time-mean speed as a surrogate for space-mean speed, though one needs
to recognize their difference, which might be considerable in some cases.

2.6.2 Determining Density from Point Sensor Data
Point sensor systems report occupancy, but not density. Using the above
relationship between occupancy and density, one may be able to estimate
density from occupancy:

k = o

d + l
,

though the reader must be cautioned about the implicit assumption of
uniform vehicle length, which might be a strong one in some cases.

If a point sensor system time-stamps the passage of vehicles at two
locations on the road with no vehicle appearing or exiting in between (e.g.,
a tunnel), it is possible to construct a curve showing the cumulative number
of vehicles as a function of time at each location. Hence, density can be
read directly from the cumulative curves. Interested readers are referred to
[4] for further details.

Below are a few additional ways to calculate density k (not necessarily
from point sensor data):
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• k = 1
s if the average spacing s is known.

• k = q
vs
. For point sensor data, replacing vs with vt sometimes yields more

accurate k than that estimated from occupancy.
• Estimate density from travel times with the Kalman filter technique [5].

PROBLEMS

1. In a highway segment XY, an observer standing at location X counted
four vehicles passing in front of him in 20 s. Their speeds are labeled
in the figure. Find the flow, density, time-mean speed, and space-mean
speed in this scenario.

72 kph
65 kph

50 kphX

Y

10
8m

8m

8m

8m

10m

20m100m

13m

15m

75 kph

2. The figure below illustrates two streams of uniform traffic in two lanes.
In lane A, all vehicles are traveling at 24m/s with a spacing of 48m,
while in lane B all vehicles are traveling at 12m/s with a spacing of
24m. Find the time-mean speed of all vehicles in the two lanes.

A

B
24 m/s

12 m/s

24 m
48 m
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3. A traffic engineer counted vehicles on Route 9 and found that, on
average, a vehicle passed in front of her at a rate of one every 5 s. If
vehicles keep coming at this rate, what would be the equivalent hourly
flow rate?

4. A roadside observer reports that five vehicles passed in the past 2min.
Their speeds are 30, 45, 20, 36, and 40 km/h respectively. Find the flow
in vehicles per hour, time-mean speed, and space-mean speed. Which
is greater, time-mean speed or space-mean speed?

5. For problem 2, find the space-mean speed.
6. Vehicle time headways and spacings were measured at a point along a

highway, from a single lane, over the course of 1 h. The average values
were calculated as 2.5 s per vehicle for the headway and 50m per vehicle
for the spacing. Calculate the average speed of the traffic.

7. A loop detector has recorded the information shown in the figure. The
loop width is 6 feet. Each gate represents the brief period when a vehicle
is in passing over the loop. “On”means a vehicle is in the detection zone,
while “off” means no vehicle is in the detection zone. The numbers
above each gate represent the duration of each gate. For example, “0-
12” means a vehicle enters the detection zone at 0/60th second and exits
at 12/60th second. The number of seconds is labeled at the bottom of
the figure—for example, 1, 2, and 3 mean the first, second, and third
seconds, respectively. Assume the vehicle length is uniformly 15 feet, and
determine the following from the figure:

0-12

on

off

32-45 32-45 22-35 6-19 9-22 4-19 57-9 43-53

0 1 2 3 4 5 6 7 8 9 10

a. Vehicle count during the observation period and the equivalent
hourly flow rate

b. Occupancy during the observation period
c. Time-mean speed and space-mean speed
d. Traffic density
e. Estimate the speed from the speed-flow-density relationship and

compare the result with that for (c). Is your estimated speed the time-
mean speed or the space-mean speed?
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8. The figure below shows aerial photos of a segment of Interstate 90. The
two snapshots were taken 0.5 s apart and the scale of the ruler is 1:10m.
Using the section measured by the ruler and focusing on the middle lane
traffic, find the vehicle spacings, traffic density, vehicle displacements,
space-mean speed, and flow.



CHAPTER 3

Traffic Flow Characteristics II

3.1 GENERALIZED DEFINITION

In previous chapters, flow q and time mean speed vt were defined with the
help of Figure 2.3 on the basis of point sensor data:

q = N
T
,

vt = 1
N

N∑

i=1

ẋi.

Similarly, density k and space mean speed vs were defined with the help
of Figure 2.5 on the basis of space sensor data:

k = N
L
,

vs = 1

N

N∑

i=1

ẋi.

However, there is no common ground between the two sets of defini-
tions, and the issue becomes more evident in Figure 2.6, where both cases
are illustrated in the same figure. For example, the total number of vehicles
N in the point sensor case is not necessarily the same as the total numberN
in the space sensor case. Similarly, vehicle speeds ẋi are not necessarily the
same in both cases. The two sets of data are simply independent, though we
adopted the same notation in both sets of definitions. As such, one is unable
to conclude that the identity

q = k× vs

is guaranteed by definition. Therefore, the key to addressing this issue is to
provide a common ground such that both sets of definition can be related
in a single setting. For the convenience of further discussion, the above
definition of flow, density, and mean speeds is referred to as the Highway
Capacity Manual (HCM) definition hereafter since the definition is formally
given in the HCM.

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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To find the common ground, let us rearrange the definition above as
follows:

q = N
T

= N × dx
T × dx

,

where dx denotes an infinitesimal distance (see Figure 3.1). If one ignores
the slight error introduced by (possibly) incomplete trajectories of the first
and last few vehicles, the physical meaning of the numerator is the sum of
the distances traversed by all vehicles in area A during time period T :

d(A) = N × dx =
N∑

i=1

�xi.

The denominator simply means the area of the time-space rectangle A
bounded by T and dx, |A|. Hence, the definition of q can alternatively be
expressed as the total distance traversed by all vehicles within A divided by
the area of A:

q = d(A)

|A| .

R
oa

dw
ay

Time, t

S
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ce
,
x

i

T

x

dx

Figure 3.1 Time-space diagram with infinitesimal distance.
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By definition in the HCM, the mean speed of vehicles, v, is the total
distance traveled by all vehicles divided by the total travel time of these
vehicles. The total distance traveled by all vehicles within rectangle A is
d(A) = N × dx. The total time spent by all vehicles within A is

t(A) =
N∑

i=1

dx

ẋi
.

Therefore,

v = d(A)

t(A)
= N × dx

∑N
i=1

dx
ẋi

= N × dx

dx× ∑N
i=1

1
ẋi

= 1
1
N

∑N
i=1

1
ẋi

.

This is the harmonic mean, which corresponds to the space mean speed
presented in the point sensor scenario.

Similarly, density k can be represented as

k = N

L
= N × dt

L × dt
,

where dt denotes an infinitesimal duration (see Figure 3.2). Following the
same argument as above, L and dt define a time-space rectangle A. The
numerator is the sum of the times spent by all vehicles within A, t(A), and
the denominator is the area of the rectangle, |A|:

t(A) = N × dt =
N∑

i=1

dti,

|A| = L × dt.

Hence,

k = t(A)

|A| .

The total distance traveled by all vehicles within A is d(A) =∑N
i=1 dt × ẋi. Hence, the mean speed of these vehicles is

v =
∑N

i=1 dt × vi
N × dt

= 1

N

N∑

i=1

ẋi.
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Figure 3.2 Time-space diagram with infinitesimal duration.

This is the arithmetic mean, which corresponds to the space mean speed
determined in the space sensor scenario.

The above discussion suggests that a time-space rectangle may serve as
the common ground to unify the definition of flow q, mean speed v, and
density k. Figure 3.3 illustrates a general time-space rectangle A covering
length L (bounded by upstream location xlo and downstream location xhi)
and duration T (bounded by instants tlo and thi). On the basis of A, the three
traffic flow characteristics can be defined as follows:

q(A) = d(A)

|A| ,

k(A) = t(A)

|A| ,

v(A) = d(A)

t(A)
.
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Figure 3.3 Time-space diagram with rectangle.

Therefore, the identity q = k× v is now guaranteed by definition. The
question that remains is how to determine d(A), t(A), and |A|. Take an
arbitrary vehicle i. For example, the vehicle enters A at location xi(tlo) or
xlo whichever comes later and at time tlo or ti(xlo) whichever comes later;
the vehicle exits A at location xhi or xi(thi) whichever comes earlier and at
time thi or ti(xhi) whichever comes earlier. Hence, the distance traveled by
vehicle i in A is

�xi = min(xhi, xi(thi)) − max(xi(tlo), xlo).

Therefore, the total distance traveled by all vehicles in A is

d(A) =
N∑

i=1

�xi.

The time spent by vehicle i in A is

�ti = min(thi, ti(xhi)) − max(tlo, ti(xlo)).
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Hence, the total time spent by all vehicles in A is

t(A) =
N∑

i=1

�ti.

The area of A is simply

|A| = L × T .
Therefore, all the quantities needed to calculate the flow, mean speed,

and density have been determined.
The following question naturally arises: Does the common ground

have to be a rectangle? The answer is no. Actually, any time-space region
will work as long as the region is closed (see Figure 3.4). The above
definition was originally proposed by Edie [6]. Readers are referred to the
original paper for an in-depth discussion. For convenience, the above set of
definitions of flow, mean speed, and density based on a time-space region
is referred to as the generalized definition.

It can be seen that the HCM definition is a special case of the generalized
definition. For example, if one takes a time-space region like the one in
Figure 3.1 and allows dx → 0, a point sensor scenario results, while one
obtains the space sensor scenario in Figure 3.2 if one keeps L constant and
makes dt → 0.

R
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i

S
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, 
x

Figure 3.4 Time-space diagram with general region.
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3.2 THREE-DIMENSIONAL REPRESENTATION
OF TRAFFIC FLOW

The following discussion is based on Ref. [7]. Interested readers are referred
to the original paper for in-depth information.

So far, we have been working with a time-space diagram and vehicle
trajectories, on the basis of which a connection is made to traffic flow
characteristics. A time-space diagram is a two-dimensional representa-
tion, and the discussion can be made more informative if we adopt a
three-dimensional perspective. Taking the family of vehicle trajectories in
Figure 3.3, for example, we see these trajectories lie on the same plane
defined by time (t) and space (x). These vehicles are numbered cumulatively
(i.e., ID = 1, 2, 3, . . .) in the order they appear on the road, and each vehicle
is elevated along the third dimension to the height corresponding to the
vehicle’s ID (i.e., vehicle 1 raised to height 1, vehicle 2 raised to 2, and
so on). Let us call the third dimension the cumulative number of vehicles
(N ) and denote the surface that passes these elevated vehicle trajectories
N(x, t). Figure 3.5 illustrates two examples of such a three-dimensional
representation adopted from Ref. [7, 8].1,2

What makes this three-dimensional representation interesting is that
it can be used to illustrate and relate some key concepts of traffic flow
conveniently. For example, if one cutsN(x, t) in the lower part of Figure 3.5
using plane t = 20, one obtains the shape PQN and its projection P′Q′N′
on the N − x plane. Curve P′N′ can be interpreted as the snapshot taken
at time t = 20, which shows the location of each vehicle at this moment.
Figure 3.6 illustrates more examples of such curves (they look like stairs
before smoothing),where N(x, t) in the upper part of Figure 3.5 is cut at
different instants and projected it onto theN-x plane. Each curve represents
a snapshot taken at the time instant indicated on that curve. For example,
the lowest curve is a snapshot taken at time t(1). If one draws a horizontal
line at heightN = 2, the intersection of this line and the curve labeled t(1) is
the location of vehicle with ID 2 at time t(1). Note that this line needs to be
slightly lower—say, at height N = 1.999—to avoid multiple intersections,
and the same applies hereafter. Similarly, the intersection of line N = 2
and curve t(2) is the location of vehicle 2 at time t(2). The distance between

1 N(x, t) in the upper part of Figure 3.5 is not smoothed, while that in the lower part is smoothed.
By default, a smoothed surface is assumed in order to take derivatives.
2 If two trajectories intersect, the surface will be multivalued at a time-space point. Makigami et al.
[7] showed how to resolve the problem.
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Figure 3.5 Three-dimensional representation examples.

the two intersections is the distance traversed by vehicle 2 from t(1) to t(2).
If an N-x curve at time t is smoothed (like curve P′N′ in Figure 3.5), the
tangent of the curve denotes the density k at this instant. Note that the
tangent slants down (because lower-numbered vehicles are in front), so it
has a negative value. Hence,

k|t = −dN

dx

∣∣∣∣
t
.

Similarly, if one cuts the three-dimensional model with a plane passing
a specific location and parallel to the N-t plane, one obtains a curve
representing the cumulative number of vehicles passing this location over
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Figure 3.6 The N-x diagram.

time—for example, the curves in the lower part of Figure 3.5, such as the
x = 0, 2, 4, 6 curves, and the curves in Figure 3.7. If one draws a horizontal
line at height N = 2 in Figure 3.7, the intersection of this line and the
curve labeled x(2) indicates the time when the vehicle with ID 2 passes
location x(2). Similarly, the intersection of line N = 2 and curve x(3) is
the time when vehicle 2 passes location x(3). The distance between the two
intersections is the travel time for vehicle 2 to traverse from location x(2) to
location x(3). If an N-t curve at location x is smoothed, the tangent of this
curve denotes the flow q at this location:

q|x = dN
dt

|x.
Therefore, flow and density can be expressed as partial differentials of

the surface N(x, t):

q = ∂N(x, t)
∂t

,

k = −∂N(x, t)
∂x

.

In addition, if one projects a region on the surface N(x, t) (e.g., region
A in Figure 3.8) onto the x-t, N-t, and N-x planes, one obtains three
projections—AN ,Ax, andAt, respectively. Makigami et al. [7] demonstrated
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Figure 3.7 The N-t diagram.

that the following relationships hold:

A2 = A2
N + A2

x,+A2
t ,

q = At
AN

,

k = Ax
AN

,

v = At
Ax

.

Figure 3.9 summarizes the previous graphics in one figure. Plot A shows
vehicle trajectories in the x-t plane. Plot D raises the vehicle trajectories to
their corresponding height and forms the three-dimensional surfaceN(x, t).
Plot B shows two N-t curves observed at locations x = x2 and x = x4. Plot
C depicts two N-x curves resulting from snapshots taken at t = t6 and
t = t8.

In addition to deepening the understanding of traffic flow and its
characteristics, the three-dimensional model can be used to solve practical
problems. For example, as mentioned before, space-based measures such as
density and space mean speed are desired. In addition, determination of
these traffic flow characteristics based on generalized definition (as opposed
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Figure 3.9 Three-dimensional representation of traffic flow.
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to the HCM definition) is also preferred. However, the widely deployed
intelligent transportation systems consist mostly of point sensors, which are
generally unable to report space-based traffic flow characteristics. Interested
readers are referred to [4] to learn how the three-dimensional representation
helps address the problem by computing the desired traffic flow characteris-
tics based on the preferred definition from intelligent transportation system
data.

PROBLEMS

1. The figure below shows a set of vehicle trajectories in the time-space
plane. An analysis of traffic flow characteristics is performed on the basis
of a bounding box. As shaded in the figure, the box is confined in time
between t = 5 s and t = 15 s and in space between x = 0.2 km and
x = 0.5 km.

0.5

0.2

5 15 Time t, sec

S
pa

ce
 x

, k
m

a. Identify vehicles that traverse the bounding box.
b. Transcribe the time and location when each of the above-mentioned

vehicles enter and exit the bounding box.
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c. Find the duration and distance that each vehicle traveled in the
bounding box.

d. Find the travel speed for each vehicle when it traveled in the
bounding box.

e. Find the average speed of all vehicles that traveled in the bounding
box.

f. With use of the generalized definition, find the flow, space mean
speed, and density based on conditions in the bounding box.

g. State the general relationship among flow, speed, and density.
Then verify the relationship using the result in (f). Does this
relationship hold? Does it hold strictly? Is it guaranteed by
definition?

h. Now, focus on observations made at location x = 0.2 km during
time t = 5 s to t = 15 s. Find number of vehicles passing this
location during this time period. Calculate the equivalent hourly
flow rate.

i. Next, focus on observations made at instant t = 5 s on a road section
between x = 0.2 km and x = 0.5 km. Find the number of vehicles
within this section of road at that moment. Calculate the equivalent
density.

j. With the average speed found in (e), flow in (h), and density in (i),
another set of speed, flow, and density results. Redo (g) and comment
on your findings.

2. Part D in the figure below illustrates a stream of traffic in a
three-dimensional representation which is then projected onto three
planes: the time-space plane (t-x plane), the cumulative number-
time plane (n-t plane), and the cumulative number-space plane (n-x
plane). Time is labeled in minutes—for example, “t5” means t =
5min—and space is labeled in kilometers—for example “x2” means
x = 2 km.
a. Redo the set of problems in 1 based on bounding box with time

between t = 5 and t = 10min and space between x = 2 km and
x = 4 km, as shaded. When you answer question (h), assume the
location is x = 2 km during time t = 5 to t = 10min. When
you answer (i), assume the instant is t = 5min on the road section
between x = 2 km and x = 4 km.

b. With use of part B in the figure, find the instantaneous flow observed
at time t = 6min and location x = 2 km.
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c. With use of part C in the figure, find the instantaneous density
observed at time t = 6min and location x = 2 km.

d. With use of the space mean speed found in (a), flow found in (b),
and density found in (c), verify the fundamental relationship among
flow, space mean speed, and density. Comment on your result.



CHAPTER 4

Equilibrium Traffic FlowModels

In the previous chapter, it was shown that the following relationship holds
among flow q, density k, and space mean speed v (the subscript “s” is
dropped unless it is necessary to distinguish space mean speed vs from time
mean speed vt):

q = k× v.

This relationship is an identity since it is self-guaranteed under the general-
ized definition.One may wish to knowwhat other relationships exist among
the three traffic flow characteristics. For example, is there any pairwise
relationship between flow and density, density and speed, and speed and
density? This chapter attempts to address these questions.

4.1 SINGLE-REGIME MODELS

Let us start with field observations. Figure 4.1 illustrates an image captured
by a point sensor (a video camera in Georgia NaviGAtor, Georgia’s intel-
ligent transportation system). The point sensor constitutes an observation
station consisting of a group of imaginary detectors with one detector in
each lane.

As discussed before, traffic data can be extracted from video images by
means of image processing. Figure 4.2 shows a portion of a daily report from
a video camera. Each row represents observations aggregated over 20 s over
all lanes. Column A contains the station ID, column B contains the time
stamp of each observation, column C contains the status of the detectors
of this station (there are four lanes at this station and hence there are four
detectors. “OK” means the corresponding detector is working properly,
while “NO_ACT” means no actuation), columns E through H contain
classified traffic counts (only column E is shown here because of limited
space), column I contains the occupancy, column K contains the time
mean speed, column M contains the average vehicle length, and column
P contains the density (estimated by a proprietary recipe).

The point sensor data are plotted in Figure 4.3, where the top-
left plot shows the speed-density relationship, the top-right plot shows
the speed-flow relationship, the bottom-left plot shows the flow-density

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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Figure 4.1 An image captured by a point sensor. (FromNaviGAtor.)

relationship, and the bottom-right plot shows the speed-spacing rela-
tionship. The “cloud” in Figure 4.3 represents 1 year’s worth of field
observations aggregated to 5min (i.e., each point in the figure represents
the traffic condition observed in 5min). The traffic speed here is the time
mean speed since it is impossible to calculate the space mean speed from
aggregated point sensor data. Density is estimated from flow and speed. The
large dots represent the average of the “cloud.” The plots in Figure 4.3 were
generated with use of traffic data collected at a fixed location. Therefore,
such plots are location specific—that is, plots generated from different
locations may differ. In addition, time information is lost in the figure—
that is, one could not deduce the time when a data point was observed.
As such, the figure actually depicts an equilibrium or steady-state relationship.
Consequently, models of such a relationship without a reference to time are
termed “equilibrium models” or “steady-state models.”

Noticeably, each plot in Figure 4.3 exhibits a trend which suggests
a pairwise relationship among flow, speed, and density, though such a
relationship is of statistical significance. For example, the top-left plot reveals
a decreasing relationship between speed and density with two intercepts
intuitively known. The intercept on the space x-axis represents a “Sunday
morning” scenario where there are very few vehicles on the road (i.e.,
k → 0). Hence, one may drive at the desired speed without being blocked
by a slow driver (v → vf , the free-flow speed). The other intercept
corresponds to a “Friday afternoon peak” scenario where everyone rushes
home. As such, the road is jammed (k → kj, the jam density), resulting
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Figure 4.3 Observed q-k-v relationships.
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in a stop-and-go condition (v → 0). Except for the two intercepts, the
remaining trend of the speed-density relationship is debatable, having been
debated over the years, and is still debated today. Some examples of historical
efforts on this subject are given below.

4.1.1 The GreenshieldsModel
Since the exact relationship between speed and density is unclear,
Greenshields [9] proposed the use of a linear function to summarize the
speed-density relationship. Such a function can be completely determined
from knowledge of two points on the line: (k = 0, v = vf ) and
(k = kj, v = 0). Hence, the speed-density v-k relationship (illustrated
in Figure 4.4) can be expressed as

v = vf (1 − k
kj

).

Combining the identity q = k × v and eliminating v, one is able to
derive the flow-density q-k relationship implied by the Greenshields model
(Figure 4.5):

q = vf (k− k2

kj
).

It is interesting to note a few special points on the curve. When the
density is close to zero (k → 0), the flow drops to zero (q → 0) since
the road is almost empty; when the road is jammed (k = kj), the flow also
becomes zero (q = 0) because no one can move. In addition, since this is

Sp
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Density

Figure 4.4 The Greenshields speed-density relationship.
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Figure 4.5 Greenshields flow-density relationship.
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Figure 4.6 Greenshields speed-flow relationship.

a quadratic function with a negative second-order term, the corresponding
q-k curve is parabolic with a downward opening. Therefore, starting from
the origin (k = 0, q = 0), flow increases as density increases. This trend
continues until, at some point (k = km), the flow peaks (q = qm = vf kj

4 ).
After this point, the flow begins to drop as the density continues to increase,
and the flow becomes zero (q = 0) when the density reaches the jam density
(k = kj). In this notation, qm is the maximum flow—that is, the capacity—
and km is the optimal density—that is, the density when the flow peaks.
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Similarly, one can eliminate k from the Greenshields model by using the
identity and obtain a speed-flow v-q relationship (Figure 4.6):

q = kj

(
v − v2

vf

)
.

This is again a quadratic function with an opening to the left. When
the flow is close zero (q → 0), two scenarios are possible: (1) the road is
nearly empty and the few vehicles on the road are able to move at free-
flow speed (v → vf ); (2) the road is jammed, so that no one is able to
move (v → 0). Actually, entering a given flow value less than the capacity
into the equation will normally result in two speeds: a lower one, which
corresponds to a worse traffic condition, and a higher one, corresponding
to a better traffic condition. When the flow reaches capacity (q = qm), the
two speeds become one, which is called the optimal speed, vm.

Figure 4.7 summarizes the above discussion graphically and puts the
speed-density, flow-density, and speed-flow relationships together. Remark-
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Figure 4.7 Greenshields flow-density-speed relationship.
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ably, the relationships among flow, speed, and density such as those depicted
in Figure 4.3 and modeled in Figure 4.7 are unique to vehicular traffic
flow and are not observed in any other kind of flow, such as gas flow,
fluid flow, and flow of Internet packets. Hence, the model and its associated
graphical representation that summarizes the pairwise relationships among
traffic flow characteristics are the distinguishing features of vehicular traffic
flow. Therefore, they are referred to as the fundamental diagram in traffic flow
theory. The work by Greenshields depicted in Figure 4.7 constitutes the
first fundamental diagram in traffic flow theory.

Note that the three pairwise relationships—that is, the speed-density,
flow-density, and speed-flow relationships—reflect different facets of the
flow-speed-density relationship. Hence, they have different applications in
traffic flow theory. For example, the speed-density relationship relates a
driver’s speed choice to the concentration of vehicles around the driver.
Therefore, the relationship is typically used in traffic flow theory to under-
stand how drivers adjust their speeds in response to traffic in their vicinity—
that is, modeling drivers’ car-following behavior. As will be seen later, the
flow-density relationship is convenient for explaining the propagation of
disturbances in traffic flow (such as waves and their velocities) and, hence, is
frequently used in dynamic traffic flow modeling. Anyone who is familiar
with highway capacity and level of service (LOS) will immediately recognize
that the speed-flow relationship is extensively used by traffic engineers to
perform highway capacity analysis and determine the LOS on freeways and
multilane highways.

4.1.2 Other Single-RegimeModels
Owing to its simplicity and elegance, the Greenshields model, together with
its associated fundamental diagram, is ideal for illustration and pedagogical
purposes. Empirical observations reveal that the model suffers from a lack
of accuracy, which is salient in Figure 4.8, where the Greenshields model is
plotted on top of field observations. For example, the model predicts that
the capacity (q = qm) occurs at half the jam density (km = 1

2kj). If an
average vehicle length of 6m or 20 feet is assumed, the jam density would
be somewhere around 1000/6 ≈ 164 vehicles per kilometer or 5280/20 ≈
264 vehicles per mile. Half of this number is 82 vehicles per kilometer or
132 vehicles per mile. However, field observations suggest that km is most
likely in the range of 25-40 vehicles per kilometer or 40-65 vehicles per
mile. In addition, unlike the way that speed decreases linearly with density,
field observations show that free-flow speed can be sustained up to a density
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Figure 4.8 Fundamental diagrams implied by Greenshields model.
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Table 4.1 Single-regime models

Authors Model Parameters

Greenshields [9] v = vf
(
1 − k

kj

)
vf , kj

Greenberg [10] v = vmln
(
kj
k

)
vm, kj

Underwood [11] v = vf e
− k
km vf , km

Drake et al. [12] v = vf e
− 1

2

(
k
km

)2
vf , km

Drew [13] v = vf

[
1 −

(
k
kj

)n+ 1
2
]

vf , kj, n

Pipes [14] and Munjal [15] v = vf
[
1 −

(
k
kj

)n]
vf , kj, n

vf is free-flow speed, kj is jam density, vm is optimal speed, km is optimal density,
and n is an exponent.

of about 15 vehicles per kilometer or 25 vehicles per mile before a noticeable
speed drop can be observed.

Inspired by Greenshields’s pioneering work, many models were pro-
posed subsequently to formulate speed-density relationships with various
degrees of fitting quality. Table 4.1 provides an incomplete list of these early
models.

The models in Table 4.1 share one thing in common—they are one-
equation models, meaning that the models apply to the entire range of
density. Hence, these models are called single-regime models. Figure 4.9 shows
the performance of these single-regime models by plotting them on top of
empirical observations, just to provide some visual feedback of how they
approximate reality.

4.2 MULTIREGIME MODELS

It seems that none of these single-regime models are able to fit the empirical
observations reasonably well over the entire density range. Some models are
good in one density range, while others are superior in another range. The
inability of single-regime models to perform well over the entire range of
density prompted researchers to think about fitting the data in a piecewise
manner using multiple equations. This gave rise to multiregime models, an
incomplete list of which is given in Table 4.2. Among the list are the Edie
model [16], the two-regime linear model, the modified Greenberg model,
and the three-regime model.
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Figure 4.9 Comparison of single-regime models.
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Table 4.2 Multi-regime models

Regimesmodels Free flow Transitional Congested

Edie model
v = 108e−k/163.9 - v = 47ln(162.5/k)
k ≤ 20 - k > 20

Two-regime model
v = 108− 0.515k - 50 − 0.33k
k ≤ 30 - k > 30

Modified Greenberg v = 103 - v = 52ln(150/k)
model k ≤ 20 - k > 20

Three-regime model
v = 108− 0.5k v = 120− 1.5k v = 40 − 0.256k
k ≤ 20 20 < k ≤ 65 k > 65

May [17] presented a comparison of these multiregime models. Similar
work illustrated in Figure 4.10 is found in Ref. [18].

4.3 THE STATE-OF-THE-ART MODELS

Early equilibriummodels such as the Greenshields model [9], the Greenberg
model [10], the Underwood model [11], the Drake model [12], the Drew
model [13], and the Pipes-Munjal model [14, 15] are typically simple
because they involve only two (the first four models) or three (the last
two models) parameters. In addition, they are single-regime models whose
derivatives of flow with respect to density ( dqdk ) exist at each point in the
entire range of density. This makes these models mathematically appealing
because dq

dk can be very useful later in dynamic macroscopic modeling such
as in solving the LWRmodel (see Chapter 8). Moreover, these macroscopic
models are closely related to a family of microscopic car-following models,
and we shall revisit such a connection in Section 14. Unfortunately, these
models typically suffer from poor fitting quality, as can be seen in Figure 4.9.
Multiregime models such as the Edie model [16], the two-regime linear
model, the modified Greenberg model, and the three-regime model may
come with a little improvement in fitting quality, but their piecewise
formulation makes them less attractive.

Further research emphasizes single-regime models, which are apparently
coupled with the development of microscopic car-followingmodels. Details
of these car-following models and their associated equilibrium models
will be discussed in Part III. Highlighted below are a set of more recent
equilibrium models.
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Figure 4.10 Comparison of multiregime models.
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Newell Nonlinear Model
The Newell nonlinear model [58] involves three parameters and takes the
following form:

v = vf

(
1 − e

− λ
vf

( 1k− 1
kj

)
)
,

where vf is the free-flow speed, kj is the jam density, and λ is the slope of
the speed-spacing curve.

Del Castillo and BenítezModel
Also involving three parameters, the model of del Castillo and Benítez [118,
131] takes the following form:

v = vf

(
1 − e1−e

|Cj|
vf

(
kj
k −1)

)
,

where vf is the free-flow speed, kj is the jam density, and Cj is the kinematic
wave speed at the jam density.

Del Castillo Negative PowerModel
Continuing the above effort, del Castillo [120] proposed a new set of models
recently, among which the negative power model is reproduced below:

ϕ = [(νfρ)−ω + (1 − ρ)−ω]−1/ω,

where ρ = k
kj
and ϕ = q

q0
, where q0 is the reference flow, and νf = − vf

Cj
.

As such, this model involves five parameters: reference flow q0, jam density
kj, free-flow speed vf , kinematic wave speed at jam density Cj, and ω.

Unlike other models in this subsection which result from the corre-
sponding car-following models, the models of del Castillo [118, 120, 131]
do not have their microscopic counterparts.

Van AerdeModel
The Van Aerde model [62, 63] involves four parameters and takes the
following form:

k = 1
c1 + c3v+ c2/(vf − v)

,

where c1 = vf
kjv2m

(2vm − vf ), c2 = vf
kjv2m

(vf − vm)2, and c3 = 1
qm

− vf
kjv2m

. As

such, the parameters of this model are the free-flow speed vf , the optimal
speed vm, the capacity qm, and the jam density kj.
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Intelligent Driver Model
The intelligent driver model [60, 61] involves four parameters and takes the
following form:

k = 1
(s0 + vT)[1 − ( vvf

)δ]−1/2 .

where parameters are free-flow speed vf , jam distance s0, safe time headway
T , acceleration exponent δ.

Longitudinal Control Model
The longitudinal control model [113] involves four parameters and takes
the following form:

k = 1

(γ v2 + τ v+ l)[1 − ln(1 − v
vf

)] ,

where vf is the free-flow speed, l is the nominal vehicle length (which is
the reciprocal of the jam density, l = 1

kj
), τ is the perception-reaction time,

and γ is the aggressiveness.
To illustrate their features, the above models are fitted to empirical

data. Although no effort is made to optimize the parameters, the following
general principles apply when one is fitting the models: (1) fix the free-flow
speed vf of all the models to roughly the same value observed in the data, (2)
fix the jam density kj of all the models to roughly the same value observed in
the data, and (3) fix the capacity to roughly the same value observed in the
data by tweaking the remaining parameters. The resulting parameter values
are listed in Table 4.3 and the fitted models are illustrated in Figure 4.11.

Table 4.3 Model parameters

Models Parameters
Newell model vf = 106 km/h; kj = 167 vehicles/km; λ = 1.25 1/s

Del Castillo and
Benítez model

vf = 106 km/h; kj = 167 vehicles/km; Cj = 20 km/h

Negative power vf = 106 km/h; kj = 167 vehicles/km; Cj = -16.56 km/h;
model ω = 50

Van Aerde vf = 106 km/h; kj = 167 vehicles/km; vm = 20 km/h;
model qm= 2400 veh/h

Intelligent
driver model

vf = 106 km/h; s0 = 6 m; T = 1.25 s; δ = 15

Longitudinal
control model

vf = 106 km/h; l = 6 m; τ = 1.3 s; γ = -0.04 s2/m
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Figure 4.11 State-of-the-art models fitted to empirical data
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Although many criteria have been proposed to evaluate fitting quality
and a few algorithms have been developed to optimize the fitting process,
the following reality check can be used as a visual inspection of the fitting
quality:
1. Free-flow speed can be directly read off speed-density and speed-flow

diagrams as the y-intercept. It is also the slope of the tangent to the flow-
density curve that passes through the origin. It is typically not an issue to
meet this criterion since one can easily estimate a value from empirical
data and fix the model parameter free-flow speed vf directly at this value.

2. Jam density can also be estimated from empirical data by following
the trend of the tail of the scatter plot in the speed-density or flow-
density diagram. Consequently, this value can be used to set the model
parameter jam density kj or the nominal vehicle length l = 1

kj
. With the

above two ends fixed, it is a good test of fitting quality to examine the
capacity condition, which constitutes the third point of interest between
the above two points.

3. The capacity condition includes the following checkpoints:
a. The location of the capacity (qm, km, vm), where capacity qm is the

peak of the flow-density or speed-flow curve, and km and vm are
the optimal density and the optimal speed at capacity, respectively.

b. The shape of the curve around the capacity may exhibit the following
types:
- Skewed parabola: typically observed in outer-lane traffic
-Triangular: typically observed in middle-lane traffic
-Reverse-lambda shape: typically observed in inner-lane traffic
In Figure 4.11, the location of the capacity can be easily identified

in speed-flow and flow-density diagrams as the tips of the curves. In
addition, all three curve shapes can be found. Note that longitudinal
control model can even be configured to exhibit the reverse-lambda
shape in addition to the other two types.

4.4 CANWEGO ANY FURTHER?

Though all relationships presented above take deterministic forms, the actual
relationships are essentially quite random. For example, a speed-density
relationship may predict that when the density k is 12 vehicles per kilometer
or 20 vehicles per mile, the speed v will be 96 km/h or 60 miles per hour.
However, in reality, the observed speed may vary over a certain range,
forming a distribution (see Figure 4.12). The significance of these models
lies in their ability to predict a value that makes statistical sense. For example,
if one observes traffic for sufficiently long and collects enough speed samples,
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Figure 4.12 Three-dimensional representation of the speed-density relationship.

the likelihood of having a speed in the neighborhood of 96 km/h or 60miles
per hour is very high. Figures 4.9 and 4.10 illustrate the scattering effect of
empirical observations and how deterministic models fail to capture such
an effect.

Therefore, a step forward to advance the modeling of the speed-density
relationship and hence its associated fundamental diagram is to consider
the scattering effect by representing speed as a distribution at each density
level (see Figure 4.12). Empirical observations seem to support such a
proposition. For example, in Figure 4.13 the observed mean and standard
deviation of the speed-density relationship are plotted in a single figure.
Hence, the deterministic speed-density relationship in the form

v = f (k)

may be replaced by the following one in generic form:

v = f (k,ω(k)),

where ω is a distribution parameter dependent (at least) on density k. In this
model, since speed will be a distribution at each density level, the model is
essentially a stochastic one. Readers are referred to [18–20] for attempts to
obtain stochastic speed-density relationships.

The above pairwise relationships (i.e., equilibrium models) will become
handy in the next chapter when we are setting up equations for macroscopic
modeling and later for solving the LWR model.
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Figure 4.13 Mean and variance of the speed-density relationship.

PROBLEMS

1. From the linear speed-density relationship v = vf (1−k/kj), derive flow-
density and speed-flow relationships. With these relationships, find the
capacity qm and the optimal speed vm and density km when the capacity
is reached.

2. Study of traffic flow characteristics on a segment of Massachusetts Turn-
pike (Interstate 90) shows that the following flow-density relationship
holds: q = 65k− 0.36k2 pc/h/ln.
a. Find the optimal speed, optimal density, and the capacity of this

highway segment.
b. Comment on how realistic the capacity is.
c. In addition, find the speed when the highway is at half of its capacity.
d. Comment on whether the above result makes sense.

3. The figure below is the speed-flow relationship used in the HCM to
determine the LOS on a basic freeway segment and multilane highways.
Use the curve labeled “FFS = 70 mi/h” to do the following:
a. Find the free-flow speed vf indicated by this curve.
b. Find the capacity qm indicated by this curve.
c. Find the optimal speed vm indicated by this curve.
d. Estimate the optimal density km with use of the identity.
e. What LOS does this km correspond to?
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f. If the Greenshields model applies, calculate the jam density kj, and
further optimal density km.

g. What LOS does this km corresponds to?
h. Comment on how the Greenshields model approximates the HCM

curve.
4. Derive the capacity qm implied by the Greenberg model and find its

associated optimal density km.
5. Derive the capacity qm implied by the Underwood model and find its

associated optimal speed vm.
6. An engineering student estimated a free-flow speed of 60 miles per hour

and a capacity of 3600 vehicles per hour on a section of highway. For a
given period, a space mean speed of 45 miles per hour was estimated. If
the Underwood model applies, what would you estimate the flow rate
of this period to be?

7. On a section of Interstate 91 near the University of Massachusetts
Amherst, studies show that the speed- density relationship is v = vf [1−
((k/kj)2.5)]. Assume a capacity of 4600 vehicles per hour and that the
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jam density is 200 vehicles per mile. Find the free-flow speed and the
optimal speed at capacity.

8. Payne [21] proposed an early empirical speed-density relationship and
used this relationship in his macroscopic traffic simulation model FRE-
FLO:

v = min{88.5, (172 − 3.72k+ 0.0346k2 − 0.00119k3)},
where v is in kilometers per hour and k is in vehicles per kilometer.
a. Plot the speed-density relationship graphically (you may draw it

manually, do it in Excel, or use a computer program such as
MATLAB). Use the plot to do the following:

b. Identify the free-flow speed vf .
c. Identify the valid range of the density k in this model—that is, the

range of k that yields nonnegative speed. Label the jam density kj as
the upper bound of this range.

d. Identify the capacity condition—that is, capacity qm, optimal speed
vm, and optimal density km.



CHAPTER 5

Conservation Law

In previous chapters, two types of relationships among traffic flow charac-
teristics were discussed
1. The flow-speed-density relationship or the identity,

q = k× v.

Note that (1) it is an identity—that is, it is self-guaranteed by the
generalized definition of traffic flow characteristics; (2) it is location
specific and time specific—q(t, x) = k(t, x)×v(t, x)—that is, flow, speed,
and density must refer to the same location and time.

2. Pairwise relationships or equilibrium models,

v = V (k),

q = Q(k),

v = U(q).

Note that (1) they define the fundamental diagram and hence
differentiate vehicular traffic flow from other kinds of flows; (2) they are
location specific—that is, different locations and roads may have different
underlying fundamental diagrams; (3) they are equilibrium models—
that is, they describe a steady-state behavior in the long run, and hence
are not specific to a particular time; (4) such relationships are only of
statistical significance—that is, the equal signs do not strictly hold in the
real world. On the basis of points (2) and (3), these relationships may
also be expressed as follows:

v(x) = V (k(x)),

q(x) = Q(k(x)),

v(x) = U(q(x)).

The main purpose of formulating a traffic flow theory is to help better
understand traffic flow and, by the application of such knowledge, to control
traffic for safer and more efficient operations. Hence, a good theory should
be able to help answer the following questions:

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
http://dx.doi.org/10.1016/B978-0-12-804134-5.00005-2 All rights reserved. 75
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• Given existing traffic conditions on a road and upstream arrivals in the
near future, how do road traffic conditions change over time?

• Where are the bottlenecks, if any?
• In the case of congestion, how long does it last and how far do queues

spill back?
• If an incident occurs, what is the best strategy for cleanup so that the

impact on traffic is minimized?
Answers to these questions involve the analysis of dynamic change of

traffic states over time and space. Unfortunately, the above relationships or
models are capable only of describing traffic states. They do not provide a
mechanism to analyze how such states evolve. Starting from this chapter,
dynamic models will be introduced to address these questions.

The derivation of a dynamic equation starts with the examination of
a small volume of roadway traffic as a continuum. Here traffic flow is
treated as a one-dimensional compressible fluid like a gas. Conservation
laws apply to this kind of fluid, and the first-order form of conservation is
mass conservation, also known as the continuity equation.

5.1 THE CONTINUITY EQUATION

There are several ways to derive the continuity equation, each takes a
different perspective on the small volume of roadway traffic (see Figure 5.1).

Derivation I: Finite Difference
The following derivation is found in Ref. [3]. Suppose a highway section is
delineated by two observation stations at x1 and x2. Let�x = x2−x1 denote
the section length. During time interval �t = t2− t1, N1 vehicles passed x1
and N2 vehicles passed x2. Therefore, the flow rates at these locations are

Traffic flow

q1 q2

x1 x2Δx

Figure 5.1 Deriving the continuity equation I.
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q1 = N1

�t
and q2 = N2

�t
.

The change in the number of vehicles in the section is

�N = N2 −N1 = (q2 − q1)�t = �q�t.

Assume the traffic densities in the section at t1 and t2 are k1 and k2,
respectively. Therefore, there areM1 = k1�x vehicles in the section at time
t1 and M2 = k2�x vehicles in the section at time t2. Alternatively, the
change in the number of vehicles in the section can be expressed as

�M = k1�x− k2�x = (k1 − k2)�x = −�k�x.

Since vehicles cannot be created or destroyed inside the section, the
change in the number of vehicles should be the same in the same section
during the same time interval. Therefore, �N = �M—that is,

�q�t = −�k�x,

�q�t + �k�x = 0.

Dividing both sides by �x�t, we get

�q
�x

+ �k
�t

= 0.

If we let �x → 0 and �t → 0, the above difference equation becomes
a partial differential equation:

∂q

∂x
+ ∂k

∂t
= 0.

The above equation can be abbreviated as

qx + kt = 0,

where qx = ∂q
∂x and kt = ∂k

∂ t .

Derivation II: Finite Difference
The derivation is basically the same as above, but is presented in a slightly
different way. Figure 5.2 sketches a highway section �x = x2 − x1 during
time interval �t = t2 − t1. At time t1, there are N1 vehicles in the section
and at time t2, there areN2 vehicles in the section. During the period, traffic
keeps flowing into the section at rate q1 and flowing out at rate q2. On the
basis of vehicle conservation, the following relationship holds:
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t1 q1 N1 k1

N2 k2

q2

t2 q1 q2

x1 x2Δx

Figure 5.2 Deriving the continuity equation II.

Vehicles at t2 = vehicles at t1 + inflow during �t − outflow during �t.
This is

N2 = N1 + q1�t − q2�t.

Note that N = k�x, so the above becomes

k2�x = k1�x+ q1�t − q2�t.

After arranging terms and dividing both sides by �x�t, we get

k2 − k1
�t

= −q2 − q1
�x

.

If we let �x → 0 and �t → 0,

qx + kt = 0

Derivation III: Fluid Dynamics
Figure 5.3 illustrates a small fluid cube of size δx×δy×δz. The fluid velocity
v and density k at two sides of the cube also are shown.

The mass flow into the cube is vkδyδz. The mass flow out of the cube
is as follows:

(v + δv)(k+ δk)δyδz =
(
v + ∂v

∂x
δx

)(
k+ ∂k

∂x
δx

)
δyδz

=
(
vk+ v

∂k

∂x
δx+ k

∂v

∂x
δx+ ∂v

∂x

∂k

∂x
δxδx

)
δyδz.
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Figure 5.3 Deriving the continuity equation III.

The mass stored in the cube is equivalent to the mass that flows in minus
mass that flows out:(
v
∂k

∂x
δx+k ∂v

∂x
δx+ ∂v

∂x

∂k

∂x
δxδx

)
δyδz=

(
v
∂k

∂x
+k ∂v

∂x
+ ∂v

∂x

∂k

∂x
δx

)
δxδyδz.

If we ignore the higher-order term, we have
(
v
∂k

∂x
+ k

∂v

∂x

)
δxδyδz = ∂(kv)

∂x
δxδyδz.

Similar treatment applies to the other two directions of the cube, so the
total mass stored in the cube is(

∂(kv)
∂x

+ ∂(ku)
∂y

+ ∂(kw)

∂z

)
δxδyδz.

The mass stored in the cube must be balanced by the change of mass in
the cube:

∂k
∂t

δxδyδz.

The law of mass conservation requires that
(

∂(kv)
∂x

+ ∂(ku)
∂y

+ ∂(kw)

∂z

)
δxδyδz+ ∂k

∂t
δxδyδz = 0.

Therefore,

∂k
∂t

+
(

∂(kv)
∂x

+ ∂(ku)
∂y

+ ∂(kw)

∂z

)
= 0.
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Traffic flow

v, k

x

v + dv,
k + dk

Figure 5.4 Reducing three dimensions to one dimension.

Highway traffic constitutes a special case of the above situation with only
one dimension (see Figure 5.4). Using the result derived above, one obtains

∂(kv)
∂x

+ ∂k
∂t

= 0.

Note that q = kv. Therefore,

qx + kt = 0.

Derivation IV: Scalar Conservation Law
This derivation is adopted from [22]. Consider a cell in the time-space
domain bounded by (t1, t2)×(x1, x2) (see Figure 5.5). Let traffic flow, speed,
and density be functions of time and space—that is, q = q(t, x), v = v(t, x),
and k = k(t, x). Obviously, the conservation of vehicles in the cell requires
the following:

∫ x2

x1
k(t2, x)dx−

∫ x2

x1
k(t1, x)dx =

∫ t2

t1
q(t, x1)dt −

∫ t2

t1
q(t, x2)dt,

Sp
ac

e 
x

X
2

X
1

0 Time tt1 t2

Figure 5.5 Deriving the continuity equation IV.
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∫ x2

x1
[k(t2, x) − k(t1, x)]dx =

∫ t2

t1
[q(t, x1) − q(t, x2)]dt.

If k(t, x) and q(t, x) are differentiable in x and t, one obtains∫ x2

x1

∫ t2

t1

∂k(t, x)
∂t

dtdx = −
∫ t2

t1

∫ x2

x1

∂q(t, x)
∂x

dxdt,

∫ x2

x1

∫ t2

t1

[
∂k(t, x)

∂t
+ ∂q(t, x)

∂x

]
dxdt = 0.

According to the fundamental theorem of calculus of variables, one
obtains

∂k(t, x)

∂t
+ ∂q(t, x)

∂x
= 0;

that is,
qx + kt = 0.

Derivation V: Three-Dimensional Representation of Traffic Flow
As discussed in Chapter 3, the surface which represents the cumulative
number of vehicles, N , can be expressed as a function of time t and space
x—that is, N = N(t, x). The density at time-space point (t, x) is the first
partial derivative of N(t, x) with respect to x, but takes a negative value:

k(t, x) = −∂N(t, x)

∂x
.

The flow at (t, x) is the first partial derivative ofN(t, x)with respect to t:

q(t, x) = ∂N(t, x)
∂t

.

If both the flow and the density have first-order derivatives,

∂q(t, x)
∂x

= ∂N(t, x)/∂t
∂x

= ∂N2(t, x)
∂x∂t

and
∂k(t, x)

∂t
= −∂N(t, x)/∂x

∂t
= −∂N2(t, x)

∂x∂t
,

then
∂q(t, x)

∂x
= −∂k(t, x)

∂t
;

that is,
qx + kt = 0.
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5.2 FIRST-ORDER DYNAMICMODEL

Traffic evolution is the process of how traffic states (e.g., flow q, speed v,
and density k) evolve over time t and space x given some initial conditions
(e.g., k0 = k(0, x))and boundary conditions (e.g., q(t) = q(t, x0)). One
recognizes that time t and space x are independent variables and traffic states
are dependent variables—that is, they are functions of time and space (q =
q(t, x), v = v(t, x), k = k(t, x)). The continuity equations derived above are
able to dynamically relate the change of flow qx to the change of density kt:

qx + kt = 0.

This equation contains two unknown variables q(t, x) and k(t, x). Since
the number of unknown variables is greater than the number of equations,
the problem is underspecified. Because of this, another simultaneous equa-
tion is needed. Hopefully, the identity comes handy:

q(t, x) = k(t, x)v(t, x).

By adding a new equation, we introduce a third unknown variable—
that is, speed v(t, x). Therefore, a third simultaneous equation is called for.
Unfortunately, we are running out of options now since we are unable to
find a third governing equation that will definitely to hold for any time
and space. Consequently, we have to accept the less-than-ideal option by
looking at equilibrium traffic flow models (e.g., the Greenshields model),
which are known to hold only statistically. Such a model takes the form of

v = V (k).

Putting everything together, one obtains a system of three equations
involving three unknown variables:

⎧⎪⎨
⎪⎩
qx + kt = 0,

q = kv,

v = V (k).

(5.1)

If initial and boundary conditions are provided, the above system of
equations may be solvable. If that is the case, one is able to determine the
traffic state at an arbitrary time-space point (t, x)—that is, q(t, x), v(t, x), and
k(t, x). With such information, one is able to answer the questions posed at
the beginning of this chapter.
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However, solving such a system of equations is not easy. To make this
book self-contained, the following three chapters are designed to help
readers ramp up their mathematical knowledge in terms of addressing partial
differential equations.

PROBLEMS

1. The Lincoln Tunnel is an integral conduit within the New York
Metropolitan Area (see the figure below). The tunnel is approximately
1.5 miles (2.4 km) long and consists of three tunnels (north, center, and
south) under the Hudson River. A civil engineering consulting firm
was contracted to carry out a traffic engineering study on the tunnel,
and automatic data collection devices were set up at both ends of the
tunnel. The following data were recorded for the south tunnel (number
of passenger cars in one direction over two lanes).

Find the level of service in each hour with use of the criteria specified
by the Transportation Research Board

2. A freeway junction includes an on-ramp followed by an off-ramp over
a section of 1 mile. At 10:00 a.m., there are 20 vehicles in this section.
Assume traffic flows in and out at a rate in vehicles per hour as indicated
in the figure below, and calculate the number of vehicles in this section
2 h later.
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Time No. of vehicles that entered No. of vehicles that exited
00:00 0 0
01:00 90 80
02:00 400 390
03:00 900 874
04:00 1860 1870
05:00 2060 2028
06:00 2200 2210
07:00 3000 2978
08:00 4060 4026
09:00 4200 4154
10:00 3207 3223
11:00 3386 3424
12:00 2810 2832
13:00 3019 3029
14:00 3880 3838
15:00 3665 3637
16:00 4020 3980
17:00 4600 4634
18:00 4282 4316
19:00 3740 3772
20:00 3120 3138
21:00 1680 1706
22:00 408 438
23:00 0 10

q
2
=

200

q1=
3200

q
3
=

500

q
4
=

2890

1 mile

3. An accident on Interstate 91 occurred at 8:00 a.m. which blocked one
lane, resulting in the remaining lane being capable of discharging traffic
at a rate of only 1800 vehicles per hour. Assume that there was no
initial queue at the accident location and that traffic keeps arriving from
the upstream mainline at a rate of 2600 vehicles per hour and from an
on-ramp at a rate of 400 vehicles per hour. The on-ramp is 2 miles
from the accident location. Also assume that vehicles maintain a spacing
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(i.e., front bumper-to-front bumper distance) of 29.3 feet when they are
in a queue. Massachusetts Department of Transportation’s goal is to avoid
vehicles backing up to the on-ramp. Otherwise, the queue may spill
over onto location intersections via the on-ramp, further worsening the
situation. Calculate when vehicles will back up to the on-ramp so that
the Massachusetts Department of Transportation has a sense of urgency
in dispatching a rescue team to clean up the accident.

q
2
=

400

q
1
=

2600
q
3
=

1800

2 miles



CHAPTER 6

Waves

To solve the set of equations presented at the end of Chapter 5, one has to
leave the topic of traffic flow for a moment and study waves first. One would
agree that this is necessary when one looks at Figure 6.1, where vehicle
trajectories recorded in the field are plotted on a time-space diagram. The
horizontal axis is time, with left being earlier and right later. The vertical
axis is space, with traffic flowing upward. Three ripples are clearly visible
in this picture depicting the propagation of some disturbances in the traffic.
This observation suggests that traffic does behave like waves, and solutions
to traffic dynamics can be sought on the basis of the knowledge of waves.
As such, the purpose of this chapter is to provide a jump-start introduction
to waves.

6.1 WAVE PHENOMENA

Waves are everywhere in the real world. When a pebble is thrown into a
pond, one sees ripples circling outward. This is a wave (see Figure 6.2).
When the audience at a football stadium becomes thrilled and rows of the
audience stand up and sit down successively, one sees a “signal” bouncing.
This is also a wave. When shaking a rope at one end with the other end
fixed, one sees a “hump” moving away. This is yet another wave. Basically,
a wave is the propagation of a disturbance in a medium over time and space. In the
above examples, the ripples, signal, and hump are disturbances, while the
water, audience, and rope are media. If we apply the notion to a platoon of
vehicles on a highway, when one of the vehicles brakes suddenly and then
resumes its original speed, subsequent vehicles will be affected successively.
The propagation of such a “jerking” effect is a wave, with the jerk being
the disturbance and the traffic being the medium. The ripples in Figure 6.1
are examples of such a wave.

6.2 MATHEMATICAL REPRESENTATION

The mathematical language to describe wave phenomena is the partial
differential equation (PDE).

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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Figure 6.1 Traffic waves observed on a highway.

Figure 6.2 Surface waves.

6.2.1 Notation
If a dependent variable k is a function of independent variables t and x, we
write k = k(t, x) and we denote its partial derivatives with respect to x and
t as follows:

kx = ∂k
∂x

, kt = ∂k
∂t

, kxt = ∂2k
∂x∂t

, ktx = ∂2k
∂t∂x

, kxx = ∂2k
∂x2

, ktt = ∂2k
∂t2

.

A PDE for k(t, x) is an equation that involves one or more partial
derivatives of k with respect to t and x, For example,

kt = kx + k, kt = kxx + kx + 5, kt = kxxx + 4k+ cos x.

6.2.2 Terminology
PDEs can be classified on the basis of their order, homogeneity, and linearity.

Order
The order of a PDE is the order of the highest partial derivative in the
equation. For example,
• first-order PDE: kt = kx + k;
• second-order PDE: kt = kxx + kx + 5;
• third-order PDE: kt = kxxx + 4k+ cos x.
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A first-order PDE can be expressed in the following general form:

P(t, x, k)kt +Q(t, x, k)kx = R(t, x, k),

where P,Q, and R are coefficients, and they may be functions of t, x, and k.

Homogeneity
A first-order PDE P(t, x, k)kt +Q(t, x, k)kx = R(t, x, k) may be
• homogeneous if R(t, x, k) = 0;
• nonhomogeneous if R(t, x, k) �= 0.

Linearity
In the above general first-order PDE, if both P and Q are independent of
k—that is, P = P(t, x), Q = Q(t, x)—and
• If R is also independent of k—that is, R = R(t, x)—then the PDE is

strictly linear. For example, 2xkt + 3kx = 5t.
• If R is linearly dependent on k—that is, R = R(t, x, k)—then the PDE

is linear. For example, 2xkt + 3kx = 5k+ 3.
• IfR is dependent on k in a nonlinear manner, then the PDE is semilinear.

For example, 2xkt + 3kx = ek.
In particular, if P orQ is dependent on k, or both P andQ are dependent

on k—that is, P = P(t, x, k), Q = Q(t, x, k)—and R = R(t, x, k), then the
PDE is quasilinear. For example, kt + (3k+ 2)kx = 0.

A PDE is nonlinear if it involves cross terms of k and its derivatives—for
example, ktkx + k = 2.

Now, test yourself by classifying the following PDEs:
1. kt + ckx = 0.
2. kt + ckx = e−t.
3. ktt = C2kxx, where C is a constant.
4. ktt − kxx+ k = 0.
5. ktt + kkx + kxxx = 0.

6.3 TRAVELINGWAVES

Many PDEs have solutions in a traveling wave form k(t, x) = f (x − ct).1

Figure 6.3 illustrates two instants of the traveling wave, f (x− ct0) and f (x−
ct1). It is easy to find that (1) the traveling wave preserves its shape and (2) the
wave at time t1 is simply a horizontal translation of its initial profile at time

1 The following discussion is derived from Ref. [23] with modifications.
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k

x

t0 t1

Figure 6.3 A traveling wave.

t0. If c is a positive constant, wave k(t, x) = f (x− ct) travels to the right over
time, while wave k(t, x) = f (x+ ct) moves to the left over time.

6.4 TRAVELINGWAVE SOLUTIONS

Solve the following wave equation:

ktt = akxx,

where a is a constant.
Assume that a solution to the above wave equation takes a traveling form

k(t, x) = f (x− ct). Let z = x− ct. Then

kt = ∂k

∂t
= df

dz

∂z

∂t
= f ′ × (−c) = −cf ′.

Similarly, kx = f ′, ktt = c2f ′′, and kxx = f ′′.
Plugging the above expressions into the wave equation, one obtains

(c2 − a)f ′′ = 0.

There are two ways for the left-hand side to be 0: (1) c2 − a = 0 and
(2) f ′′ = 0.
1: If c2−a = 0, then k(t, x) = f (x±√

at), where f can take any functional
form.

2: If f ′′ = 0, then k(t, x) = A + B(x − ct), where A and B are arbitrary
constants.
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k

x

k1

k2

Figure 6.4 Wave front and pulse.

6.5 WAVE FRONT AND PULSE

A traveling wave is called a wave front if{
k(t, x) = k1 as x → −∞,

k(t, x) = k2 as x → +∞.

Figure 6.4 illustrates a wave front. A traveling wave is called a pulse if
k1 = k2.

6.6 GENERAL SOLUTION TOWAVE EQUATIONS

Many wave equations have a general solution in the form of superposition
of traveling waves:

k(t, x) = F(x− ct) +G(x+ ct).

Note that even though each of the terms on right-hand side is a traveling
wave, their superposition may not necessarily be.

Example 1
Solve the following wave equation with initial conditions⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ktt = c2kxx,

k(x, 0) = f (x),

kt(x, 0) = g(x),

−∞ < x < +∞, t > 0.
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Solution
Applying the above general solution to the first initial condition, we have

F(x) +G(x) = k(x, 0) = f (x).

Applying the above general solution to the second initial condition, we have

−cF ′(x) + cG′(x) = kt(x, 0) = g(x).

Dividing both sides by c and integrating, we obtain

−F(x) +G(x) = −F(0) +G(0) + 1
c

∫ x

0
g(s)ds.

Solving for F(x) and G(x), we obtain⎧⎨
⎩
F(x) = 1

2 f (x) − 1
2 [−F(0) +G(0) + 1

c

∫ x
0 g(s)ds],

G(x) = 1
2 f (x) + 1

2 [−F(0) +G(0) + 1
c

∫ x
0 g(s)ds].

Plugging the result back into the general solution, we obtain

k(t, x) = F(x− ct) +G(x+ ct)

= 1
2
f (x− ct) − 1

2

[
−F(0) +G(0) + 1

c

∫ x−ct

0
g(s)ds

]

+ 1
2
f (x+ ct) + 1

2

[
−F(0) +G(0) + 1

c

∫ x+ct

0
g(s)ds

]
.

We combine terms and we obtain a specific generic solution:

k(t, x) = 1

2
[f (x− ct) + f (x+ ct)] + 1

2c

∫ x+ct

x−ct
g(s)ds.

This is called the d’Alembert solution.

Example 2
Solve the following wave equation with initial conditions⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ktt = 4kxx,

k(x, 0) = e−x2 ,
kt(x, 0) = 0,

−∞ < x < +∞, t > 0.
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Solution
Applying the result in Example 6.6 and considering that kt(x, 0) = g(x) =
0, one obtains

k(t, x) = 1
2
[f (x− ct) + f (x+ ct)].

Therefore,

k(x, 0) = 1
2
[f (x) + f (x)] = f (x) = e−x2

Since f (x) = k(x, 0), one obtains

k(t, x) = 1
2
[k(x− ct, 0) + k(x+ ct, 0)] = 1

2
[e−(x−ct)2 + e−(x+ct)2 ].

6.7 CHARACTERISTICS

Consider Example 6.6, since f (x) = k(x, 0) and g(x) = kt(x, 0), the
solution can be transformed to the following form:

k(t, x) = 1

2
[k(x− ct, 0) + k(x+ ct, 0)] + 1

2c

∫ x+ct

x−ct
g(s)ds.

6.7.1 Domain of Dependence
Applying the above conclusion, one notices that the solution k at an arbitrary
time-space point (t∗, x∗) is

k(t∗, x∗) = 1
2
[k(x∗ − ct∗, 0) + k(x∗ + ct∗, 0)] + 1

2c

∫ x∗+ct∗

x∗−ct∗
g(s)ds.

The above equation suggests that the solution at an arbitrary point
(t∗, x∗) can be determined by the initial condition at points (0, x∗ − ct∗)
and (0, x∗ + ct∗) and the interval I bounded by the two points (inclusive)—
that is, I = [x∗−ct∗, x∗+ct∗]. This is illustrated in the left part of Figure 6.5.
Therefore, the interval I is called the domain of dependence of point (t∗, x∗).

6.7.2 Range of Influence
The term “range of influence” refers to a collection of time-space points whose
solutions are influenced either completely or partially by the domain of
dependence I; see the shaded area in the right part of Figure 6.5.
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Figure 6.5 Characteristics.

6.7.3 Characteristics
Notice that in the left part of Figure 6.5, the two lines coming from point
(t∗, x∗) intersecting the x-axis at (x∗ − ct∗, 0) and (x∗ + ct∗, 0) have slopes
c and −c. These two lines are called characteristic lines or simply characteristics
(please do not mix this up with traffic flow characteristics).

6.8 SOLUTION TO THEWAVE EQUATION

In a special case where kt(0, x) = 0, the solution of the wave equation in
Example 6.6 reduces to

k(t, x) = 1
2
[k(0, x− ct) + k(0, x+ ct)].

This shows that the value of k at (t, x) depends only on the initial values
of k at two points, x1 = x − ct and x2 = x + ct. Once the initial values
k(0, x− ct) and k(0, x+ ct) are known, one constructs the solution k at (t, x)
by taking the average of k(0, x1) and k(0, x2).

Example 3
Use characteristics to solve the following wave equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ktt = 4kxx,

k(0, x) =
{
1 if 0 ≤ x ≤ 1 or

0 otherwise,

kt(0, x) = 0,

−∞ < x < +∞, t > 0.
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Figure 6.6 Solution to Example 6.8.

In this equation, the traveling wave speed c = ±2—that is, k(t, x) =
f (x ± 2t). First, one constructs an x-t plane. Locate points 0 and 1 on
the x-axis. Then one draws two characteristics (their slopes are ±2) from
each of the two points (see Figure 6.6). The four characteristics partition
the x-t plane into six regions as labeled in Figure 6.6. Take an arbitrary
point (t0, x0), for example. The solution at this point is found by drawing
two characteristics from this point. Then find the intersections of the two
characteristics on the x-axis. Next, find the k values at the two intersections.
In this case the k values are 1 and 0. Then the solution k at point (t0, x0) is
the average of the k values at the two intersections—that is, k(t0, x0) = 1

2 .
With use of a similar technique, the solution in other regions can be

determined. To sum up, the solution to the above wave equation is as
follows:

k(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if (t, x) ∈ region I,

1 if (t, x) ∈ region II,

0 if (t, x) ∈ region III,
1
2 if (t, x) ∈ region IV,
1
2 if (t, x) ∈ region V,

0 if (t, x) ∈ region VI.

The above discussion presents the following notion:
1. For some wave equations such as that in Example 6.8, solution k at point

(t, x) can somehow be related to the initial condition k0 at point (0, x0).
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2. This is done by drawing two lines, called characteristics, from (t, x) with
slopes c and −c.

3. These characteristics intersect the x-axis at two points (0, x1) and (0, x2),
where x1 = x − ct and x2 = x + ct. Then the solution is k(t, x) =
1
2 [k(0, x1) + k(0, x2)].

6.9 METHODOF CHARACTERISTICS

Now let us consider a very simple PDE derived from the conservation law
with an initial condition. In Chapter 5, the conservation law led to the
following continuity equation:

kt + qx = 0.

If one assumes q = ck, where c is a constant, then qx = ckx, and the PDE
can be defined as follows (please ignore the physical meaning of k and q for
the moment—this issue will be revisited later):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

kt + ckx = 0,

k(0, x) = k0(x),

−∞ < x < ∞, 0 < t,

c is a constant.

The goal is to find a solution to this PDE, or equivalently find the value
of k at an arbitrary time-space point, k(t, x). Rather than working on an
arbitrary point in the entire time-space plane, one starts with a simpler case
by working on a point on a specific curve in the time-space plane. To do
this, one draws a curve x = x(t) (how to draw this curve will be made
clear shortly), and the new goal is to find the value of k at an arbitrary point
(t, x(t)) on the curve—that is, k(t, x(t)). To find the solution, let us examine
how k changes along the curve x = x(t). The rate of change of k with time
is the first (and total) derivative of k with respect to time t; that is,

dk(t, x(t))
dt

= ∂k

∂t

dt

dt
+ ∂k

∂x

dx(t)

dt
= kt + dx

dt
kx.

If one compares the right-hand side of this equation with the left-hand
side of the original PDE, one recognizes that they are very similar. Actually,
they will be identical if one imposes

dx(t)
dt

= c.
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Consequently, one obtains

dk(t, x(t))
dt

= kt + ckx = 0.

This means that the total time derivative of k along the curve x = x(t)
is zero—that is, the value of k is constant along the curve. This implies that
the curve x = x(t) needs to be drawn such that it is a straight line with slope
of c. Therefore, one finds the equation of the line by solving the following
ordinary differential equation:{

dx(t)
dt = c,

x(0) = x0.

This yields {
x(t) = ct + x0,

x0 = x− ct.

At time t = 0, this line intersects the x-axis at x0. Since k remains
constant along this line, the solution k at any point on this line, k(t, x(t)),
is the same as k(0, x0) = k0(x0), which is given in the initial condition.
Therefore, we have found the solution for all points on this line. Such a line
is called a characteristic. Sounds familiar? Yes, it has the same meaning as the
characteristic in previous sections, where it is a line drawn from a time-space
point with slope c, which is the speed of the traveling wave f (x− ct).

With the above knowledge, it is simple to find the solution at an arbitrary
point, k(t∗, x∗(t∗). The procedure is as follows:
1. Construct the equation of the characteristic drawn from this point:

x(t) = ct + x0.
2. Find the intercept of this characteristic on the x-axis: x0 = x∗ − ct∗.
3. Find the value of k at the intercept from the initial condition: k(0, x0) =

k0(x0) = k0(x∗ − ct∗).
4. Apply this value of k to the point of interest: k(t∗, x∗) = k0(x∗ − ct∗).

Example 4
Use the method of characteristics to find the solution to the following PDE
at point (t∗ = 3, x∗ = 10):⎧⎪⎪⎨

⎪⎪⎩
kt + 2kx = 0,

k(0, x) = 2x2 + 5,

−∞ < x < ∞, 0 < t.
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Solution
Following the above procedure, one obtains the following:
1. The characteristic drawn from this point is x(t) = 2t + x0.
2. The intercept of this characteristic on the x-axis is x0 = 10−2×3 = 4.
3. The value of k at the intercept is k(0, 4) = 2 × 42 + 5 = 37.
4. Therefore, k(3, 10) = 37.

6.10 SOME PROPERTIES

The above discussion is based on a very simple first-order, linear, ho-
mogeneous PDE. It is informative to examine further the method of
characteristics and note some of its properties.

6.10.1 Properties of Characteristics
In the above example, the characteristic is a straight line, and this is so
because c is a constant. Similarly, another characteristic drawn from another
time-space point is also a straight line. In addition, the two straight lines
are parallel since they have the same slope c. Figure 6.7 illustrates a family
of characteristics (in the x-t plane) which are straight and parallel. Each
characteristic carries a constant k value denoted by a line above which
is labeled as the characteristic curve. Different characteristics may carry
different k values, so the surface k(t, x) is not necessarily flat. A kinematic
wave is a family of characteristics which carry and propagate signals, such as
those characteristics illustrated in Figure 6.7.

Now, what if c is not a constant? The following are two examples.

Example 5
In this example, c depends on k but not explicitly on t and x—that is, c =
c(k(t, x)). In this case, the characteristic equation needs to be derived from

dx(t)
dt

= c(k(t, x)).

Hence. the characteristic equation is

x = c(k0(x0))t + x0.

Therefore, the characteristic is still a straight line. However, the slope of
the line may take different values at different intercepts x0. Consequently,
two characteristics may intersect. See Figure 6.8 for an illustration.
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Figure 6.7 Illustration of parallel characteristics.

t

x

k

Initial condition
Characteristic curve

s

k0

k0

Characteristic

Figure 6.8 Illustration of nonparallel characteristics.

Example 6
In this example, c explicitly depends on x and or t—for example, c = t.
The equation of the characteristic is derived from the following ordinary
differential equation:

dx(t)

dt
= c = t.

After integration, one obtains x = 1
2 t

2 + A, where A is an integral
constant. In this case, the characteristic is no longer a straight line, but is a
parabola. In addition, characteristics drawn from different time-space points
are no longer parallel. Instead, they may intersect.
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Summing up the above discussion on characteristics, we have the
following:
• If c is a constant, characteristics are straight, parallel lines.
• If c depends on k but not explicitly on t and x, characteristics are still

straight lines, but different characteristics may have different slopes and
hence these characteristics may intersect.

• If c explicitly depends on x and or t, characteristics are neither straight
nor parallel. Consequently, these characteristics may intersect.

• Since a characteristic denotes a set of time-space points on which the
solution of k remains constant, k may be multivalued at the intersection
of two characteristics. Such an occurrence is called a gradient catastrophe.

6.10.2 Properties of the Solution
If one imposes dx(t)

dt = c, one obtains

dk
dt

= 0.

This implies that the solution of k remains constant on a character-
istic x = x(t). This conclusion holds only if the underlying PDE is
homogeneous—that is,

kt + ckx = 0.

What if the PDE is not homogeneous? For example,

kt + ckx = −1.

In this case, the total derivative of k with respect to t becomes

dk

dt
= −1.

This implies that k is no longer constant along characteristic x = x(t),
but rather linearly decreases at the rate of 1—that is, k = k0 − t, where k0
is found in the initial conditions. Figure 6.9 illustrate such a case.

PROBLEMS

1. Classify the following partial differential equations:
a. ktxt = 3xktt + 4tkkxkt − 8xt.
b. kt = 9kx.
c. kxx + 1

5kx + 1
25ktt = 0.

d. kkx + akt + bk = 0, where a and b are constants.
e. 5kt + 9kx = 3k3.
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Figure 6.9 Solution of a nonhomogeneous PDE.

2. Use characteristics to find a solution to the following PDE with initial
conditions:

ktt − kxx = 0,

where k(0, x) =

⎧⎪⎨
⎪⎩
2 when x > 1,

1 when −1 ≤ x ≤ 1

0 when x < −1.

and kt(0, x) = 0,

3. Find the d’Alembert solution to the following PDE with initial
conditions

ktt − 1

9
kxx = 0,

where k(0, x) = 0 and kt(0, x) = 2.

4. Find the d’Alembert solution to the following PDE with initial
conditions

ktt = 4kxx,

where k(0, x) = 2x and kt(0, x) = e−x.

5. Use the method of characteristics to solve the following first-order
homogeneous linear PDE with an initial condition at time-space point
(t, x) = (4, 5):
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kt + 1
2kx = 0,

k(0, x) = 4x+ lnx2,

−∞ < x < ∞,

t > 0.

6. Use the method of characteristics to solve the following first-order
homogeneous quasi-linear PDE with an initial condition at time-space
point (t, x) = (2, 20): ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

kt + (2k+ 1)kx = 0,

k(0, x) = x+ 10,

−∞ < x < ∞.

t > 0.

7. Use the method of characteristics to solve the following first-order
nonhomogeneous quasi-linear PDE with an initial condition at time-
space point (t, x) = (5, 9):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

kt + 2tkx = 2,

k(0, x) = 2x+ 1,

−∞ < x < ∞,

t > 0.



CHAPTER 7

Shock and RarefactionWaves

In the previous chapter, the method of characteristics was discussed as a
means to solve the continuity equation (i.e., conservation law) with an initial
condition: ⎧⎪⎨

⎪⎩
kt + qx = 0,

k(0, x) = k0(x),

−∞ < x < ∞, 0 < t,

where q = Q(k) is a function of k. To be consistent with the notation in
the previous chapter, the following connection needs to be made:

qx = ∂q
∂x

= ∂Q(k)
∂x

= dQ
dk

∂k
∂x

= Q′(k)kx = ckx

To find the solution of k at an arbitrary time-space point (t∗, x∗),
k(t∗, x∗), one simply constructs a characteristic x = ct + x0 which starts
from (t∗, x∗) and extends back to the x-axis at intercept (0, x∗ − ct∗). Since
k((0, x∗ − ct∗)) = k0(x∗ − ct∗) is given in the initial condition and k remains
constant along the characteristic, the solution is

k(t∗, x∗) = k0(x
∗ − ct∗).

7.1 GRADIENT CATASTROPHES

In the above discussion, if c is a constant, characteristics drawn from two
different time-space points are straight, parallel lines. Hence, any time-space
point lies on one and only one characteristic, and the solution at this point
is single valued. However, if c = c(k) is a function of k and not explicitly
dependent on x or t, two different characteristics drawn from two time-
space points are still straight lines but they may not necessarily be parallel,
in which case they may intersect and the solution at this intersection may
be multivalued. For example, Figure 7.1 illustrates two such characteristics
A0A4 and B0B4. As the two characteristics become closer and closer, the
gradient (i.e., slope) of the solution profile (represented by the red curves
0, 1, 2, 3, and 4 above the two characteristics) becomes increasingly steep.

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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Figure 7.1 A gradient catastrophe.
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Figure 7.2 Top of profile overtakes bottom of profile.

When the two characteristics intersect at point C, the solution profile will
have an infinite gradient at this point. The formation of such an infinite
gradient is called a gradient catastrophe, and the time when infinite gradient
occurs is called the break time tb. Figure 7.2 presents a few frames of time
development of the solution profile. Notice that the top dot of the profile
moves faster than the bottom dot. Sooner or later, the top dot will catch
up with the bottom dot at the break time, creating a gradient catastrophe.
After this, the top dot runs over the bottom dot, and the profile ceases to
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be a valid function. Consequently, the solution beyond the break time will
be problematic. The purpose of this chapter is to address such an issue.

The above example illustrates a family of characteristics moving closer
and closer over time, so they form a compression wave. The opposite case
is a family of characteristics moving farther and farther apart without
any intersection (see Figure 7.3); such a wave is called an expansion wave.
The corresponding time development of the solution profile is shown in
Figure 7.4. It can be seen that the bottom dot moves faster than the top dot
in this case, and the solution profile becomes thinned out or rarefied.

B2

B3

B4

x

k

A4t

A3

A2

A1

A0

B0

B1

Figure 7.3 Characteristics farther and farther apart.

k

xt = t0

k

xt = t3

k

xt = t5

k

xt = t7

Figure 7.4 Solution profile thinned out.
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7.2 SHOCKWAVES

As a continuation of the above discussion, if two characteristics intersect,
the solution at the intersection will be multivalued. However, if one allows
discontinuity at the intersection, it is possible to construct a piecewise
smooth solution. For example, Figure 7.5 illustrates such a solution where
curve xs(t) in the x-t plane is a collection of characteristic intersections.
The solution remains constant along each characteristic and terminates at
their intersection. Therefore, the curve partitions the solution space into
two parts R− and R+ and, consequently, separates the solution into two
smooth pieces S− and S+. The drop or discontinuity of k at the curve
denotes an abrupt change of k which creates a shock wave. Such a piecewise
smooth solution of the partial differential equation (PDE) is called a shock
wave solution.

A critical step in the shock wave solution is to find the curve xs(t) which
connects the intersections of characteristics. Since the curve represents the
locations at which a shock wave forms, such a curve is called a shock
path. In Figure 7.6, two families of characteristics are illustrated where a
characteristic may have multiple intersections. Hence, many curves can be
drawn by connecting different sets of intersections and, hence, the shock
wave may take different paths. Fortunately, the underlying conservation law
ensures that only one shock path is valid, and such a shock path must satisfy
a physical condition called the Rankine-Hugonoit jump condition:

x

k

t xs(t)

characteristics

R–

R+ S+

S–

Figure 7.5 Piecewise solution—shock wave.
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Characteristics

R–

R+

xs(t)

x

t

Figure 7.6 Shock path.

dxs
dt

= q(t, x+
s ) − q(t, x−

s )

k(t, x+
s ) − k(t, x−

s )
,

where dxs
dt is the slope of the shock path, q = Q(k) as defined in the

conservation law, k(t, x−
s ) takes the k value on theR− side, k(t, x+

s ) takes the
k value on the R+ side, and similar notation applies to q(t, x−

s ) and q(t, x+
s ).

Therefore, if one or more intersections on curve xs(t) are known,
one can construct the shock path by starting from the known points and
following the slope defined above.

As an example, solve the conservation law with the following initial
conditions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kt + qx = 0,

q = 1
2k

2,

k(0, x) =
{
1 if x ≤ 0,

0 if x > 0,

−∞ < x < ∞,

t > 0.

The slope of the characteristics is c = dq
dk = k. Obviously, characteristics

drawn below x = 0 are straight, parallel lines with slope c = 1. These
characteristics carry the same constant value of k = 1, and hence q =
1/2k2 = 1/2. Similarly, characteristics drawn above x = 0 are horizontal
lines with slope c = 0. They carry k = 0, and hence q = 0. The origin
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is a known point on the shock path. According to the Rankine-Hugonoit
jump condition, the slope of the shock path is

dxs
dt

= q(t, x+
s ) − q(t, x−

s )

k(t, x+
s ) − k(t, x−

s )
= 0 − 1/2

0 − 1
= 1

2
.

Therefore, the shock path is a straight line which starts from the origin
with constant slope 1

2—that is,

xs(t) = 1
2
t.

Therefore, the solution is

k(t, x) =
{
1 if x ≤ 1

2 t,

0 if x > 1
2 t.

The solution is illustrated in Figure 7.7. Also illustrated are a few
concepts discussed before: a characteristic is a line along which the solution
k remains constant; a kinematic wave is a family of straight, parallel
characteristics, and a shock wave separates two kinematic waves with an
abrupt change of the k value; a shock path is the projection of shock
locations onto the x-t plane.

Characteristics

X

k 0

Chara
cte

ris
tic

s

Kinematic
wave

Shock path

Kinematic
wave

t

1

1/2

1

0

Shock
wave

Figure 7.7 An example of a shock path.
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7.3 RAREFACTIONWAVES

If the initial condition in the above example is reversed1—that is,

k(0, x) = k0 =
{
0 if x ≤ 0,

1 if x > 0,

characteristics of this PDE should be drawn as in Figure 7.8. In this case, the
two families of characteristics go farther and farther apart, leaving an empty
wedge-shaped area in between. Since a characteristic carries a constant k
solution, areas swept by characteristics will have solutions. An empty area
in the solution space means there is no solution in this area. To resolve this
issue, there should be a means to fill the empty area with characteristics.

If one relaxes the step function of the initial condition by assuming that
k0 varies smoothly from 0 to 1 over a small distance �x (see Figure 7.9),
the slopes of characteristics drawn in �x will gradually increase from 0 to
1 so that any point in the solution space is swept by one and only one
characteristic.

To return to the step function of the initial condition, one takes the limit
�x → 0, so Figure 7.9 reduces to Figure 7.10. Now the empty area is filled
with a fan of characteristics drawn from the origin. If one cuts the solution
space with a few planes t = t0, t1, t2, . . ., with t0 passing the origin and other
planes at consequently later times, one obtains a time development of the
solution as shown in Figure 7.11. Notice that the profile of the solution is
thinned out or rarefied as time moves on. Hence, this fan of characteristics
represents a rarefaction wave.

x

tk0 1 0

Figure 7.8 Characteristics without an intersection.

1 The following discussion is derived from Ref. [23] with modifications.
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Figure 7.9 Filling an empty area with characteristics.
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Figure 7.10 A rarefaction wave.
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Figure 7.11 Time development of the rarefaction wave.
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The rarefaction wave can be used to construct a solution for the
following conservation law problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kt + qx = 0,

q = 1

2
k2,

k(0, x) =
{
0 if x ≤ 0,

1 if x > 0,

−∞ < x < ∞,

t > 0.

From the initial condition and with use of the method of characteristics,
solutions for the two areas swept by the two parallel characteristics in
Figure 7.8 can be easily determined:

k(t, x) =
{
0 if x ≤ 0,

1 if t < x.

The fan of characteristics in the wedge-shaped area consists of lines x = ct,
where 0 < c < 1. Therefore, the solution k(x, t) in this area should have
the form f (x/t). Hence,

kt =
(
− x
t2

)
f ′, kx = 1

t
f ′.

The conservation law can be rewritten as

kt + kkx = 0.

Plugging f and its partial derivatives back into the above equation
kt + qx = 0 , we obtain

1
t
f ′

(
f − x

t

)
= 0.

If we solve this equation, we get f ′(xt ) = 0 or f = x
t . If f

′(xt ) = 0,
f (xt ) = k(t, x) = a, where a is an integral constant. A simple check along
x = 0 and x = t reveals that this solution does not satisfy the Rankine-
Hugonoit jump condition. For example, if we apply theRankine-Hugonoit
jump condition, a shock wave solution bordering area x ≤ 0 should have
a shock path with slope a

2 . As such, the shock path is a straight line drawn
from the origin with a slope of a2 . However, none of the characteristics in
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area x ≤ 0 touche the shock path, which makes the shock path an invalid
one by definition—that is, a shock wave is the intersection of two or more
kinematic waves. Similar reasoning applies to the other side of the wedge
bordering area x > t. Therefore, solution f (xt ) = k(t, x) = a is not a shock
wave solution. The smooth solution is given by k(t, x) = f (xt ) = x

t . Hence,
the rarefaction wave solution of the original problem is

k(t, x) =

⎧⎪⎨
⎪⎩
0 if x ≤ 0,
x
t if 0 < x ≤ t,

1 if t < x.

On can also construct a shock wave solution by choosing a constant a such
that 0 < a < 1 and applying the Rankine-Hugonoit jump condition:

k(t, x) =

⎧⎪⎨
⎪⎩
0 if x ≤ 1

2at,

a if 1
2at < x ≤ 1

2(a+ 1)t,

1 if 1
2(a+ 1)t < x.

Figure 7.12 illustrates the solution space which has two shock waves x =
1
2at and x = 1

2(a+ 1)t. Since the choice of constant a is arbitrary as long as
0 < a < 1 is met, the above shock wave solution is multivalued. Combining
the above rarefaction wave and shock wave solutions, one concludes that
the solution to the original problem is not unique. However, the physical
process has only one outcome, and hence the solution must be unique. The
question is “which solution makes the most physical sense?”

x

k0 1 0 t

k = 0

k = a

k = 1 (a+1)t1
2x =

at1
2x =

Figure 7.12 A shock wave solution.



Shock and Rarefaction Waves 113

7.4 ENTROPY CONDITION

In fluid dynamics, the entropy condition is used to select a solution that makes
the most physical sense. The entropy condition of a function k(x, t) requires
the existence of a positive constant E such that the following inequality
is met:

k(t, x+ �x) − k(t, x)

�x
≤ E

t

for �x > 0 and t > 0. Such a condition is shown in Figure 7.13.
Now let us check if a shock wave solution satisfies this condition. We do

by slicing the solution space in Figure 7.12 using a plane AA′ and projecting
the result onto the k-x plane, as shown in Figure 7.14. The solution profile
consists of three discontinuous sections with k = 0, a, 1. If one choose two
arbitrary points �x apart on the profile as indicated, the slope is a

�x . The
slope becomes larger and larger as �x shrinks and becomes infinity at the
jump location. Therefore, one cannot find a positive constant E to satisfy the
entropy condition, and hence shock wave solutions do not make physical
sense.

k

k(t,x + Δx) – k(t,x)
Δx

0 x

Figure 7.13 Entropy condition.

Δx

x A¢

k = 1

A

k = a

k = 0
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1 (a+1)t1

2x =

at1
2x =

Figure 7.14 Entropy condition in a shock wave solution.
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k = x/t
1

k = 0k0
1

A0
Figure 7.15 Entropy condition in the rarefaction solution.

To apply the same technique to check the rarefaction solution, one
slices the solution space with a plane at AA′; the resultant solution profile is
illustrated in Figure 7.15. It can be seen that the maximum slope between
any two points on the solution profile is 1

t . Hence, if one chooses E = 1,
the entropy condition is always met. Therefore, the rarefaction solution is
chosen as the (unique) solution that makes the most physical sense:

k(t, x) =

⎧⎪⎪⎨
⎪⎪⎩
0 if x ≤ 0,
x
t

if 0 < x ≤ t,

1 if t < x.

7.5 SUMMARYOFWAVE TERMINOLOGY

At this point, it is helpful to summarize the definition of a few terms
frequently used in the analysis of waves and their solutions:
• A wave is the propagation in time t and space x of a disturbance in a

medium.
• A signal is a physical measure (e.g., traffic density k) that describes the

disturbance.
• A characteristic is a line in the x-t plane along which the signal remains

constant.
• A kinematic wave is a family of parallel characteristics in the x-t plane.
• A compression wave is a family of characteristics which are closer and closer

to each other over time.
• A shock wave is the formation of an abrupt change in signal in the

medium. A compression wave consists of intersecting characteristics.
The intersection of these characteristics causes gradient catastrophe,
which, in turn, is a precursor of a shock wave.
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• An expansion wave is a family of characteristics which are farther and
farther apart over time.

• A rarefaction wave is the effect that the signal profile thins out over time.
An expansion wave consists of diverging characteristics which cause two
neighboring signals to move farther and farther apart, which, in turn,
causes a rarefaction wave.

PROBLEMS

1. Explain the following concepts, and use examples assisted by sketches if
necessary.
a. Wave
b. Characteristic
c. Kinematic wave
d. Shock wave

2. Find the shock wave solution to the following PDE with initial
conditions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kt + qx = 0,

q = 2k2,

k(0, x) =
{
5 if x ≤ 0,

2 if x > 0,

−∞ < x < ∞,

t > 0.

3. Find the shock wave solution to the following PDE with initial
conditions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kt + qx = 0,

q = k3,

k(0, x) =
{
1 if x ≤ 2,

0 if x > 2,

−∞ < x < ∞,

t > 0.

4. Find the rarefaction wave solution to the following PDE with initial
conditions:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kt + qx = 0,

q = k2,

k(0, x) =
{
0 if x ≤ 0,

1 if x > 0,

−∞ < x < ∞,

t > 0.

5. Using the entropy condition to check whether your solution to the
above problem is a physically meaningful one.



CHAPTER 8

LWRModel

In previous chapters, we temporarily left traffic flow and concentrated
on the conservation law (Chapter 5), waves (Chapter 6), solutions to the
conservation law (Chapter 6), and shock waves (Chapter 7). The purpose
of these chapters was to pave the road to addressing traffic dynamics and
unveiling traffic evolution on highways.

8.1 THE LWRMODEL

At the end of Chapter 5, a dynamic traffic flow model was formulated on
the basis of the conservation law:⎧⎪⎨

⎪⎩
kt + qx = 0,

q = kv,

v = V (k),

(8.1)

where q = q(t, x) is flow, k = k(t, x) is density, and v = v(t, x) is mean
traffic speed. If one combines the second and third equations by eliminating
v, one obtains a flow-density relationship q = Q(k), and the dynamic model
becomes: {

kt + qx = 0,

q = Q(k),
(8.2)

or further
kt +Q′(k)kx = 0,

where Q′(k) = dQ(k)
dk . This is the so-called LWR model [24, 25] to honor

the three pioneers, Lighthill, Whitham, and Richards, who originally stud-
ied this problem. The LWRmodel is essentially a first-order, homogeneous,
quasi-linear partial differential equation.

If we apply the results in the previous chapters, the LWR model with
initial condition k(0, x) = k0(x) can be solved as follows:

1. Construct a time-space diagram (i.e., the t-x plane) with

initial condition k0(x) labeled on the x-axis.

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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2. Start with an arbitrary point on the x-axis (0, x∗), and de-

termine the k value at this point k0(x∗) and the value of

c(x∗) = Q′(k0(x∗)).
3. Draw a straight line s from point (0, x∗) with slope c(x∗). The

line equation is xs = c(x∗)t + x∗, which represents a charac-

teristic along which the k value is constant k(t, xs) = k0(x∗).
4. Apply the previous two steps to other points on the x-axis

and construct their corresponding characteristics.

5. If two characteristics intersect, terminate both character-

istics at their intersection and note the intersection as a

point on a shock path. If a characteristic has multiple in-

tersections, use the Rankine-Hugonoit jump condition to de-

termine the right intersection. Repeat this step and find

adjacent intersections. Connect these intersections to form

a shock path. The solution at both sides of the shock path

should be piecewise smooth with a jump along the shock path

which forms a shock wave.

6. If two families of characteristics diverge and, hence, leave

a wedge-shaped area in between, fill this area with a fan of

characteristics and construct a rarefaction wave solution in

this area.

7. If an area has multiple rarefaction solutions, apply the

entropy condition to select a solution that makes the most

physical sense.

8. After the above steps have been followed, the solution space

should be filled with characteristics. Each point in the so-

lution space should be swept by one and only one characteris-

tic.

9. If an arbitrary point (t, x) is of interest, one simply follows

its characteristic all the way back to the x-axis and reads

k0(x) off the initial condition. This k0(x) is the k value at

the time-space point in question. Consequently, one finds the

corresponding q(x, t) = Q(k(t, x)) and v(t, x) = q(t,x)
k(t,x). Hence,

the solution k(t, x), q(t, x), and v(t, x) of any time-space point

(t, x) can be determined.

Note that the conservation law (and consequently the LWR model)
involves three dependent variables: flow (flux) q, density (concentration) k,
and speed v. One might be curious about why density k is always chosen as
the target variable to work on. This is because density k is unique in that,
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by knowing k, one is able to unambiguously determine flow q and speed
v on the basis of equilibrium traffic flow models, while flow q and speed
u do not have such a property. Readers should be cautioned again that
equilibrium traffic flow models are only of statistical significance, and their
use as a lookup table is the last resort when no better choice is available.

8.2 EXAMPLE: LWRWITH GREENSHIELDS MODEL

The Greenshields model [9] assumes the following linear v-k relationship:

v = vf (1 − k
kj

),

where vf is free-flow speed and kj is jam density. This model implies the
following quadratic q-k relationship:

q = Q(k) = vf

(
k− k2

kj

)
.

Hence

c(k) = Q′(k) = vf − 2
vf
kj
k.

If the parameters are traffic speed vf = 60 miles per hour and density
kj = 240 vehicles per mile, the explicit form of the LWR model becomes

kt + (60 − k
2
)kx = 0.

Find solutions at points (t = 1
2h, x = 25miles) and (t = 1h, x =

65miles) with use of the following initial condition:

k(0, x) = k0(x)

{
40 vehicles per mile if 0 < x ≤ 10 miles,

20 vehicles per mile if x > 10 miles.

Following the above solution procedure, one constructs a time-space
diagram, shows the initial condition at the side of the diagram, and
identifies the two points in question (see Figure 8.1). Next, one constructs
characteristics. All characteristics drawn between 0 < x ≤ 10 miles will
bear a k value of 40 vehicles per mile, which can be read from the initial
condition, so the slope of these characteristics is c = 60 − k

2 = 40 miles
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1/2k 0
(1/2, 25)

10

x

40

20

(1, 65)

50
40

1 t

Figure 8.1 Example: LWR with Greenshields model.

per hour. Point (t = 1
2 , x = 25) is within this area, and the characteristic

passing this point intercepts the x-axis at (0, 5). Hence, k(12 , 25) = k(0, 5) =
40 vehicles per mile. Similarly, All characteristics drawn from x > 10 miles
have slope c = 50 miles per hour, and point (t = 1, x = 65) is within this
area. The characteristic passing this point intercepts the x-axis at (0, 15).
Hence, k(1, 65) = k(0, 15) = 20 vehicles per mile.

8.3 SHOCKWAVE SOLUTION TO THE LWRMODEL

The above example actually involves two platoons: a fast one running in
front and a slow one trailing behind. Each platoon corresponds to a family of
characteristics called a kinematic wave. The characteristics of the fast platoon
have a slope of 50 miles per hour, which is the speed of the fast kinematic
wave. Similarly, the speed of the slow kinematic wave is 40 miles per hour.
Noticeably, there is a wedge between the two families of characteristics
starting from (0, 10), meaning there is an increasing “vacuum” (or gap)
between the two platoons.

If the two platoons are reversed—that is, the slow platoon leads the fast
platoon, sooner or later the fast platoon will catch up with the slow platoon.
When this occurs, the first vehicle in the fast platoon will have to adopt
the speed of the last vehicle in the slow platoon. Shortly afterward, the
second vehicle in the fast platoon will have to slow down, and so will the
third vehicle, the fourth vehicle, and so on. The “slowing down” effect will
propagate backward along the fast platoon. The propagation of a sudden
change of traffic condition (e.g., speed drop in this example) creates a shock
wave which delineates regions of different traffic conditions (e.g., slow and
fast traffic in this example). The trajectory of the shock wave in the x-t plane
is called a shock path.
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As discussed in the method of characteristics, a characteristic carries a
constant k value (i.e., density), and the intersection of two characteristics
will inevitably have two k values. This means that at this point two traffic
conditions coexist, and after the intersection, the two platoons resume
their original conditions along their respective characteristics. This situation
does not make any physical sense. To develop a solution that is physically
meaningful, one has to make the solution piecewise smooth. This requires
that a characteristic carries one and only one traffic condition (e.g., a k
value). When two characteristics meet, both characteristics terminate, and
there is a jump (or shock) at the intersection.

To illustrate the idea, the previous example is revisited with the fast
platoon being behind. In the x-t plane in Figure 8.2, two families of
characteristics—that is, two kinematic waves—are drawn, but this time
those characteristics drawn between 0 < x < 10 will have a slope of 50,
while those drawn from x > 10 have a slope of 40. Since the fast kinematic
wave is behind, it will catch up with the slow kinematic wave—that is, the
two families of characteristics will intersect. Whenever two characteristics
intersect, they terminate at their intersection. A curve that connects these
intersections gives a shock path, along which two regions are delineated:
one region belongs to the slow platoon—that is, all points in this region
carry the condition of the slow platoon—and the other region belongs to
the fast platoon—that is, all points in this region carry the condition of the
fast platoon. When one moves across the shock path, the traffic condition
changes suddenly from one condition to another—that is, experiencing a
shock, which is how a shock wave gets its name. Therefore, it is convenient
to read from Figure 8.2 that k(12 , 25) = k(0, 0) = 20 vehicles per mile and
k(1, 65) = k(0, 25) = 40 vehicles per mile.

1/2k 0

(1/2, 25)

10

x

20

40

(1, 65)

Shock
path

40

50

1 t

Figure 8.2 Example: LWR with Greenshields model revisited.
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8.4 RIEMANN PROBLEM

In the above example, two properties are noticeable:
1. Each of the two kinematic waves consists of a family of straight, parallel

characteristics.
2. The shock path is a straight line.

As discussed in Chapter 6, if c is a constant or dependent on k but not
explicitly dependent on t or x, the resultant characteristic is a straight line,
which is the case in the above example since c = Q′(k) = vf − 2 vfkj k.

From Chapter 6, the method of characteristics stipulates that the slope
of a characteristic be dx

dt = c, which depends on the initial condition.
If the initial condition consists of piecewise constant k0, each family of
characteristics will have the same slope—that is, they are parallel. The above
example is such a case.

As discussed in Chapter 7, the slope of a shock path is determined by
the Rankine-Hugonoit jump condition. If the initial condition consists of
piecewise constant k0, then solutions k and q on both sides of the shock
path are piecewise constant. Consequently, the Rankine-Hugonoit jump
condition will result in a shock path with a constant slope—that is, a straight
line—which is also the case in the above example.

Hence, it becomes clear that the solution to an LWR model will always
have the above two properties as long as the initial data are given as piecewise
constant. In general, a conservation law with piecewise constant initial data
is referred to as a Riemann problem, named after Bernhard Riemann, who
was a German mathematician.

8.5 LWRMODELWITH A GENERAL Q-K RELATIONSHIP

In the above examples, the underlying q-k relationship is explicitly given—
for example, the Greenshields model. Hence, it is convenient to determine
the speed of a kinematic wave (i.e., the slope of a family of straight, parallel
characteristics) from the initial condition. However, it is recognized that the
Greenshields model suffers from inaccuracy, and often the underlying q-k
relationship is graphically given by fitting from empirical data. In this case,
the solution to the LWR model with a general q-k relationship is typically
determined graphically.
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Consider the following LWR model with a general q-k relationship:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kt + qx = 0,

q = Q(k),

k(t, 0) = k0(x) =
{
A if x ≤ 0,

B if x > 0,

(8.3)

where the underlying q-k relationship is given in Figure 8.3, where
A denotes an operating point characterized by flow qA, density kA, and
speed vA, and similar notation applies to point B. A time-space diagram
is constructed below the q-k relationship with the initial condition at the
side. Since this is a Riemann problem, each kinematic wave has a constant
slope, and the shock path will be a straight line. From the initial condition,
there are two kinematic waves: kinematic wave A emitted from x ≤ 0, and
kinematic wave B emitted from x > 0. The speed of kinematic wave A is

k

q

O
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wB

kBkA

qA

UAB

qB

x

k 0 t
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k B
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vB
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wB

wA

UAB

Figure 8.3 Example: LWRmodel with a general q-k relationship.
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wA = dQ

dk
= Q′(k)|k=kA ;

that is, the derivative of the q-k relationship evaluated at operating point A.
This is the tangent to the q-k curve at point A. Therefore, one constructs
kinematic wave A by drawing a family of straight, parallel lines drawn from
x ≤ 0 with slope wA. Similarly, the speed of kinematic wave B, wB, is
the tangent to the q-k curve at point B, and the wave can be constructed
accordingly. Since kinematic wave B represents a heavy, slow platoon in front
and kinematic wave A represents a light, fast platoon behind, kinematic wave
A will catch up with kinematic wave B, creating a shock wave. Again, since
this is a Riemann problem, the shock path is a straight line. The slope of
this line (i.e., the speed of the shock wave) is determined by the Rankine-
Hugonoit jump condition:

UAB = qB − qA
kB − kA

.

This happens to be the slope of the chord connecting points A and B
in the q-k curve. In addition, one already knows from the initial condition
that the shock path starts at the origin in the time-space diagram. Therefore,
one can determine the shock path by drawing a line from the origin with
slope UAB. Characteristics in the two kinematic waves will terminate once
they meet the shock path. Hence, the shock wave solution is graphically
constructed, and consists of two piecewise smooth solutions: the region
above the shock path has a uniform traffic condition B (qB, kB, uB) and the
region below the shock path has condition A (qA, kA, uA).

8.6 SHOCK PATHANDQUEUE TAIL

In Figure 8.3, the shock path actually represents the time-varying location
which separates the fast platoon and the slow platoon—that is, the tail
of a moving queue. As the leading vehicle of the fast platoon catches up
with the tail of the slow platoon, that vehicle joins the slow platoon and
becomes its new tail. Since the slow platoons is still moving, the location of
its tail changes dynamically depending on how quick the fast platoon arrives.
Figure 8.4 shows a few snapshots to illustrate such a dynamic process.

One may have recognized that although characteristics are used to
illustrate how to find the shock path, they are actually unnecessary. With a
known point on the shock path and known shock speed, the shock path can
be determined directly without characteristics being drawn. In the above
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Figure 8.4 Shock path and queue tail.

example, one can construct the solution directly by drawing a line from the
origin with slope UAB. This line is the shock path and also the queue tail
which separates regions with conditions A and B.

8.7 PROPERTIES OF THE FLOW-DENSITY RELATIONSHIP

It can be seen from the above example that the flow-density (q-k) rela-
tionship is very illustrative to show various speeds. Figure 8.5 gives the full
picture.
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Figure 8.5 Speeds in a flow-density relationship.
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8.7.1 Flow-Density Relationship and Speeds
Traffic speed v
If operating point A, which represents a traffic condition with flow qA and
density kA, is known, the corresponding traffic speed under condition A,
by definition, is

vA = qA
kA

.

Graphically, this can be represented as the slope of the line connecting
the origin O and operating point A.

Free-flow speed vf
If kA decreases, point A will move along the curve toward the origin O.
In the limiting case where kA → 0, line OA becomes the tangent to the
curve at the origin. The slope of this tangent denotes the traffic speed when
the density is close to zero. By definition, the slope represents the free-flow
speed vf :

vf = lim
A→O

vA = lim
kA→0

qA
kA

.

Kinematic wave speed w
If one draws a line tangent to the curve at point A, as discussed above,
the slope of this tangent is the speed of a kinematic wave carrying traffic
condition A:

wA = Q′(k)|k=kA .

Shock wave speed U
If A and B represent two different traffic conditions, as discussed above,
the slope of chord AB is the speed of the shock wave should traffic with
condition A catch up with traffic with condition B.

UAB = qB − qA
kB − kA

.

8.7.2 Flow-Density Relationship Observed by a Moving
Observer
Note that the above discussion is based on the observation from the
perspective of a stationary observer—that is, everything is relative to an
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observer standing stationary at the roadside. Now what happens if the
observer is moving? For example, what if the observer is riding on the
kinematic wave carrying traffic condition A? The moving observer will
now observe less flow than he or she would have observed if he or she
were stationary. The following equation quantifies the relative flow that the
moving observer sees:

q̃A = qA − wAkA.

This is equivalent to drawing a line from the origin with wA as its slope.
Then run a vertical line through point A intersecting the drawn line at
A′′ and the horizontal axis at A′. The length of AA′ is qA, the segment of
A′A′′ is wAkA, and the segment of AA′′ is the relative flow, q̃A, observed
by the moving observer. As another example, suppose traffic is operating at
condition B which is on the congested side of the q-k curve. The kinematic
wave speed is now wB, which is negative. What happens if an observer is
moving along with wave wB? With the same treatment, one obtains

q̃B = qB − wBkB.

This is equivalent to drawing a line from the origin O with slope wB
which slants downward. Run a vertical line through point B intersecting
the drawn line at B′′ and the horizontal axis at B′. The absolute value of
relative flow (i.e., the length of BB′′) in this case is the sum of BB′ and B′B′′
because wB takes a negative value.

8.8 EXAMPLE LWRMODEL PROBLEMS

The above discussion focused on the LWRmodel and its solutions using the
method of characteristics and shock waves. It is time to apply this method
to solve some concrete traffic flow problems.

8.8.1 A Bottleneck with Varying Traffic Demand
Traffic arriving at the upstream point of a highway was initially under
condition A (see Table 8.1 and Figure 8.7). At 9:00 a.m., the arriving traffic
switches to condition B. After 1 h, the arriving traffic switches back to
condition A. The capacity at the bottleneck is 1400 vehicles per hour. Find
how far the queue extends back and how long the queue persists.
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Table 8.1 Traffic data: a bottleneck with varying traffic
demand
Condition q (vehicles/h) k (vehicles/km) v (km/h)

A 600 8.57 70
B 2000 40 50
D 1400 21.5 65
D’ 1400 130 10.8

Density, k

Fl
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wa
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Figure 8.6 Traffic flow observed by a moving observer.

Solution. With the aid of the graphical construction in Figure 8.7, the
rate at which the queue grows is:

UBD′ = qD′ − qB
kD′ − kB

= 1400 − 2000

130 − 40
= −600

90
= −6.67 km/h.

The queue tail extends back at this rate for 1 h, so the farthest point it
reaches is 6.67 km upstream of the bottleneck. The rate at which the queue
dissipates is
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Table 8.2 Traffic data: a moving bottleneck

Condition q (vehicles/h) k (vehicles/km) v (km/h)

A 700 10 70
B 1600 120 13.3
C 2200 60 36.7
O 0 0 75

UAD′ = qD′ − qA
kD′ − kA

= 1400 − 600
130 − 8.57

= 6.60 km/h.

So the time needed to dissipate the queue is 6.67
6.60 = 1.01 h, and the total

time for which the queue persists is 2.01 h.

8.8.2 AMoving Bottleneck
A freeway was initially operating under condition A (see Table 8.2). At
2:30 p.m., a sluggish truck entered the freeway traveling at a speed of
13.3 km/h. The truck turned off the freeway at the next exit 6.67 km away.
Find when the impact of the truck will disappear.

Solution. With the aid of the graphical construction in Figure 8.8, the
following can be calculated:

UOB = qB − qO
kB − kO

= 1600 − 0

120 − 0
= 13.30 km/h,

UAB = qB − qA
kB − kA

= 1600 − 700
120 − 10

= 8.18 km/h,

UCB = qB − qC
kB − kC

= 1600 − 2200

120 − 60
= −10.00km/h,

be
ae

= UOB → ae = be
UOB

= 6.67
13.3

= 0.5 h,

cd
bc

= UCB → cd = UCB × bc = 10bc,

df
af

= UAB → df = UAB × af = 8.18af ,
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{
10bc + 8.18af = 6.67,

af − bc = 0.5,

af = 0.64 h.

So the impact of the truck lasts for 0.64 h.

PROBLEMS

1. The figure below illustrates a hypothetical flow-density relationship.
Identify the following from the figure (mark them on the figure if
necessary to show your answers):
a. Free-flow speed vf
b. Jam density kj
c. Capacity condition (qm, km, vm)

d. Traffic condition at point A (qA, kA, vA)

e. Traffic condition at point B (qB, kB, vB)
f. Kinematic wave speeds (i) when the density is zero, (ii) at jam density,

(iii) at capacity, (iv) at condition A, and (v) at condition B
g. Shock wave speed when a platoon of vehicles at condition A catches

up with a platoon of vehicles at condition B
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2. Assume that traffic on a uniform freeway section follows the above flow-
density relationship. At one time, traffic is operating at condition A.
a. Find the relative flow observed by a moving observer who is traveling

with the traffic at 25 km/h (assume no interaction between the
observer and the traffic, e.g., the observer flies over the traffic).

b. Similarly, find the relative flow when the traffic condition is B and
the observer is riding on the kinematic wave carrying condition B.

3. Traffic on a 16 km uniform segment of Interstate 90 was initially
operating at condition B, as illustrated in the figure for problem 1.
Starting at 7:00 p.m. and upstream of the midpoint of the uniform
section, demand drops and traffic begins to operate at condition A.
Assume that the flow-density relationship in the figure applies.
a. Determine the traffic condition at a location 2 km downstream of

the midpoint at 7:30 p.m.
b. Determine the traffic condition at a location 2 km upstream of the

midpoint at 7:30 p.m.
c. When will the end of the queue reach the upstream end of the

uniform section?
4. Traffic on a 16 km uniform segment of Interstate 90 was initially

operating at condition A, as illustrated in the figure for problem 1.
Starting at 7:00 a.m. and upstream of the midpoint of the uniform
section, demand increases and traffic begins to operate at condition B.
Assume that the flow-density relationship in the figure applies.
a. Determine the traffic condition at a location 2 km downstream of

the midpoint at 7:30 a.m.
b. Determine the traffic condition at a location 2 km upstream of the

midpoint at 7:30 a.m.
5. An intersection with constant demand. Traffic arrives at an approach of

a signalized intersection at a constant rate of 800 vehicles per hour. All
conditions are given in the table and the flow-density relationship below.
The intersection is under pretimed signal control with a cycle length of
90 s and a split of effective green/red of 0.5/0.5. Determine the farthest
point of the queue.

6. An intelligent transportation system problem. On Wednesday at
9:00 a.m., there is an accident on northbound Interstate 91. The traffic
operation center (TOC) has to decide how to clean up the accident.
After collecting information and communicating with highway patrol
and emergency operator, the TOC determines that there are two
alternatives:
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Condition q (vehicles/h) k (vehicles/km) v (km/h)

A 800 25 32
C 1600 80 20
D 0 180 0
O 0 0 40

O

A

C

D

Density, veh/km

F
lo

w
, 
ve

h/
hr

a. Completely shut Interstate 91 for 10min, clean it up, and then
reopen Interstate 91 for normal operation.

b. Partially open Interstate 91 at reduced capacity, but the cleanup re-
quires longer—about 30min—before normal operation can resume.
One of the concerns at the TOC is how far the queue will spill back

because the queue on Interstate 91 will overflow via ramps and further
block upstream surface streets. As a transportation engineering student,
you are asked to offer your knowledge to help the TOCmake a decision.
More details are given in the table and the flow-density relationship
below. Find which alternative creates the longer queue.

Condition Description q (vehicles/h) k (vehicles/km) v (km/h)

A Arrival flow 2000 40 50
D Queued flow 0 200 0
C Capacity flow 2200 60 36.7
E Reduced capacity

flow
1100 50 22
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CHAPTER 9

Numerical Solutions

Chapter 8 presented the LWR model and the procedure for its solution. In
addition, a few concrete examples were provided to show how to apply the
procedure. These problems were solved graphically by manually working
on a time-space diagram using the method of characteristics. Though
illustrative, the graphical approach has limitations since it is capable of
dealing only with simple problems which involve only one homogeneous
highway section and simple initial conditions. In the real world, a traffic
system may consist of a network where multiple segments (links) or high-
ways are considered with traffic flowing in and out via ramps. In addition,
the initial and boundary conditions may be more complicated and time-
varying. In these cases, the graphical approach is insufficient and sometimes
infeasible. Moreover, the purpose of solving LWR problems is to predict
traffic dynamics so that traffic engineers are able to anticipate congestion
and to develop strategies to alleviate congestion. In such applications,
timing is a critical issue, and solving these problems in real time is desirable.
Moreover, the wide deployment of intelligent transportation systems makes
it possible to provide real-time traffic conditions and allow online prediction.
Therefore, a computerized solution to the LWR model is essential to cope
with more complicated real-world problems, to enable real-time prediction,
and to automate such predictions by the development of online applications.

9.1 DISCRETIZATION SCHEME

Computers are digital machines which can work only in a discrete fashion,
so computerized solutions to the LWR model have to be numerical and
discrete. The first step to develop a computerized solution is to discretize
time and space. Figure 9.1 illustrates a time-space diagram where time t is
the horizontal axis and space x is the vertical axis with a roadway drawn
at the side. The roadway is partitioned into a series of segments labeled as
j ∈ (0, 1, . . . , J). If x0 is chosen as the reference point and segment length
�x is uniform, the location of the end of segment j is

xj = x0 + j�x.

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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Figure 9.1 Discretization scheme.

Similarly, the time is divided into a series of durations i ∈ (0, 1, . . . , I)
with step size �t. If the reference point of time is t0, the end of duration i
is at time

ti = t0 + i�t.

In general, the following relationship is required in a discretization
scheme:

�x
�t

> vf ,

where vf is the free-flow speed. This requirement basically says that a vehicle
should not traverse more than one segment �x within a time step �t.

A typical numerical solution to the LWR problem starts with initial
conditions by determining the number of vehicles contained in each
roadway segment one by one from the upstream end to the downstream
end:

when i = 1

determine storage in j = 1

determine storage in j = 2

...

determine storage in j = J

end

For easy reference, the time-space region bounded within duration i and
segment j is referred to as a cell and is denoted as (i, j) and the number of
vehicles contained in segment j at the end of duration i is denoted as n(ti, xj).
The above listing can be rewritten as
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when i = 1

determine n(t_1,x_1)

determine n(t_1,x_2)

...

determine n(t_1,x_J)

end

After this, time advances one step, and the above process starts over again.

when i = 2

determine n(t_2,x_1)

determine n(t_2,x_2)

...

determine n(t_2,x_J)

end

Hence, the numerical solution consists of two loops: time ti as the outer
loop and space xj as the inner loop:

Numerical solution procedure:

for i = 1 to I

for j = 1 to J

determine n(t_i,x_j)

end

end

The process finishes when all cells have been traversed, and the solution
is given as cell storage [n(ti, xj)|i ∈ (1, 2, . . . , I), j ∈ (1, 2, . . . , J)] or,
alternatively, traffic condition k(ti, xj), q(ti, xj), and v(ti, xj).

Building on the above procedure, we discuss a few numerical solutions
to traffic dynamic problems in the following subsections.

9.2 FREFLO

FREFLO is an early (if not the earliest) computerized macroscopic traffic
simulation model, developed by Payne [21] in the late 1970s. Like the LWR
model, FREFLO consists of three equations with a discretization scheme,
shown in Figure 9.2. The first equation is the conservation law:
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Figure 9.2 Discretization in FREFLO.

storage in the current cell = storage at previous step +

vehicles arrived from upstream - vehicles departed to downstream +

vehicles entered via on-ramp - vehicles exited via off-ramp

Mathematically, this can be expressed as

n(ti, xj) = n(ti−1, xj) + �tq(ti, xj−1) − �tq(ti, xj) + �tg(ti, xj),

where g(ti, xj) is the net inflow via ramps—that is, g(ti, xj) = ron(ti, xj) −
roff (ti, xj). Note that n = k�x, and the above equation becomes

k(ti, xj)�x = k(ti−1, xj)�x+ �tq(ti, xj−1) − �tq(ti, xj) + �tg(ti, xj),

k(ti, xj) = k(ti−1, xj) + �t

�x
[q(ti, xj−1) − q(ti, xj) + g(ti, xj)].

The second equation of FREFLO is the identity in discrete form:

q(ti, xj) = k(ti, xj)v(ti, xj).

Different from most first-order models, which adopt a equilibrium
speed-density relationship, FREFLO uses a dynamic speed-density relation-
ship as the third equation:

speed in current cell = speed in previous step - convection +

relaxation + anticipation

where:

convection - vehicles tend to continue their speeds when they travel

in the upstream section,
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relaxation - vehicles tend to adopt the equilibrium velocity-

density relationship,

anticipation - vehicles tend to adjust to downstream condition,

i.e. slow down if congested.

Mathematically, this can be expressed as

v(ti, xj) = v(ti−1, xj) − �t{v(ti−1, xj)
v(ti−1, xj) − v(ti−1, xj−1)

�xi

+ 1
Tj

[v(ti−1, xj) − V (k(ti−1, xj))

+ bj
k(ti−1, xj)

k(ti−1, xj+1) − k(ti−1, xj)

�xj
]},

where Tj = cT �xj and bj = cb�xj. cT and cb are relaxation time
and anticipation coefficients, respectively. The equilibrium speed-density
relationship V (k) takes the following form:

v = V (k) = min{88.5, (172 − 3.72k+ 0.0346k2 − 0.00119k3)},
which was an empirical speed-density relationship obtained by least-squares
fitting of observed data.

With the above equations, one is able to determine the state (q, k, v) of
each cell by starting from initial conditions and following the numerical
solution procedure.

9.3 FREQ

FREQ is a computerized macroscopic traffic simulation model developed
by May [26] in the early 1980s. Its underlying algorithm is not publicly
available.

9.4 KRONOS

KRONOS is another computerized macroscopic traffic simulation model,
developed by Michalopoulos [27] in the mid-1980s. In addition to propos-
ing a numerical solution to the LWR model, Michalopoulos enriched the
solution by incorporating ramp flows and lane changes. If net ramp flow
g(t, x) is considered, the continuity equation becomes:

kt + qx = g(t, x).

The discrete form of the equation can be stated as
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Figure 9.3 Discretization in KRONOS.

Storage in the current cell =

Average of storages in upstream and downstream segments at

previous step -

Average of mainline net outflows in upstream and downstream

segments at previous step +

Average of ramp net inflows in upstream and downstream segments at

previous step

See the illustration in Figure 9.3. Mathematically, this is equivalent to

n(ti, xj) =n(ti−1, xj+1) + n(ti−1, xj−1)

2

− �tq(ti−1, xj+1) − �tq(ti−1, xj−1)

2

+ �tg(ti−1, xj+1) + �tg(ti−1, xj−1)

2
.

Note that n = �xk, and the above equation becomes

�xk(ti, xj) =�xk(ti−1, xj+1) + �xk(ti−1, xj−1)

2

− �tq(ti−1, xj+1) − �tq(ti−1, xj−1)

2

+ �tg(ti−1, xj+1) + �tg(ti−1, xj−1)

2
.
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Hence,

k(ti, xj) =k(ti−1, xj+1) + k(ti−1, xj−1)

2

− �t
�x

q(ti−1, xj+1) − q(ti−1, xj−1)

2

+ �t
�x

g(ti−1, xj+1) + g(ti−1, xj−1)

2
.

This equation is supplemented by the identity

q(ti, xj) = k(ti, xj)v(ti, xj)

and an equilibrium relationship

v(ti, xj) = V (k(ti, xj)),

the simplest form of which is the Greenshields model [9]:

v(ti, xj) = vf (1 − k(ti, xj)/kj)

The initial condition is given as at t0: k, q, u is known at all locations xj,
j = 0, 1, 2, . . . , J .

The boundary condition is given as q(ti, x0), i = 0, 1, 2 . . . , I , and
g(ti, xj), i = 0, 1, 2 . . . , I and j = 0, 1, 2 . . . , J

Starting from the initial condition and applying the boundary condition,
one can work out the numerical solution by following the numerical
solution procedure.

9.5 CELL TRANSMISSIONMODEL

The cell transmission model (CTM) was proposed by Daganzo [28, 29]
in the mid-1990s. The model was presented in two papers, with the first
addressing mainline traffic and the second addressing network traffic.

9.5.1 Minimum Principle
Figure 9.4 shows a triangular flow-density relationship. The relationship
consists of three sections: uncongested (left), with free-flow speed vf equal
to forward wave kinematic speed wf , capacity (middle) qm, and congested
(right), with backward wave speed wb and jam density K .
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Figure 9.4 Triangular flow-density relationship.

A vertical line at any density k will intersect the three sections at height
kwf , qm, and (K−k)wb. Hence, flow corresponding to this density is found
as the minimum of the three intersections:

q = min{kwf , qm, (K − k)wb}
Physically, if one considers the left section as conditions dictated by

arrival traffic, the middle section as local capacity, and the right section
as conditions dictated by downstream traffic, the above equation basically
says that traffic flowing through a point of highway should not exceed the
upstream arrival rate, local capacity, and the rate allowed by downstream
conditions.

9.5.2 Mainline Scenario
The CTM uses the same discretization scheme presented in Figure 9.1.
Everything else remains the same except for one thing: the cell now has
a uniform length as the distance traveled by a vehicle at free-flow speed
during one time step:

�x = vf �t

According to the minimum principle, traffic that can flow into segment
j, qj(ti), is constrained by the following:

qj(ti) = min{kj−1(ti−1)wf , qm, (K − kj(ti−1))wb}.
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Hence, the number of vehicles that can move into segment j, yj(ti), is
found by multiplying both sides by �t:

yj(ti) = qj(ti)�t = min{kj−1(ti−1)wf�t, qm�t, (K − kj(ti−1))wb�t}.
Note that n = k�x, �x = vf�t, and vf = wf owing to the triangular

flow-density relationship. The above equation can be transformed to the
following form:

yj(ti) = min{kj−1(ti−1)�x, qm �t,
wb
wf

(K − kj(ti−1))�x};

that is,

yj(ti) = min{nj−1(ti−1), qm�t,
wb
wf

(K�x− nj(ti−1))}.
The above equation stipulates that the number of vehicles that can move

into segment j, yj(ti), is constrained by
• the number of vehicles in j − 1 previously: nj−1(ti−1) ,
• the capacity of segment j, qm�t, and
• the empty space in j: wbwf (K�x− nj(ti−1)).

The equation can be further reduced to

yj(ti) = min{Sj−1,Rj},
where Sj−1 = min{nj−1(ti−1), qm�t} represents flow being sent from an
upstream position and Rj = min{qm�t, wbwf (K�x− nj(ti−1))} is flow ready
to be received downstream.

Therefore, the evolution of traffic on a freeway mainline can be
stated as

Storage in current cell =

Storage in the cell previously +

Vehicles flowed in -

vehicles flowed out

Mathematically, this can be expressed as

nj(ti) = nj(ti−1) + yj(ti) − yj+1(ti).
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9.5.3 Merger Scenario
To be able to address network traffic, a queuingmodel is needed for a merger
where two streams of traffic flow into one. The merger consists of two
upstream links (e.g., a mainline link (j − 1) and an on-ramp (j − 1)′) and
one downstream link j (see Figure 9.5). Assume that during interval (ti−1, ti)
links (j−1) and (j−1)′ have Sj−1 and S′

j−1 vehicles to send, respectively, and
link j can receive Rj vehicles. Considering that demand (i.e., Sj−1 + S′

j−1)
and supply (i.e., Rj) may not match in this case, link (j − 1) actually sends
yj−1 vehicles into link j and link (j− 1)′ actually sends y′j−1 vehicles, where
yj−1 ≤ Sj−1, y′j−1 ≤ S′

j−1, and yj−1 + y′j−1 ≤ Rj. In addition, mainline
and on-ramp traffic have their relative priorities pj−1 and p′j−1, respectively,
where pj−1 ≥ 0, p′j−1 ≥ 0, and pj−1+p′j−1 = 1. The merger queuing model
is essentially solving for yj−1 and y′j−1 given Sj−1, S′

j−1, Rj, pj−1, and p′j−1.
Figure 9.6 illustrates how to find the solution. The horizontal and

vertical axes are yj−1 (mainline outflow) and y′j−1 (on-ramp outflow),
respectively. A rectangle is constructed as being bounded by the two axes,
a horizontal line at y′j−1 = S′

j−1 and a vertical line at yj−1 = Sj−1.
The latter two intersect at point A. Draw a line from the origin O with

slope
p′j−1
pj−1

and the line intersects the rectangle at point C. Curve ACO
denotes the collection of solutions and reason is as follows.

Given the sending flows Sj−1 and S′
j−1 and receiving flow Rj, there are

three possibilities:
1. Supply exceeds demand: This is to say that Sj−1+S′

j−1 ≤ Rj. Physically, this
means that link j is able to receive more vehicles than the total to be sent
from both upstream links. For example, Sj−1 = 100, S′

j−1 = 80, and
Rj = 200. In this case, vehicles from both upstream links can flow into
the downstream link without any problem. Graphically, this situation
corresponds to a line (e.g., line 1) which represents the collection of

Link (j-1): Sj-1, yj-1, pj-1

Link (j-1)’: S’j-1, y’j-1, p’j-1

Link i: Rj

Figure 9.5 A freeway merge.
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Note: The figure applies
to cases where:

Figure 9.6 Queuing at a freeway merger.

points whose coordinates sum up to Rj. Such a line is always to the
right of vertex A without intersecting the rectangle which represents
the collection of all feasible solutions. Therefore, the solution is

{
yj−1 = Sj−1

y′j−1 = S′
j−1

if Rj ≥ Sj−1 + S′
j−1. (9.1)

This solution corresponds to vertex A in Figure 9.6.
2. Demand exceeds supply and one upstream link is congested:This is to say that

Sj−1+S′
j−1 > Rj. In addition, one upstream link fails to send all vehicles

that it has. For example, Sj−1 = 100, S′
j−1 = 80, and Rj = 160. The

priority rules stipulate a split of
pj−1

p′j−1
= 3

1 , meaning that, among the 160

spaces downstream, the mainline can send 160 × 3
4 = 120 vehicles and

the on-ramp can send 160 × 1
4 = 40 vehicles. Since the mainline has

only100 vehicles to send, these vehicles are able to enter link j without
delay, leaving 160 − 100 = 60 spaces in link j for traffic from the on-
ramp. The on-ramp has 80 vehicles to send, 60 of which are admitted
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by link j and the remaining 20 are delayed. Summing up, the solution
to this example is

yj−1 = Sj−1 = 100, y′j−1 = Rj − Sj−1 = 160 − 100 = 60.

Graphically, this situation corresponds to a line (e.g., line 2) which is
parallel to line 1 and intersects the rectangle between points A and C.
Line 2 consists of all points whose coordinates sum up to Rj. This line
intersects line y′j−1 = S′

j−1 at point B1, line yj−1 = Sj−1 at point B, and

the priority line y′j−1 = p′j−1
pj−1

yj−1 at point B2. The three intersections are
three feasible solutions. With sue of the above example as an illustration,
these solutions can be interpreted as follows:

Point B1
Suggests that S′

j−1 = 80 vehicles from the on-ramp can depart without
delay and the remaining 160 − 80 = 80 spaces in link j can be used to
admit 80 of the 100 vehicles from link j − 1. This violates the priority
rule.

Point B
Suggests that Sj−1 = 100 vehicles from link j − 1 can depart without
delay and the remaining 160 − 100 = 60 spaces in link j can be used
to admit 60 of the 80 vehicles from the on-ramp. This is the correct
solution.

Point B2
Suggests that link j will admit 160× 3

4 = 120 vehicles from link j−1 and
the remaining 160 − 120 = 40 remaining spaces in link j can be used
to admit 40 of the 80 vehicles from the on-ramp. Since more vehicles
cannot depart from link j−1 than link j−1 has, this solution is incorrect.

From the outcome of the example, it is clear that the true solution
is point B, which is the middle of the three points. Mathematically, this
can be expressed as follows:{

yj−1 = mid{Sj−1,Rj − S′
j−1, pj−1Rj}

y′j−1 = mid{S′
j−1,Rj − Sj−1, p′j−1Rj}

if Rj < Sj−1 + S′
j−1, (9.2)

where the mid operator takes the middle value of all the members.
Line segment AC contains all solutions of this nature.
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3. Demand exceeds supply and both upstream links are congested: This is to say
that Sj−1 + S′

j−1 > Rj. In addition, both upstream links fail to send all
vehicles that they have. We use the above example except that Rj = 120.
The priority rules stipulate that link j − 1 can send as a maximum
120× 3

4 = 90 vehicles to link j and the on-ramp can send 120× 1
4 = 30

vehicles. Since both upstream links have more vehicles than they are
able to send, the priority rule takes control—that is, link j − 1 will
actually send 90 vehicles, with the remaining 100 − 90 = 10 vehicles
delayed, and the on-ramp will send 30 vehicles, leaving 50 vehicles
delayed.

Graphically, this situation corresponds to a line (e.g., line 3) which is
parallel to line 1 and intersects the priority line between points C and
O. Again, line 3 consists of all points whose coordinates sum up to Rj.
From the above example, line 3 intersects line y′j−1 = S′

j−1 at point D1,

the priority line y′j−1 = p′j−1
pj−1

yj−1 at point D, and line yj−1 = Sj−1 at
point D2. The three intersections are three feasible solutions, and their
physical meaning is as follows:

Point D1

Suggests that S′
j−1 = 80 vehicles from the on-ramp can depart without

delay and the remaining 120 − 80 = 40 spaces in link j can be used to
admit 40 of 100 vehicles from link j− 1. This violates the priority rule.

Point D
Follows the priority rule by allowing 90 of the 100 vehicles from link
j − 1 to enter link j and using the remaining 120 − 90 = 30 spaces
to admit 30 of the 80 vehicles from the on-ramp. This is the correct
solution.

Point D2

Suggests that link j − 1 can actually send Sj−1 = 100 vehicles to link j
and the remaining 120 − 100 = 20 spaces are used to admit 20 of the
80 vehicles from the on-ramp. This, again, violates the priority rule.

Therefore, the true solution is, again, the middle of the three points,
and the mathematical notation is the same as above. In addition, line
segment CO contains all solutions of this nature.
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In summary, the merger model is as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
yj−1 = Sj−1

y′j−1 = S′
j−1

if Rj ≥ Sj−1 + S′
j−1,{

yj−1 = mid{Sj−1,Rj − S′
j−1, pj−1Rj}

y′j−1 = mid{S′
j−1,Rj − Sj−1, p′j−1Rj}

if Rj < Sj−1 + S′
j−1,

(9.3)

9.5.4 Divergence Scenario
A queuing model is also needed for a divergence where one stream of traffic
splits into two. The divergence consists of one upstream link j− 1 and two
downstream links (e.g., a mainline link j and an off-ramp j′) (see Figure 9.7).
Assume that during interval (ti−1, ti) link j−1 has Sj−1 vehicles to send, link
j is able to receive Rj vehicles, and the off-ramp j′ can receive R′

j vehicles.
In addition, the turning movements are predetermined: β (e.g., 80%) traffic
from link j − 1 goes to link j and β ′ (e.g., 20%) link j′, where 0 ≤ β ≤ 1,
0 ≤ β ′ ≤ 1, and β + β ′ = 1. Further assume that vehicles depart following
a first in-first out queuing discipline, and if a vehicles fails to depart, it
holds up all vehicles behind it. The question here is to determine the actual
outflow of link j − 1, yj−1, among which how many vehicles are destined
for link j, yj and how are many are destined for the off-ramp, y′j.

With these assumptions, the divergence queuing model is quite simple.
First, the following relationships must hold:

⎧⎪⎨
⎪⎩
yj−1 = yj + y′j ≤ Sj−1,

yj = βyj−1 ≤ Rj,

y′j = β ′yj−1 ≤ R′
j .

(9.4)

Link (j-1): Sj-1, yj-1 Link j: Rj, yj, bj

Link j’: R’j, y’j-1, b’j

Figure 9.7 A freeway divergence.
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Hence,

yj−1 = min{Sj−1,
Rj
β
,
R′
j

β ′ }.

Consequently, one obtains yj = βyj−1 and y′j = β ′yj−1.

PROBLEMS

1. A small roadway system is illustrated in the figure below. The system
consists of three links, each of which is 200m long. In addition, there is
an on-ramp at link 2 and an off-ramp at link 3. Currently, the storage
in each link is indicated above the link. In the next time step (step
size of 5 s), vehicles moving on are indicated at the borders, with
arrows indicating where they go. Use the FLEFLO model to answer
the following questions involved in a one-step simulation:

Link 1 Link 2

Direction of traffic

1

6 2 4 2 5

2

Link 3

a. What is the storage in link 2 at the end of the next step?
b. What is the density in link 2 at the end of the next step?
c. What is the equilibrium speed corresponding to this density?

2. Assume that the above road system and conditions remain the same. Use
the KRONOS model to answer the following questions involved in a
one-step simulation:
a. What is the storage in link 2 at the end of the next step?
b. What is the density in link 2 at the end of the next step?
c. What is the equilibrium speed corresponding to this density if there is

a Greenshields speed-density relationship with free-flow speed vf =
96 km/h and jam density kj = 120 vehicles per kilometer?

d. On the basis of your answer to (c), what is the corresponding
equilibrium flow?

3. Assume that the road system and conditions are given in the figure
below. The system consists of three links, each of which is 150m long.
Currently, the storage in each link is indicated above the link. In the
next time step (step size of 5 s), two vehicles will move from link 2 to
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link 3. Moreover, the triangular flow-density relationship illustrated in
the figure below applies to each mainline link. Use the CTM to answer
the following questions involved in a one-step simulation:

Link 1

4 4 2 5

Direction of traffic

Link 2

Density, vpk

F
lo

w
, 
vp

k

wf = 108 kph

q w
 =

21
60

wb = 20 kph

K = 138

Link 3

a. What is the storage in link 2 at the end of the next step?
b. What is the density in link 2 at the end of the next step?
c. What is the equilibrium speed corresponding to this density?
d. On the basis of your answer to (c), what is the equilibrium flow?

4. Now more details of the road system become known. In addition to
the conditions given above, the system includes a fourth link (link 4),
an on-ramp at the upstream end of link 3, and an off-ramp at the
downstream end of link 3. The on-ramp has two vehicles waiting to
enter the mainline. Assume that the priority of the mainline versus the
on-ramp is 2:1. At the off-ramp, 25% of vehicles in link 3 plan to exit.

Link 1 Link 2

Direction of traffic

4 4

2

52

Link 3 Link 4
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a. How many on-ramp vehicles may enter link 3 if it is able to receive
five vehicles in the next step?

b. How would your answer change if link 3 is able to receive three
vehicles in the next step?

c. If link 3 has room to accept only two vehicles, how many vehicles
can actually enter link 3 from the mainline and the on-ramp?

d. If the condition in (b) is true, how many vehicles want to enter link
4 in the next step?



CHAPTER 10

Simplified Theory
of Kinematic Waves

The previous chapters have focused on analyzing the dynamic change of
traffic states over time and space using the theory of waves. In particular,
the method of characteristics applied to the LWR problem resulted in the
identification of shock waves as a means to solve the continuity equation
(i.e., the conservation law). In addition, numerical methods were discussed
to approximate the solution.

Alternatively, Derivation V in Chapter 5 seems to suggest that the
conservation law is self-guaranteed if a three-dimensional representation of
traffic flow is used—that is,

qx + kt = ∂N2(t, x)

∂x∂t
− ∂N2(t, x)

∂x∂t
= 0.

The significance of the above equation is that there is no need to solve
partial differential equations and find shock waves in order to analyze traffic
dynamics. Instead, one only needs to count cars over time and space. As
such, traffic dynamics is contained in these cumulative counts and can be
extracted as the need arises.

This idea has been explored by Gorden F. Newell, who creatively
integrated D/D/1 queuing theory into this idea to allow prediction from
boundary and initial conditions. The result is known as the simplified
theory of kinematic waves, published in a trio of papers [30–32] in the
early 1990s. The first paper addresses the general theory, the second paper
focuses on queuing at a freeway bottleneck, and the third paper deals with
multidestination flows. Below I present the main points of the first and
second papers interpreted from my own perspective. Interested readers are
encouraged to use this chapter as a key to unlock the original papers for an
enriched learning experience.

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
http://dx.doi.org/10.1016/B978-0-12-804134-5.00010-6 All rights reserved. 155
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Figure 10.1 Triangular flow-density relationship.

10.1 TRIANGULAR FLOW-DENSITY RELATIONSHIP

The kinematic waves model was proposed as a (graphical) solution to
the LWR model under a special condition: the underlying flow-density
relationship is a triangular one with jam density K and capacity Q (see
Figure 10.1).

From Figure 8.5, a point on the flow-density curve uniquely defines
the operating condition of a stream of traffic. The speed of a kinematic
wave carried by the traffic, w, is the tangent to the curve at this point.
If the underlying flow-density relationship is triangular, finding kinematic
wave speeds is greatly simplified. Actually, there are only two kinematic
wave speeds: a forward wave speed wf for all uncongested conditions (the
left branch of the triangle) and a backward wave speed wb for all congested
conditions (the right branch). In addition, wf happens to be the same as
the free-flow speed vf . As a special property of the triangular flow-density
relationship, vf applies to all uncongested conditions.

10.2 FORWARDWAVE PROPAGATION

Unlike conventional numerical models such as FREFLO, KRONOS, and
the cell transmission model which keep track of cell storages n(ti, xj) or
equivalently cell densities k(ti, xj), simplified kinematic waves model just
counts vehicles at some predetermined locations. The outcome of the
model is a set of cumulative flows representing the number of vehicles
counted at these locations over time, N(t, xj), j ∈ (1, 2, . . . , J). These
cumulative flows contain all the information that is needed to determine
traffic dynamics over time and space.
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N(t, xj) = N(t – (xj –  xj–1) / wf, xj–1)

Traffic
xj–1 xj+1xj

wf

N(t, xj–1) N(t, xj)

T=(xj– xj–1)/wf

Figure 10.2 Forward wave propagation.

Suppose the cumulative flow recorded at location xj−1 over time t is
N(t, xj−1) and there is no congestion between xj−1 and xj+1. The trafficwill
be dictated by (uncongested) upstream arrival from xj−1, and these vehicles

will arrive at downstream location xj after a duration of T = xj−xj−1
vf

if the
vehicles preserve their order (i.e., first in, first-out). The traffic also carries
a kinematic wave whose speed wf happens to be vf , as noted above, so it
is equivalent to saying that the kinematic wave will propagate forward and
arrive at xj after T = xj−xj−1

wf
. Graphically, this forward wave propagation

can be constructed as in Figure 10.2, where the profile N(t, xj) is simply a
horizontal translation of profile N(t, xj−1) to the right by T :

N(t, xj) = N(t − T , xj−1) = N
(
t − xj − xj−1

wf
, xj−1

)
.

10.3 BACKWARDWAVE PROPAGATION

Suppose the cumulative flow recorded at location xj+1 over time t is
N(t, xj+1) and there is congestion between xj−1 and xj+1 (see Figure 10.3).
Then the kinematic wave carried by the traffic will propagate backward at
speed wb. Hence, the traffic condition at location xj (xj−1 < xj < xj+1)
will be dictated by downstream congestion. Consequently, cumulative flow
at xj, N(t, xj), will be a horizontal translation of N(t, xj+1) to the right by

T = xj+1−xj
wb

shifted upward by a jam storage n = Kj(xj+1 − xj):

N(t, xj) = N(t − T , xj+1) + n = N(t− xj+1 − xj
wb

, xj+1) + Kj(xj+1 − xj).
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Figure 10.3 Backward wave propagation.

10.4 LOCAL CAPACITY

Suppose the cumulative flow to pass location xj is N(t, xj) and the local
capacity isQj. Since vehicles cannot be discharged beyond the capacity, this
is equivalent to saying that the tangent to the profile N(t, xj) at any point
should not exceed Qj. Hence, the cumulative flow constrained by local
capacity Qj, NQ(t, xj) is constructed as follows. Draw a line with slope Qj
from the right toward the profileN(t, xj) till the line is tangent to the profile.
Any portion of the profile above the line is replaced by the latter. Continue
the above process until no portion of the profile has a tangent greater than
Qj (see Figure 10.4).

xj–1 xi+1xi

Time, t

Traffic

Local capacity, Qj

NQ(t,xj)

NQ(t,xj)
N(t,xj)

Qj

C
um
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at

iv
e 

fl
ow

, N

Figure 10.4 Flow constrained by local capacity.
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Figure 10.5 The minimum principle.

10.5 MINIMUM PRINCIPLE

Intuitively, the minimum principle means that any point on a roadway
xj cannot admit more vehicles than arrive from an upstream location
Nup(t, xj), which is allowed by local capacity NQ(t, xj), and which the
downstream location is able to receive Ndn(t, xj). Graphically, this involves
superimposing the above three curves on a single graph, and the cumulative
flow that actually passes xj, N(t, xj) is the lower envelope of the three (see
Figure 10.5):

N(t, xj) = min{Nup(t, xj),N
Q(t, xj),N

dn(t, xj)}.

10.6 SINGLE BOTTLENECK

In Figure 10.5, if there is an on-ramp at xj, the location slightly downstream
(to the right of xj), x

+
j , may be a bottleneck since both traffic streams

from the upstream mainline and the on-ramp meet here. To keep track
of arrival and departure flows, cumulative flow N(t, x) will be replaced by
two notations:
• cumulative arrival flow A(t, x), which denotes cumulative flow having

arrived at location x by time t waiting to pass x, and
• cumulative departure flow D(t, x), which denotes cumulative flow

having departed location x by time t.
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Note that their difference D(t, x)−A(t, x) gives the length of the queue
at time t.

Central to the single bottleneck idea is to determine its cumulative arrival
and departure flows, A(t, xj) and D(t, xj), given by
• upstream departure at earlier times D(t, xj−1);
• downstream departure at earlier times D(t, xj+1);
• on-ramp cumulative inflow Aj(t);

From wave forward propagation (Figure 10.2), the cumulative flow ar-
riving at location slightly upstream of the bottleneck (to the left of xj), x

−
j is

A(t, x−
j ) = A(t − xj − xj−1

wf
, xj−1).

Given on-ramp traffic Aj(t), the cumulative flow arriving to the right
of xj is

Nup(t, x+
j ) = A(t, x+

j ) = A(t, x−
j ) + Aj(t).

From wave backward propagation (Figure 10.3), the cumulative flow
allowed to depart is

Ndn(t, x+
j ) = N(t − xj+1 − xj

wb
, x−
j+1) + Kj(xj+1 − xj).

Considering local capacity (Figure 10.4), the cumulative flow departing
x+
j should not exceed NQ(t, x+

j ).
Therefore, on the basis of the minimum principle (Figure 10.5), the

cumulative flow that actually departed at x+
j is

D(t, x+
j ) = min{Nup(t, x+

j ),NQ(t, x+
j ),Ndn(t, x+

j )}.
If on-ramp traffic, Aj(t), has priority over mainline traffic and can always

bypass any queue at the bottleneck (this assumption is a limitation of the
theory of kinematic waves since it eliminates queuing on ramps), then the
cumulative departure flow to the left of xj can be determined as

D(t, x−
j ) = D(t, x+

j ) − Aj(t).

The above procedure is illustrated in Figure 10.6.

10.7 COMPUTATIONAL ALGORITHM

With the above knowledge, traffic flow on a freeway involving multiple
segments and bottlenecks can be numerically modeled as follows. First,
the time and space are partitioned using the discretization scheme in
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Chapter 9, resulting the lattice shown in Figure 10.7. Next, starting from the
initial conditions, one applies the numerical solution procedure outlined in
Chapter 9. At each lattice point (ti, xj), the cumulative arrival and departure
flows are determined as follows:
1. Determine upstream arrival to x−

j :

A(ti, x
−
j ) = D(ti − xj − xj−1

wf
, x+
j−1).

2. Determine upstream arrival to x+
j :

Nup(ti, x
+
j ) = A(ti, x

+
j ) = A(ti, x

−
j ) + Aj(ti).

3. Apply capacity constraint at x+
j :

NQ(ti, x
+
j ) = D(ti−1, x

+
j ) +Q+

j × �t,

where Q+
j is the capacity at x+

j and �t is ti − ti−1.

4. Determine departure allowed by x−
j+1:

Ndn(ti, x
+
j ) = N(ti − xj+1 − xj

wb
, x−
j+1) + Kj(xj+1 − xj).

5. Determine actual departure at x+
j :

D(ti, x
+
j ) = min{Nup(ti, x

+
j ),NQ(ti, x

+
j ),Ndn(ti, x

+
j )}.
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Figure 10.7 Lattice of kinematic waves.

6. Determine actual departure at x−
j :

D(ti, x
−
j ) = D(ti, x

+
j ) − Aj(ti)

7. Proceed to the next lattice point (ti, xj+1).
Repeat the above steps at lattice point (ti, xj+1) till the end (ti, xJ ).

Then advance time to ti+1 and start over again from (ti+1, x1) to (ti+1, xJ ).
Repeat the above steps till all the lattice points have been traversed.

The result of this computational algorithm is a set of cumulative
arrival and departure flows:

A(t1, x
−
1 ),D(t1, x

−
1 ),A(t1, x

+
1 ),D(t1, x

+
1 )

. . .

A(t1, x
−
J ),D(t1, x

−
J ),A(t1, x

+
J ),D(t1, x

+
J )

A(t2, x
−
1 ),D(t2, x

−
1 ),A(t2, x

+
1 ),D(t2, x

+
1 )

. . .

A(tI , x
−
J ),D(tI , x

−
J ),A(tI , x

+
J ),D(tI , x

+
J ).
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10.8 FURTHER NOTE ON THE THEORY OF KINEMATICWAVES

The above discussion summarizes the first two papers of Newell’s simplified
theory of kinematic waves [30, 31] involving bottlenecks with on-ramps
only. The third paper [32] takes off-ramps into consideration, and hence
multiple destination flows. Discussion of this subject is quite involved, and
readers are encouraged to read the original paper for full information. In
addition, supplementary information on the simplified theory of kinematic
waves can be found in Son [33] and Hurdle and Son [34] for model
validation and extraction of information of traffic dynamics and in Ni [35]
and Ni et al. [36] for extension of the theory and associated computational
algorithms.

Though Newell’s theory involves partitioning a highway into a series
of segments, the lengths of these segments do not necessarily have to be
equal and small. Such a partitioning is necessary only at locations where
capacity changes (e.g., lane drop), there is an on-ramp, and there is an off-
ramp. Therefore, the resulting number of segments can be much less than in
cell-based models such as FREFLOW, KRONOS, and the cell transmission
model, whose accuracy relies on cell size (length of segment). Consequently,
the computation and storage requirements can be significantly reduced.

In addition to the assumption of a triangular flow-density relationship,
another limitation of the theory of kinematic waves is its assumption that
on-ramp traffic has priority over mainline traffic and can always bypass
any queue at a bottleneck. Consequently, the theory of kinematic waves is
unable to model network trafficwhere queuing at ramps has to be accounted
for. A further attempt to address this issue can be found in Ni [35] and
Ni et al. [36], where on-ramp and off-ramp queuing models were proposed,
on the basis of which the theory of kinematic waves was extended to
network flows.

PROBLEMS

1. A 1.8-km link AB connects nodes A and B. The free-flow speed is
30m/s and a triangular flow-density relationship is assumed for this link.
How long does it take for traffic passing node A to arrive at node B if
there is no congestion in this link?

2. Link AB above is followed by link BC of length 1 km. The same flow-
density relationship applies to link BC with backward wave propagation
speed −5m/s. If an accident occurred at node C at 5:00 p.m., when will
drivers at node B notice the impact of the accident?
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3. A uniform freeway link x1x3 is 6 km long as illustrated in the figure
below. The triangular flow-density relationship given below applies to
this link. Node x2 is the midpoint of this link. A segment of data is given
below where D1, D2, and D3 are cumulative traffic counts at x1, x2, and
x3, respectively. On the basis of the simplified theory of kinematic waves,
complete a one-step simulation by answering the following questions:

Time D1 D2 D3
8:50 1965 1950 1551
8:51 1970 1957 1555
8:52 1978 1961 1560
8:53 1982 1968 1566
8:54 1987 1973 1571
8:55 1991 1980 1578
8:56 1996 1984 1583
8:57 2000 1990 1589
8:58 2008 1996 1594
8:59 2012 2000 1600
9:00 2018 2005 1605
9:01 2024 1610

Density, vpk

x1 x2 x3

Direction of traffic

wf  = 90 kph 

q w
  =

 2
16

0
F

lo
w

, 
vp

h

wb  = –20 kph 

K = 150

a. How many vehicles are expected to arrive x2 from 9:00 to 9:01?
b. Dictated by capacity only, what is the cumulative number of vehicles

that are allowed to pass x2 by 9:01?
c. What is the jam storage in x2x3—that is, the number of vehicles that

can be stored in x2x3 at jam density?



Simplified Theory of Kinematic Waves 165

d. On the basis of the condition in x2x3 only, how many vehicles are
allowed to enter x2x3 by 9:01 at most?

e. What is the cumulative number of vehicles that actually pass x2 by
9:01?

4. A freeway corridor consists of three links whose physical properties are
tabulated below. Also provided in the figure below is the underlying
flow-density relationship of the freeway corridor. Assume the freeway
corridor was initially empty and subsequent traffic arrival from the
upstream end is as given in the second table below. Use the simplified
theory of kinematic waves to simulate traffic evolution on this freeway
corridor. You may use an Excel spreadsheet or a computer program such
as MATLAB if necessary.

Link 1 Link 2 Link 3
Lanes 2 2 1
Free-flow speed 60 60 60
Capacity 4800 4800 2400
Jam 400 400 200

Time Flow (vehicles/h)
0:00:00 0
1:00:00 120
2:00:00 240
3:00:00 480
4:00:00 600
5:00:00 1200
6:00:00 1500
7:00:00 1800
8:00:00 3000
9:00:00 3600
10:00:00 1800
11:00:00 1200
12:00:00 1500
13:00:00 900
14:00:00 1200
15:00:00 1500
16:00:00 2400
17:00:00 3600
18:00:00 2100
19:00:00 1500
20:00:00 1200
21:00:00 600
22:00:00 240
23:00:00 0
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Link 1 Link 2 Link 3

X1 X2

5 miles

Flow
vphpl
2400

0 40 200 Density
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CHAPTER 11

High-Order Models

The macroscopic traffic flow models discussed so far, including both
analytical and numerical models, have been focused on the LWR model
[24, 25] and its variants. At the center of these models is mass or vehicle
conservation, which can be mathematically expressed as a first-order partial
differential equation:

∂k(x, t)
∂t

+ ∂q(x, t)
∂x

= 0,

where k and q are density and flow, which depend on time t and space x.
Hence, these models are referred to as first-order models.

Common to first-order models is their prediction of a shock wave when
two kinematic waves meet. Consequently, a vehicle crossing the shock
wave has to change its speed abruptly, which is physically impossible. This
limitation, together with other undesirable features, has led many researchers
to seek more realistic models to represent traffic dynamics. Naturally, these
efforts gave rise to high-order dynamic traffic flow models.

11.1 HIGH-ORDER MODELS

In essence, the conservation law takes several forms, among which mass
or vehicle conservation is perhaps the simplest. Other forms of the law
are conservation of linear momentum and conservation of energy, which
involve high-order partial differential equations. If a model involves such
equations, it is classified as a high-order model, a few examples of which
are described below.

11.1.1 PWModel (1971)
Proposed by Payne [37] and independently by Whitham [38], the PW
model consists of a system of two equations: the first is the conservation
of mass given in the LWR model, and the second equation is derived from
the Navier-Stokes equation of motion for a one-dimensional compressible
flow with a pressure and a relaxation term.

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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⎧⎪⎨
⎪⎩

∂k
∂t

+ ∂q
∂x

= 0,

∂v
∂t

= −v ∂v
∂x

− λ(v − Vd(k)) − 1
k
dP
dk

∂k
∂x

,

where v is traffic speed, Ve(k) is the equilibrium speed-density relationship,
P(k) is traffic pressure, and λ is a coefficient. Note that FREFLO presented
in Chapter 9 is a numerical solution to the PW model.

11.1.2 Phillips’s Model (1979)
On the basis of kinetic theory, Phillips [39] developed a model which
incorporates mass conservation, momentum conservation, and energy con-
servation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂k
∂t

+ ∂q
∂x

= 0,

∂v
∂t

+ v
∂v
∂x

= λ(Ve(k) − v) − 1
k

∂P
∂x

,

∂P

∂t
+ u

∂P

∂x
= λ[k(Ve(k) − v)2 + (Pe − P)] − 3P

∂v

∂x
,

where Pe is the equilibrium traffic pressure, and everything else is as defined
above.

11.1.3 Kühne’s Model (1984)
Kühne [40, 41] also proposed a model by considering sound speed and
viscosity: ⎧⎪⎪⎨

⎪⎪⎩

∂k

∂t
+ ∂q

∂x
= 0,

∂v

∂t
+ u

∂v

∂x
= λ(Ve(k) − v) − c20

k

∂k

∂x
+ η

∂2v

∂x2
,

where c0 is sound speed and η is a viscosity constant.

11.1.4 Kerner and Konhäuser’s Model (1993)
Kerner and Konhäuser [42] showed that given an initially homogeneous
traffic flow, regions of high density and low average speed (clusters of cars)
can spontaneously appear. These high-density regions can move either with
or against the flow of traffic, and two clusters with different speeds, widths,
and amplitudes merge when they meet, resulting in a single cluster. The
continuum flow model adopted is in the following form:
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⎧⎪⎨
⎪⎩

∂k
∂t

+ ∂q
∂x

= 0,

∂v
∂t

= λ(Ve(k) − v) − c20
k

∂k
∂x

+ 1
k

η∂v
∂x

∂x
.

11.1.5 Model of Michalopoulos et al. (1993)
Michalopoulos et al. [43] proposed a model which does not require the use
of an equilibrium speed-density relationship. Traffic friction at interrupted
flows and changing geometries is also addressed through the use of a
viscosity term. Tests with field data and comparison with existing models
suggested that the proposed model is more accurate and computationally
more efficient than existing models.

⎧⎪⎨
⎪⎩

∂k
∂t

+ ∂q
∂x

= 0,

∂v
∂t

+ v
∂v
∂x

= 1
τ
(vf − v) −G

∂v
∂t

− νkβ
∂k
∂x

,

where G = μkεg, μ, ν, ε, and β are all constant parameters, and vf is the
free-flow speed.

11.1.6 Zhang’s Model (1998)
Zhang [44] proposed a nonequilibrium traffic flow model which is based
on both empirical evidence of traffic flow behavior and basic assumptions
about drivers’ reactions to stimuli. By assuming an equilibrium speed-
density relationship and introducing a disturbance propagation speed, the
model includes the LWR model as a special case and removes some of
its deficiencies. Unlike existing high-order continuum models, this model
eliminates “wrong-way travel” because in this model traffic disturbances are
always propagated against the traffic stream.

⎧⎪⎨
⎪⎩

∂k

∂t
+ ∂q

∂x
= 0,

∂v
∂t

+ v
∂v
∂x

= λ(Ve(k) − v) − k(V ′
e(k))

2 ∂k
∂x

.

11.1.7 Model of Treiber et al. (1999)
Treiber et al. [45] derived macroscopic traffic equations from specific gas-
kinetic equations, and the resulting partial differential equations for vehicle
density and average speed contain a nonlocal interaction term which is very
favorable for a fast and robust numerical integration, so several thousand
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freeway kilometers can be simulated in real time.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂k
∂t

+ ∂q
∂x

= 0,

∂v
∂t

+ v
∂v
∂x

= λ(Ve(k) − v) + 1
k

∂kAv2

∂x
− VeA(k)

τA(kj)

⎡
⎣ kαTv

1 − kα
kj

⎤
⎦
2

B(δv),

where A = A(k) is a density-dependent function, kα is the density at point
xα ahead of x, B(δv) is a macroscopic interaction term, and Ve(k) is the
normal equilibrium speed-density relationship.

11.2 RELATING CONTINUUM FLOWMODELS

Starting from mass or vehicle conservation, a variety of continuum flow
models have been developed by the inclusion of additional assumptions.
Generally, these models can be summarized by the following model [46]:

⎧⎪⎨
⎪⎩

∂k
∂t

+ ∂q
∂x

= g(t, x),

∂v

∂t
+ v

∂v

∂x
= 1

τ
(Ve(k) − v) + 1

k

∂P

∂x
,

where Ve(k, v) is the generalized equilibrium speed-density relationship.
P(k, v) is the traffic pressure, and τ is the relaxation time, which is the
time constant of regulating the traffic speed v to the equilibrium speed Ve.
g(t, x) is the net ramp inflow. For a highway without on-ramps or off-ramps,
g(t, x) = 0.

Each of the above-mentioned continuum flowmodels can be viewed as a
special case of the general model when different traffic pressure P, relaxation
time τ , and generalized equilibrium speed Ue are applied. For example,
• the LWR model results if τ = 0 and P = 0;
• the PW model results if P = −Ve(k)

2τ with Ve(k, v) = Ve(k);
• Phillips’s model results if P = k� with � = �0(1− k

kj
), where kj is the

jam density;
• Kerner and Konhäuser’s model results if P = k�0 − η ∂v

∂x ;
• the model of Michalopoulos et al results if P = ν

β+2k
β+2, where ν is an

anticipation parameter, β is a dimensionless constant, and Ve(k) = vf ,
where vf is the free-flow speed;

• Zhang’s model resulted if P = 1
3k

3V ′2
e (k), where V ′

e(k) = dVe(k)
dk ;
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• the model of Treiber et al. results if P = Akv2, where A =
A(k) is a density-dependent function, and Ve(k, v) = Ve(k){1 −
A

A(kj)
[ kαTv
1− kα

kj

]2B(δv)}.

11.3 RELATIVEMERITS OF CONTINUUMMODELS

Daganzo [47] noted that, as a first-order continuum flow model, the LWR
model is proposed for dense traffic with an equilibrium and it is flawed
for light traffic. This is because, when passing is allowed, the LWR model
fails to recognize that the preferred speed for each vehicle varies over time
and the desired speeds among a group of vehicles vary as well. These
variations can cause a platoon to disperse in a way that is not predicted
by the LWR model. When passing is allowed, the LWR model produces
unsatisfactory results in the following three aspects. First, the LWR model
predicts an abrupt speed change when a vehicle passes through a shock wave,
an action that is unrealistic in the real world. Second, the LWR model fails
to predict instabilities of stop-start traffic. Third, the LWR model assumes
zero reaction time, which does not happen in the real world. Readers are
referred to Daganzo’s original paper for full information.

Given these deficiencies, the continuum flow models developed so far
have been trying to fix the deficiencies, and almost all of these models
follow the direction of incorporating a momentum conservation equation.
An early attempt to fix the deficiencies in the LWR model was made
by Prigogine [48], who proposed a kinetic model incorporating a speed
distribution to address platoon dispersion. A decade later, Payne [37] and
Whitham [38] proposed a dynamic model, the so-called PM model, trying
to smooth out the discontinuity in speed change across shock waves. A
momentum equation was introduced in this model to describe the structure
of a shock wave. This seminal work has inspired many thoughts regarding
analytical explanation of shock wave behavior, and thus has spawned
several variants, among which are those of Phillips [39], Kühne [40, 41],
Kerner and Konhäuser [42], Michalopoulos et al. [43], Zhang [44], and
Treiber et al. [45].

Several deficiencies are found in the PW model [47]. First, it does
not remove all the shock waves. Second, as reported by del Castillo et al.
[49], vehicles in the PW model can adjust their speeds in response to
disturbance from behind, while in reality vehicles typically respond to
their leaders. Third, the PW model incorporates a momentum equation
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which is derived from a car-following model. This momentum equation
does not consider second-order and higher-order terms of spacings and
speeds, which may not be negligible when spacings and speeds are not
slowly varying. Fourth, the PM model as well as other high-order models
always produces wave speeds that are greater than traffic speeds. This is an
unattractive property of macroscopic models because it implies that future
conditions of a vehicle are partially decided by what happens behind it.
Fifth, the strength that high-order models smooth out shocks turns out
to be these models’ weakness. This is because any model that attempts to
smooth all the discontinuities must sometimes predict negative speeds and
such negative speeds observed in computer models cannot be removed by
convergent numerical approximation methods. Sixth, but probably not the
last, high-order models involve more complex partial differential equations
and more variables, which increases computational complexity, and are
more difficult to calibrate and implement. Given these limitations, many
researchers [47, 50, 51] tend to believe that high-order models, despite their
added complexity and additional parameters, might not be superior to the
LWR model.

11.4 TAXONOMYOFMACROSCOPICMODELS

Figure 11.1 shows a rather simple and incomplete taxonomy which relates
macroscopic traffic flow models to each other. The figure starts with
the basic principle, conservation laws, which takes the forms of mass
conservation, momentum conservation, and energy conservation.

Mass conservation and a functional flow-density relationship (typically
derived from an equilibrium speed-density relation) constitute the core of
the LWR model. This model is classified as a first-order model since it
involves a first-order partial differential equation. Numerical models derived
from LWRmodels are indicated as double-line boxes in the left panel. These
models include KRONOS, the kinematic waves model (though this is a
graphical solution involving discrete space but continuous time), and the
cell transmission model. The kinematics waves model was further extended
to network traffic by Ni [35] and Ni et al. [36].

Central to high-order models are equations of mass and momen-
tum conservation. These models include the models of Payne [37] and
Whitham [38], Phillips [39], Kühne [40, 41], Kerner and Konhäuser[42],
Michalopoulos [43], Zhang [44], Treiber et al. [45], etc. FREFLO is a
numerical model derived from the model of Payne [37] and Whitham [38].
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Figure 11.1 Taxonomy of macroscopic models. CTM, cell transmission model; K-waves,
kinematic waves.
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PROBLEMS

1. Name a few similarities and differences between first-order and high-
order models.

2. What are the major reasons that motivated the exploration of high-order
models?

3. Highlight a few drawbacks of high-order models.
4. Compare the equation of momentum conservation in the PW model

and Phillips’s model.
a. Comment on how they differ.
b. Which one is more general?
c. Can one of them be derived from the other?

5. The high-order models introduced in this book include an equation
representing the conservation of vehicles. This equation implicitly
assumes a uniform freeway segment without on-ramps and off-ramps—
that is, traffic flows in and out via mainline lanes but not ramps. How
would the equation of vehicle conservation change if traffic from and to
ramps is considered?



CHAPTER 12

Microscopic Modeling

The models presented in Chapters 4-11 emphasize collective and average
behavior of vehicles (e.g., flow, speed, and density), and consider traffic flow
as a compressible fluid. Central to these models are the relationships among
flow, speed, and density as well as how they vary dynamically over time and
space. Such models are termed macroscopic, and they are capable of capturing
the amount of “fluid” (i.e., number of vehicles) flowing into and out of
roadway segments over time, rather than tracking each and every vehicle as
it moves along the roadway.

In contrast, microscopic models emphasize the behavior of individual
vehicles, and are capable of capturing the motion of and interaction among
these vehicles. Unlike macroscopic models, which treat vehicles as a fluid,
microscopic models represent a driver-vehicle unit as a particle without
mass. Such a particle is sometimes referred to as an “active” particle since
it is capable of making decisions based on rules stipulated in microscopic
models.

12.1 MODELING SCOPE AND TIME FRAME

Depending on the geographical scope and time frame involved, driving
decisions can be categorized at three levels—namely, strategic, tactical,
and operational. Driving decisions at the strategic level involve a large
geographical scope and a long time frame. For example, Figure 12.1
illustrates the decision-making scenario faced by a driver who is about to
travel from the University of Massachusetts Amherst (point C) to Boston
(point D). The driver has at least three options:
1. Interstate 90 (Massachusetts Turnpike). The bottom route, which is the

fastest route if there is no congestion, and the toll is about $5.
2. Route 2. The top route, which is a scenic, rural highway that is rarely

congested.
3. Route 9. The middle route, which is the shortest route, but it goes

through many town centers and traffic signals.
This scenario constitutes a route-choice decision that involves a ge-

ographical scope of about 100 km and a time frame of a few hours. A
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Figure 12.1 Making a decision at the strategic level.

microscopic model that describes how drivers make a route choice decision
is called a route-choice model. Such a model is typically a discrete choice
model which chooses one of a set of options based on some utilities and
constraints.

After the driver has chosen a route (e.g., Massachusetts Turnpike) and is
traveling down the road, a tactical decision will have to be made sooner or
later that involves a medium geographical scope and a medium time frame.
For example, Figure 12.2 illustrates that the driver needs to decide when
and where to change to the side lane in preparation for using the upcoming
exit. Such a case constitutes a lane-changing decision with a geographical
scope of a few kilometers and a time frame of a few minutes. Again, a lane-
changing model is typically a discrete choice model that determines the
choice of a target lane from available options based on the driver’s objective
and constraints.

An operational decision involves the driver’s operational control of the
vehicle in order to ensure safety and maintain mobility within a small
geographical scope and a short time frame. For example, Figure 12.3
illustrates that the driver (in the circled vehicle) is following another vehicle
in a context of a geographical scope of tens of meters and a time frame of a
few seconds. The driver needs to make a car-following decision on how



Microscopic Modeling 179

Figure 12.2 Making a decision at the tactical level.

Figure 12.3 Making a decision at the operational level.

to operate his or her vehicle (e.g., determine speed and acceleration in the
next second) so as to avoid colliding with the leading vehicle. Meanwhile,
if the driver feels stressed following the slow leading vehicle, the driver may
want to change to another lane to improve his or her mobility. As such,
the driver makes a gap-acceptance decision by looking for gaps in the
adjacent lane and switching to that lane when an acceptable gap becomes
available.



180 Traffic Flow Theory

Figure 12.4 A car-following scenario.

Therefore, on the basis of the geographical scope and time frame
involved, microscopic models can fall into one of the following three broad
categories:
1. at the strategic level: route-choice models;
2. at the tactical level: lane-changing models;
3. at the operational level: car-following and gap-acceptance models.

12.2 NOTATION

The chapters that follow will emphasize car-following models. More
specifically, drivers’ operational control when following another vehicle on
a single-lane highway will be considered where no passing is allowed. Before
the formal discussion of car-following models, it is helpful to summarize the
notation to be used. Figure 12.4 illustrates two vehicles traveling on a one-
lane highway. These vehicles (1, 2, . . . , i − 1, i, i + 1, . . . , I ) are numbered
cumulatively with lower-numbered vehicles in front—for example, vehicle
1 leads vehicle 2. The locations or displacements of vehicles are measured
from a common but arbitrary reference point.

i vehicle ID, i = 1, 2, . . . , I .
xi(t) the location of vehicle i at time t.
ẋi(t) the speed of vehicle i at time t.
vi desirable speed that driver i is willing to travel at whenever possible.
ẍi(t) the acceleration of vehicle i at time t.
Ai the maximum acceleration that vehicle i is able to apply. Ai > 0.
Bi the maximum deceleration that vehicle i is able to apply. Bi < 0.
li the length of vehicle i.
τi the perception-reaction time of driver i.
si(t) the spacing between vehicle i and the leading vehicle i− 1 at time t.
gxi (t) the distance between vehicle i and the vehicle in front of it at time t.
hi(t) the headway between vehicle i and the vehicle in front of it at time t.
gti(t) the time gap between vehicle i and the vehicle in front of it at time t.



Microscopic Modeling 181

12.3 BENCHMARKING SCENARIOS

The upcoming chapters will introduce some microscopic car-following
models. These models were formulated with a variety of modeling philoso-
phies and appeared in different forms. It would be very interesting and
informative if these models could be cross-compared on the basis of a
common ground. Such a process is called benchmarking, two scenarios of
which are set up here, one being microscopic and the other macroscopic.

12.3.1 Microscopic Benchmarking
Microscopic benchmarking employs a concrete example consisting of a set
of hypothetical driving regimes. The purpose of microscopic benchmarking
is to illustrate the performance of these car-following models in different
regimes so that their operational control under various conditions can be
examined.

The example involves two vehicles: a leading vehicle i−1 and a following
vehicle i. The motion of the leader is predetermined and that of the follower
is governed by the car-followingmodel under study. Initially (t = 0), vehicle
i − 1 stands still at 5000m from the reference point (xi−1(0) = 5000m,
ẋi−1(0) = 0m/s, and ẍi−1(0) = 0m/s2). Vehicle i, which is also still
(ẋi(0) = 0m/s and ẍi(0) = 0m/s2), stands somewhere near the reference
point, with the exact location to be determined case by case in different car-
following models. When the scenario starts (t > 0), vehicle i − 1 remains
still, while vehicle i starts to move. Since vehicle i− 1 is far ahead, vehicle
i is entitled to accelerate freely to satisfy its driver’s desire for mobility. At
time t = 100 s, vehicle i is at somewhere about xi(100) ≈ 2770m. At
this moment, a third vehicle previously moving in the adjacent lane at
24m/s changes to the subject lane at location 2810m and takes over as
the new leading vehicle, assuming ID i − 1—that is, xi−1(100) = 2810m,
ẋi−1(100) = 24m/s, and ẍi−1(100) = 0m/s2. This change is designed to
mimic the effect that a vehicle cuts in in front of another vehicle with a
spacing of about 40m. Meanwhile, the previous, stationary leading vehicle
is removed from the road. The new leading vehicle keeps moving at that
speed up to t = 200 s, and then undergoes deceleration at a rate of
ẍi−1 = −3m/s2 until it comes to a complete stop. After that, vehicle
i − 1 remains stopped up to t = 300 s. Then, it begins to accelerate at a
constant rate of ẍi−1 = 2m/s2, and eventually settles at its full speed of
ẋi−1 = 36m/s. At time t = 400 s, the vehicle starts to decelerate again at
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a constant rate of ẍi−1 = −3m/s2 until it comes to another full stop, and
remains there. During all the time, the motion of the follower i is completely
stipulated by the car-following model. The above scenario is formulated as
follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi−1 = 5000m,ẋi−1 = 0m/s,ẍi−1 = 0m/s2 when 0 s ≤ t < 100 s,

xi−1 = 2810m,ẋi−1 = 24m/s when t = 100 s,

ẍi−1 = 0m/s2 when 100 s ≤ t < 200 s,

ẍi−1 = −3m/s2 when 200 s ≤ t < 208 s,

ẍi−1 = 0m/s2 when 208 s ≤ t < 300 s,

ẍi−1 = 2m/s2 when 300 s ≤ t < 318 s,

ẍi−1 = 0m/s2 when 318 s ≤ t < 400 s,

ẍi−1 = −3m/s2 when 400 s ≤ t < 412 s,

ẍi−1 = 0m/s2 when t ≥ 412 s.

The driving regimes involved in the above process include the following:
• Start-up: Vehicle i starts to move from standstill, when the process begins

(t > 0 s).
• Speedup: After start-up, vehicle i continues to accelerate to higher speeds

(0 s < t < 100 s).
• Free flow: As vehicle i speeds up, it settles at its desired speed if it is

unimpeded (0 s < t < 100 s).
• Cutoff: A sudden decrease in spacing owing to the new leader i − 1

cutting in (t = 100 s).
• Following: Vehicle i has to adopt vehicle i − 1’s speed so as to avoid a

collision (100 s < t < 200 s).
• Stop and go: Vehicle i is forced to stop and go owing to vehicle i − 1’s

brief stopping (200 s ≥ t ≤ 300 s).
• Trailing: Vehicle i is following a speeding leader (300 s < t < 400 s).
• Approaching: Vehicle i is getting close to a slower or stationary leader

(400 s ≥ t < 420 s). item Stopping: Vehicle i tries to stop behind a
stationary object separated by a minimum spacing (t ≥ 420 s).
This scenario involves a series of tests in a single driving process. Rather

than seeking “the best” model, our focus here is to analyze whether a
model makes physical sense by facing these tests. Therefore, the reality check
includes the following items:
• Start-up: Whether the model itself is sufficient to start the vehicle up

without involving any additional, external logic.



Microscopic Modeling 183

• Speedup: Whether the model generates speed and acceleration profiles
that make physical sense.

• Free flow: Whether the model settles at its desired speed without
overshooting or undershooting.

• Cutoff: Whether the model loses control or, if not, responds with a
reasonable control maneuver.

• Following: Whether the model is able to adopt the leader’s speed and
follow the leader at a reasonable distance.

• Stop and go: Whether the model is able to stop the vehicle safely behind
its leader and start moving again when the leader resumes motion.

• Trailing: Whether the model is able to speed up normally without being
tempted to speed up by its speeding leader—that is, a vehicle is attracted
to excessively high speeds by its speeding leader.

• Approaching: Whether the model is able to adjust the vehicle properly
when the intervehicle spacing closes up.

• Stopping: Whether the model is able to stop the vehicle properly
behind a stationary object separated by a minimum spacing, without
overshooting or undershooting, and causing speed and acceleration to
return to zero naturally when stopped, etc.
Note that the starting position of the follower i is determined by trial

and error such that the vehicle moves to xi ≈ 2770m at t = 100 s, at
which point the vehicle should have reached its desired speed vi = 30m/s.
The sudden appearance of the new leader i − 1 at xi−1 = 2810m leaves a
spacing of about 40m between the two vehicles, which is a little more than
the distance traversed during one perception-reaction time. Drivers would
normally back up a little in this situation and then identify a comfortable
spacing to start car following.

12.3.2 Macroscopic Benchmarking
Macroscopic benchmarking employs a set of empirical data obtained from
Georgia 400, a toll road with freeway by design located in Atlanta, Georgia,
USA. The data contain 1-years’ worth of field observations at one station
across four lanes. The fundamental diagram (i.e., mathematical and/or
graphical presentation that illustrates the collective behavior of traffic flow)
observed at this station is depicted in Figure 12.5. This figure contains a
set of four plots that illustrate speed-density, speed-flow, flow-density, and
speed-spacing relationships. The “cloud” contains field observations of flow,
speed, and density aggregated to 5min intervals. To highlight the average
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Figure 12.5 Empirical fundamental diagram observed from the field.

behavior of traffic flow, the observations in the cloud are further aggregated
with respect to density, and the result is shown as circles.

PROBLEMS

1. What are the major differences between microscopic modeling and
macroscopic modeling?

2. Route choice, lane change, and car following are all about decision mak-
ing. Elaborate the difference among these decision making processes.

3. Identify the following traffic flow characteristics with use of of the
empirical fundamental diagram illustrated in this book:
a. Free-flow speed
b. Capacity condition (capacity, optimal speed, and optimal density)
c. Jam density



CHAPTER 13

Pipes and Forbes Models

As the beginning discussion on car-following models, this chapter
introduces two simple models—that is, the Pipes model and the Forbes
model, both of which are derived from drivers’ daily driving experiences.

13.1 PIPES MODEL

The Pipes model [52] is based on a safe driving rule coined in the California
Vehicle Code:

A good rule for following another vehicle at a safe distance is to allow yourself at
least the length of a car between your vehicle and the vehicle ahead of you for every
tenmile per hour of speed at which you are traveling.

Referring to Figure 13.1 and putting the safety rule in mathematical
language, we get

gxi (t)min = [(xi−1(t) − xi(t)) − li−1]min = (si(t) − li−1)min = ẋi(t)
0.447 × 10

li,

(13.1)

where ẋi(t) is in meters per second (1 mile per hour is approximately
0.447m/s), and gxi (t), xi−1(t), and xi(t) are measured in meters. The Pipes
model is formulated as

si(t)min = li
4.47

ẋi(t) + li−1. (13.2)

If we assume a vehicle length of 6m, the model reduces to

si(t)min = 1.34ẋi(t) + 6 (13.3)

or

hi(t)min = 1.34 + 6
ẋi(t)

. (13.4)

13.1.1 Applications of the Pipes Model
The Pipes model can be applied in many ways, the two foremost of which
are automatic driving and computer simulation.

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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Figure 13.1 A car-following scenario.

AutomaticDriving
Perhaps the simplest form of automatic driving is cruise control. As an in-
vehicle system, cruise control automatically controls the speed of a motor
vehicle (by taking over the control of the throttle) so that the vehicle
maintains a constant speed set by its driver. Cruise control makes it easier
to drive on long road trips, and hence is a popular car feature. As more
and more vehicles join the traffic and the road becomes crowded, the
driver has to switch cruise control on and off so frequently that cruise
control becomes less useful. To adapt to the dynamics of the vehicle in
front, it is desirable that the cruise control system be able to adjust speed
accordingly (rather than cruising at a preset speed) to maintain a safe car-
following distance. Hence,an adaptive or autonomous cruise control system
has been developed. With the aid of distance sensors such as radar or laser
sensors, autonomous cruise control allows the vehicle to slow down when
approaching another vehicle and accelerate to the preset speed when traffic
conditions permit. To make this happen, the system requires an internal
logic which relates the vehicle speed to the distance to the vehicle in front.
Simple car-following models such as the Pipes model can be employed as
the basis of such an internal logic. More specifically, Equation 13.1 can be
rearranged as follows:

ẋi(t) ≤ 0.447 × 10

li
gxi (t). (13.5)

For a vehicle length of 6m, the above control logic becomes ẋi(t) ≤
0.745gxi (t). Therefore, the autonomous cruise control works as follows.
At any moment t, the distance sensor measures the gap between the two
vehicles gxi (t). Then, the target speed that the vehicle needs to adapt to is
set as 0.745gxi (t) or less.

Obviously, the target speed can easily go out of bound as the gap gxi (t)
becomes sufficiently large. Therefore, it is necessary to set an upper bound
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to the target speed, which is usually referred to as the desirable speed vi.
Therefore, the target speed is actually the minimum of (1) the desirable
speed vi and (2) the speed constrained by the vehicle in front ẋi(t):

ẋi(t) ≤ min{vi, 0.447 × 10
li

gxi (t)}. (13.6)

Computer Simulation
The Pipes model can also be used to simulate a platoon of vehicles moving
on a one-lane highway. Before the simulation starts, the following variables
need to be initialized—that is, a value needs to be assigned to each of them:

li length of vehicle i ∈ {1, 2, . . . , I}
τi perception-reaction time of driver i
vi desired speed of driver i
�Ai maximum acceleration of vehicle i
�Bi maximum deceleration of vehicle i
�t simulation time step
At time step j, the displacement x and speed v of each vehicle are

updated:

FOR i = 1:I

s(j,i) = x(j-1,i-1) - x(j-1,i);

s_min(j,i) = l(i) * (v(j-1,i)/(0.447 * 10) + 1);

IF s(j,i) < s_min(j,i)

v(j,i) = MAX([0, v(j-1,i) - dB_i]);

ELSE

v(j,i) = MIN([v_i, v(j-1,i) + dA_i]);

END

x(j,i) = x(j-1,i) + v(j,i) * dt;

END

In the above code segment, the actual spacing between vehicle i and its
leading vehicle, s( j, i), is computed as the difference of their locations in
the previous time step. The minimum safe spacing, smin( j, i) is determined
according to the California Vehicle Code. Then, s( j, i) is compared against
smin( j, i). If s( j, i) is less than smin( j, i), one should reduce the speed of the
vehicle by�Bi, but should not go beyond 0. Otherwise, one should increase
the speed of the vehicle by �Ai without exceeding its desired speed vi.
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Then, one should update the position of the vehicle, advance time by one
step, and continue with the next vehicle.

Note that car-following models used for automatic control and com-
puter simulation have different objectives. The objective of automatic
control is to guarantee safety but achieve mobility (e.g., arrive at the
destination without delay). As such, automatic control calls for “an ideal
(or the best) driver/model” that is able to operate the vehicle in the best
way. In contrast, the purpose of computer simulation is to reproduce part of
the real world as realistically as possible. Consequently, computer simulation
necessities “a representative driver/model” that is able to mimic the behavior
of day-to-day driving, which is usually not perfect.

13.1.2 Properties of the Pipes Model
In mathematical modeling, it is always interesting to understand how a
system’smicroscopic behavior relates to its macroscopic behavior, or alterna-
tively to interpret the microscopic basis of a macroscopic phenomenon. In
traffic flow theory, microscopic car-following models are typically related
to macroscopic speed-density relationships and further the fundamental
diagram.

Typically, the linkage between microscopic and macroscopic models
can be addressed in two ways. One approach is to run a simulation
based on the microscopic model. Such a microscopic simulation typically
involves random variables such as perception-reaction time, desired speed,
and acceleration rate. As a result, simulation results vary in different runs.
Hence, the macroscopic behavior implied by the microscopic model can be
obtained by a statistical analysis of these simulation results.

The other approach is analytical—that is, one tries to aggregate or inte-
grate the microscopic model (which typically involves ordinary differential
equations) under some equilibrium or steady-state assumptions. If a system
is in the steady state, any property of the system is unchanging in time. More
specifically, a traffic system in the steady state would consist of homogeneous
vehicles which exhibit unform behavior over time and space. Therefore,
under steady-state conditions, vehicles lose their identities (e.g., τi → τ

and li → l), vehicles travel at uniform speed (i.e., ẋi = ẋj → v and ẍi → 0),
drivers’ desired speeds converge to the free-flow speed (i.e., vi → vf ), and
the vehicle spacing si(t) reduces to s, which, in turn, is replaced by the
reciprocal of traffic density 1

k . Uniform vehicle length l is equivalent to the
reciprocal of jam density kj—that is, 1

kj
. Hence, the Pipes model reduces to
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kj
k

= v
4.47

+ 1 or v = 4.47
(
kj
k

− 1
)
, (13.7)

where k is measured in vehicles per meter and v is measured in meters per
second. With q = k × v, the above speed-density relationship gives rise to
the following flow-density and speed-flow relationships:

q = 4.47(kj − k) (13.8)

and

v = q

kj − 0.22q
. (13.9)

Equations 13.7-13.9 constitute the mathematical representation of the
fundamental diagram implied by the Pipes model.

13.2 FORBES MODEL

Rather than ensuring a safe distance between vehicles as the Pipes model
does, Forbes [53, 54] stipulates that

To ensure safety, the time gap between a vehicle and the vehicle in front of it should
be always greater than or equal to reaction time.

This safety rule can be formulated as

gti(t) = hi(t) − li
ẋi

≥ τi. (13.10)

For a reaction time of 1.5 s and a vehicle length 6m, the model becomes

hi(t) ≥ 1.5 + 6

ẋi
(13.11)

or

si(t) ≥ 1.5ẋi + 6. (13.12)

This is very similar to the Pipes model except for a slight difference in the
coefficient of the speed term, which is interpreted as perception-reaction
time τi. Therefore, the Pipes model and the Forbes model are essentially
equivalent and can be generically expressed as

si(t) ≥ τiẋi + li, (13.13)
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where τi and vehicle length łi are model parameters. Note that applications
and properties of the Pipes model discussed above apply to the Forbes
model. In addition, the fundamental diagram implied by the Pipes and
Forbes models can be generically expressed as

v = 1
τk

− l
τ
, (13.14)

q = 1

τ
− l

τ
k, (13.15)

v = ql

1 − τq
, (13.16)

where τ is the average perception-reaction time and l is the average vehicle
length.

13.3 BENCHMARKING

Since the Pipes and Forbes models are essentially equivalent, the following
discussion addresses only the Pipes model with the understanding that the
result applies to the Forbes model as well. Microscopic benchmarking refers
to the scenario presented in Section 12.3.1 and macroscopic benchmarking
refers to the scenario presented in Section 12.3.2.

13.3.1 Microscopic Benchmarking
For convenience, the Pipes model is rearranged as

ẋi(t + �t) = si(t) − li
α

, (13.17)

where �t is the simulation time step and α is a constant resulting from unit
conversion (α = 1.34 if speed is in meters per second and li = 6 m).

First, the model has a problem with vehicle acceleration. We refer to
the microscopic benchmarking scenario presented in Section 12.3.1, and
suppose that initially the leading vehicle is located at xi−1(0) = 5000m and
the subject vehicle is at xi(0) = −102m and both vehicles are standing still.
When the simulation begins, vehicle i starts to move according to the Pipes
model. A spacing of si(0) = 5102m results in a speed of about 3800m/s
at the next time step (assuming �t = 1 s), which requires an acceleration
of 3800m/s2. It follows that an infinite speed and acceleration would result
if there is no leading vehicle in front. Therefore, the following external
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logic has to be imposed on the Pipes model in order to limit its maximum
acceleration:

ẍi(t) = ẋi(t + �t) − ẋi(t)
�t

≤ Ai, (13.18)

where Ai is the maximum acceleration of vehicle i—for example, Ai =
4m/s2. With this addition, the Pipes model loses its mathematical elegance
which favors a one-equation-for-all formulation. Even though an external
logic is added, the Pipes model still has a problem with the maximum
speed. For example, it is true that the acceleration no longer exceeds Ai,
but the vehicle can still reach unrealistically high speeds—for example,
ẋi = 196m/s when si = 590m. Therefore, another external logic has
to be imposed to limit the speed:

ẋi ≤ vi, (13.19)

where vi is driver i’s desired speed. The third problem is unrealistic
deceleration. For example, at time t = 424, vehicle i is located at about
xi = 8734m moving at speed ẋi = 30m/s, while vehicle i − 1 stops
at xi−1 = 8762m. According to the Pipes model, vehicle i’s speed at
the next step would be ẋi ≈ 16.42m/s. As such, the deceleration rate is
ẍi = −13.58m/s2. Hence, a third external logic has to be imposed to limit
maximum deceleration Bi (e.g., −6m/s2):

ẍi(t) = ẋi(t + �t) − ẋi(t)
�t

≥ Bi. (13.20)

However, this addition introduces a new problem. For example, vehicle
i’s speed at the next step becomes ẋi = 30 − 6 = 24m/s2 and its location
is xi = 8758m. This would leave a spacing of si = 4m, which is less than a
vehicle length li−1 = 6m—that is, vehicle i has collided with vehicle i− 1.
Unfortunately, there is no easy remedy to the problem except for accepting
the unrealistic deceleration behavior.

The benchmarking result of the Pipes model with the constraints in
Equations 13.18-13.20 is plotted in Figure 13.2. The performance of the
constrained Pipes model is summarized as follows, and the discussion is
based on the benchmarking scenario:
• Start-up: the model is able to start the vehicle up from standstill. See

Figure 13.2 when t > 0 s.
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Table 13.1 Microscopic benchmarking parameters of
the Pipes model

li vi τi α –

6m 30m/s 1.0 s 1.34 –

Ai Bi xi(0) ẋi(0) ẍi(0)

4.0m/s2 6.0m/s2 -120m 0m/s 0m/s2

• Speedup: the model is able to speed up the vehicle. However, its
acceleration profile (i.e., acceleration as a function of speed) is unrealistic
because the vehicle is able to retain maximum acceleration at high
speeds. Normally, maximum acceleration is available only when a
vehicle starts up. As the vehicle speeds up, acceleration decreases and
eventually varnishes when the vehicle achieves its desired/cruising speed.
See Figure 13.2 when 0 s < t < 100 s.

• Free flow: an external logic has to be imposed to limit the maximum
speed under the free-flow condition. See Figure 13.2 when 0 s < t <

100 s.
• Cutoff: the model retains control and responds reasonably when a

vehicle cuts in in front. See Figure 13.2 around t = 100 s.
• Following: the model is able to adopt the leader’s speed and follow the

leader by a reasonable distance. See Figure 13.2 when 100 s < t < 200 s.
• Stop and go: the model is able to stop the vehicle safely behind its leader

and start it moving when the leader departs. See Figure 13.2 when
200 s ≥ t ≤ 300 s.

• Trailing: the model is able to speed up normally without being tempted
to speed up by its speeding leader. See Figure 13.2 when 300 s < t <

400 s.
• Approaching: the model is unable to decelerate properly when ap-

proaching a stationary vehicle at a distance. The vehicle might collide
with its leader when maximum deceleration is imposed. See Figure 13.2
when 400 s ≥ t < 420 s.

• Stopping: this portion is invalid since approaching fails. See Figure 13.2
when t ≥ 420 s.
The above benchmarking is based on the set of parameters in Table 13.1,

and the outcome may differ for a different set of parameters.

13.3.2 Macroscopic Benchmarking
The fundamental diagram implied by the Pipes model is plotted in
Figure 13.3 against empirical observations. The “cloud” contains 5min
observations of flow, speed, and density, the circles are empirical observa-
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Figure 13.3 Fundamental diagram implied by the Pipes model.

tions aggregated with respect to density, and the curves are the equilibrium
relationships implied by the Pipes model.

These curves roughly fit the empirical data in the middle to upper range
of density (e.g., k > 20 vehicles per kilometer), but do not apply to the
low-density range (e.g., k < 20 vehicles per kilometer). It appears that the
Pipes model is designed to literally describe car-following behavior. Cases
when the leading vehicle is absent have to be handled by an external logic.
In addition, the Pipes model predicts that traffic speed would increase to
infinity as density approaches zero.

The above benchmarking is based on the set of parameters in Table 13.2,
and the outcome may differ for a different set of parameters.

Table 13.2 Macroscopic
benchmarking parameters
of the Pipes model

α (τ ) l

1.34 s 6m
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Since the Forbes model is essentially the same as the Pipes model, the
above benchmarking results apply to the Forbes model as well.

PROBLEMS

1. Prove that the Pipes and Forbes models are mathematically equivalent.
2. From the perspective of the spatial domain, the Pipes model suggests that

drivers add a space gap of at least one car length for every 10 miles per
hour of speed at which they travel. From the perspective of the temporal
domain, the Forbes model requires that drivers leave a time gap of at least
one perception-reaction time.
a. Since the two models are mathematically equivalent, what is the

equivalent perception-reaction time that the Pipes model implies
when the model is translated into the temporal domain? Assume a
vehicle length of 6m.

b. Assume a perception-reaction time of 1.5 s and a vehicle length of
6m. Translate the Forbes model into the spatial domain and elaborate
the equivalent driving rule—for example, drivers need to add a space
gap of at least one car length for every x miles per hour of speed at
which they travel.

3. An autonomous cruise control system is designed as follows. At any
moment t, the onboard sensor measures the distance from this vehicle
to the vehicle in front. Then the target speed of the vehicle is set as
the minimum of (1) the distance multiplied by 0.8 and (2) the desired
speed of 108 km/h. Assume all vehicles are controlled by this logic and
the vehicle length is uniformly 7.5m. What is the maximum number of
vehicles that can pass a point of highway in 1 h?

4. Perform the following analysis based on the Forbes model under the
assumption that the desired speeds of all drivers are uniformly 108 km/h,
perception-reaction times are uniformly 1.5 s, and vehicle lengths are
uniformly 5m.
a. Find the capacity condition implied by the Forbes model (capacity,

optimal speed, and optimal density).
b. If the uniform desired speed drops to 96 km/h, how would your

answer change?
c. If the uniform perception-reaction time becomes 1 s but the uniform

desired speed is held at 108 km/h, how would your answer change?
d. Illustrate and indicate the direction of change graphically on the basis

of the underlying flow-density relationship.
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5. Perform a one-step simulation based on the following conditions: Two
cars are traveling in the same lane on a freeway. The length of both
vehicles is li−1 = li = 6m. Lane change is not considered in this
problem. At time t, the leading vehicle i − 1 is traveling at a speed of
ẋi−1(t) = 72 km/h and the following vehicle i is traveling at a speed
of ẋi(t) = 108 km/h. The spacing between the two vehicles (measured
from front bumper to front bumper) is si(t) = 40m. The perception-
reaction time of the following driver is τi = 1.5 s. Assume that the
acceleration rate and deceleration rate are ẍi = 1m/s2.
a. Use the Pipes model to predict the speed that the following driver

will adopt after a perception-reaction time.
b. Use the Forbes model to predict the speed that the following driver

will adopt after a perception-reaction time.
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General Motors Models

An anecdote has it that General Motors’ CEO Charles Wilson once said
“what’s good for General Motors is good for America.” It turned out that
this statement was misquoted, and the true version dates back to 1953,
when Wilson, who was appointed as the Secretary of Defense by President
Eisenhower, was at his confirmation hearings before the Senate Armed
Services Committee (source, Wikipedia):

During thehearings,whenasked if as Secretary ofDefense he couldmake adecision
adverse to the interests of GeneralMotors,Wilson answered affirmatively. But added
that he could not conceive of such a situation “because for years I thoughtwhatwas
good for the country was good for General Motors and vice versa.

While what Wilson actually said in this anecdote is not of great interest
here, what is important is the role that General Motors played in the history
of traffic flow theory. Back in the 1950s, General Motors sponsored a team
of scientists in its research laboratories, from which pioneering work was
done that broke the ground for traffic flow theory. At the foremost of such
efforts was the family of General Motors models (referred to as the GM
models hereafter).

14.1 DEVELOPMENT OF GMMODELS

GM models [55, 56] assume that a driver’s control maneuver is a result of
not only external stimuli such as the dynamics of the subject vehicle and its
leading vehicle, but also the driver’s sensitivity. Hence such a relationship
can be expressed as

Response = f (sensitivity, stimuli).

When formulating the above relationship, GM researchers chose the
subject vehicle’s acceleration (deceleration is negative acceleration) pro-
duced after a reaction time, ẍi(t + τ ), as the response (see Figure 14.1).
The consideration of stimuli and sensitivity evolved over time and resulted
in a family of models.

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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Figure 14.1 A car-following scenario.

14.1.1 GM1
Originally, General Motors researchers observed that drivers responded to
the relative speed between the subject vehicle i and its leading vehicle i−1,
ẋi−1(t)− ẋi(t). If sensitivity is treated as a coefficient that is multiplicative to
the stimulus, the subject driver’s operational control can be formulated as

ẍi(t + τi) = α[ẋi−1(t) − ẋi(t)]. (14.1)

The above model is the first-generation model which can be used to
interpret some car-following phenomena effectively. For example, when
the subject vehicle approaches its leading vehicle (e.g., ẋi(t) = 120 km/h
and ẋi−1(t) = 100 km/h), the relative speed is negative, and hence the
driver will decelerate since ẍi(t + τi) < 0 (assuming that α is a positive
constant). In contrast, if the subject vehicle is falling behind its leading
vehicle (e.g., ẋi(t) = 100 km/h and ẋi−1(t) = 120 km/h), the subject
vehicle will accelerate because the relative speed now becomes positive.
However, the model has difficulty distinguishing scenarios with large and
small car-following distances. For example, the model predicts the same
deceleration response to the following two scenarios:
• Scenario 1: ẋi(t) = 120 km/h, ẋi−1(t) = 100 km/h, and si(t) = 50m
• Scenario 2: ẋi(t) = 120 km/h, ẋi−1(t) = 100 km/h, and si(t) = 5000m

Since both scenarios have a speed difference of −20 km/h, intuitively,
the subject driver in scenario 1 would brake much harder than the driver in
scenario 2 because the former is facing an imminent collision.

14.1.2 GM2
The effect of spacing motivated General Motors researchers to choose
different sensitivity coefficients, and hence the second-generation model
resulted:
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ẍi(t + τi) =
(

α1

α2

)
[ẋi−1(t) − ẋi(t)]. (14.2)

Field experiments revealed that the sensitivity coefficient α ranges
between 0.17 and 0.74. In GM2, a high sensitivity value α1 is chosen when
the two vehicles are close, while a low sensitivity value α2 is employed when
the two vehicles are far apart.

14.1.3 GM3
The effect of spacing was partially address in GM2 because one has to
frequently calibrate the sensitivity coefficient depending on car-following
distances. The inconvenience seemed to suggest that spacing should be
explicitly included in the model, which led to the formulation of the third-
generation model:

ẍi(t + τi) = α
[ẋi−1(t) − ẋi(t)]
[xi−1(t) − xi(t)] . (14.3)

Although the issue of spacing has been suppressed, another problem pops
up. The model is unable to predict any difference between the following
scenarios:
• Scenario 1: In downtown Amherst, one vehicle is following another at

a spacing of 100m with speeds ẋi(t) = 30 km/h, ẋi−1(t) = 10 km/h.
• Scenario 2: On Interstate 90, one vehicle is following another at a

spacing of 100m with speeds ẋi(t) = 130 km/h, ẋi−1(t) = 110 km/h.
The subject driver on Interstate 90 is certainly under a great deal of

pressure to maintain safety during car following because, at such a high
speed, a moment’s lapse of attention would result in a catastrophe. In
contrast, the subject driver in downtown Amherst should have peace of
mind because, if something goes wrong, he or she can always slam on the
brake to stop the vehicle. Hence, our daily driving experiences suggest that
the response in scenario 2 be greater than that in scenario 1. However,
GM3 predicts no difference because in both scenarios the speed difference
is 20 km/h and the spacing is 100m.

14.1.4 GM4
GM3’s inability to differentiate high-speed and low-speed car-following sce-
narios motivated General Motors researchers to further explore unexplained
factors that can be extracted from the sensitivity coefficient. Interestingly, a
dimension analysis reveals that the sensitivity coefficient has the same unit
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as frequency (i.e., 1/s) in GM1 and GM2 and the same unit as speed (i.e.,
m/s) in GM3. Since there is a need to explicitly consider speed as a stimulus,
it seems ideal to extract speed from the sensitivity coefficient, leaving the
remainder as a new, dimensionless coefficient. This gives rise to the fourth-
generation model:

ẍi(t + τi) = α
ẋi(t + τi)[ẋi−1(t) − ẋi(t)]

[xi−1(t) − xi(t)] . (14.4)

14.1.5 GM5
To generalize the results of the above GMmodels and, as becomes clear later,
to facilitate finding “the bridge” between microscopic and macroscopic
models, a generic form of GM models is proposed as the fifth model:

ẍi(t + τi) = α
[ẋi(t + τi)]m

[xi−1(t) − xi(t)]l [ẋi−1(t) − ẋi(t)], (14.5)

where xi, ẋi, and ẍi are the displacement, speed, and acceleration of the
subject vehicle i, and similar notation applies to its leader i − 1. τ is the
perception-reaction time that applies to all drivers, α is a dimensionless
sensitivity coefficient, and m and l are speed and spacing exponents,
respectively.

14.2 MICROSCOPIC BENCHMARKING

The following segment of code implements GM4, a full-bloom model in
the family. At time step j, the displacement, speed, and acceleration of each
vehicle are updated:

FOR i = 1:I

v(j,i) = max([0, v(j-1,i) + a(j,i) * dt]);

d_v = v(j,i-1) - v(j,i);

x(j,i) = x(j-1,i) + v(j,i) * dt;

d_x(j,i) = x(j,i-1) - x(j,i);

delay = ceil(tau_i/dt);

a(j + delay, i) = alpha * v(j,i) * d_v(j,i) / d_x(j,i);

END

where x, v, and a are displacement, speed, and acceleration, respectively; i
is the vehicle ID, i ∈ {1,2, …,I}; j is the time step, j ∈ {1,2, …, J}; τi is the
perception-reaction time of driver i; and �t is the simulation time step.
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Microscopic benchmarking refers to the scenario presented in Section
12.3.1 and the benchmarking result of GM4 is plotted in Figure 14.2, which
is further elaborated as follows:
• Start-up: the model is unable to start a vehicle from standstill. Therefore,

an external logic has to be imposed to assign an initial speed ẋi(0) to
the subject vehicle i. Note that the initial speed ẋi(0) has to be set at
the desired speed vi. Otherwise, vehicle i will not be able to reach that
speed by itself. See Figure 14.2 when t > 0 s.

• Speedup: rather than speeding up vehicle i as drivers normally do in the
real world, the model predicts a deceleration by driver i even though its
leading vehicle i−1 is thousands of meters ahead. See Figure 14.2 when
0 s < t < 100 s.

• Free flow: the model predicts that vehicle i is unable to attain the free-
flow condition by itself unless it is set to do so by an external logic. As
long as it follows a slower leader, the model constantly decelerates the
vehicle until it adopts the leader’s speed. See Figure 14.2 when 0 s <

t < 100 s.
• Cutoff: when the third vehicle suddenly takes over as the new leader

40m ahead at 24m/s, the model predicts a sudden acceleration, while
in the real world drivers may or may not decelerate the vehicle. See
Figure 14.2 around t = 100 s.

• Following: the model is able to adopt the leader’s speed and follow the
leader at a reasonable distance. See Figure 14.2 when 100 s < t < 200 s.

• Stop and go: the model predicts that vehicle i will gradually but surely
collide with its leader while maintaining a speed, regardless of how low
the speed is. When the leader resumes motion, vehicle i will be stuck
there because of its infinitesimally low speed. See Figure 14.2 when
200 s ≥ t ≤ 300 s.

• Trailing: vehicle i is stuck and fails to catch up with its speeding leader,
unless another external logic brings it out of being stuck. See Figure 14.2
when 300 s < t < 400 s. However, once the vehicle resumes motion, it
will be tempted to catch up with its speeding leader and will adopt the
leader’s speed. Such an effect is not shown in Figure 14.2.

• Approaching: the simulation fails to be reasonable beyond t = 300 s.
• Stopping: the simulation fails to be reasonable beyond t = 300 s.

The above benchmarking is based on the set of parameters in Table 14.1,
and the outcome may differ for a different set of parameters.
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Table 14.1 Microscopic
benchmarking parameters
of GM4
τi α −
1.0 s 0.8 −
xi(0) ẋi(0) ẍi(0)
467m 30m/s 0m/s2

14.3 MICROSCOPIC-MACROSCOPIC BRIDGE

As mentioned in Chapter 13, the relation between microscopic and macro-
scopic models is always of great interest because such a relation offers a
“bridge” to connect microscopic and macroscopic worlds. This section
is specifically devoted to such a purpose. It appears that GM5 is ideal to
serve as a unifying factor that pulls together some of the microscopic and
macroscopic/equilibrium models in the early history of traffic flow theory.
For convenience, GM5 is repeated below:

ẍi(t + τi) = α
[ẋi(t + τi)]m

[xi−1(t) − xi(t)]l [ẋi−1(t) − ẋi(t)]. (14.6)

In addition, those early equilibrium models are listed in Table 14.2.

14.3.1 GreenbergModel
If one chooses m = 0 and l = 1, GM5 reduces to GM3:

ẍi(t + τi) = α
[ẋi−1(t) − ẋi(t)]
[xi−1(t). − xi(t)] (14.7)

Table 14.2 Single-regime models

Authors Model Parameters

Greenshields [9] v = vf
(
1 − k

kj

)
vf , kj

Greenberg [10] v = vmln
(
kj
k

)
vm, kj

Underwood [11] v = vf e
− k
km vf , km

Drake et al. [12] v = vf e
− 1

2

(
k
km

)2
vf , km

Drew [13] v = vf

[
1 −

(
k
kj

)n+ 1
2
]

vf , kj, n

Pipes [14] and Munjal [15] v = vf
[
1 −

(
k
kj

)n]
vf , kj, n

vf is free-flow speed, kj is jam density, vm is optimal speed, km is optimal density, and n is an exponent.
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It can be proved that, by integration, this microscopic car-following
model can be transformed into the Greenberg model, of which the
following is a revised version:{

q = vfk when 0 ≤ k < kc,

q = vmln
kj
k k when kc ≤ k ≤ kj.

(14.8)

The purpose of the revision to avoid the infinite free-flow speed problem
in the Greenberg model based on the following observation. It is known
that under zero to light traffic conditions, there is enough room to allow
drivers to maintain their desired speed, and hence free-flow speed vf can
be sustained up to a density called the critical density kc. As traffic density
continues to increase, traffic speed begins to drop until it reaches zero, when
the density becomes maximum—that is, kj.

The above flow-density relationship is plotted as the solid curve in
Figure 14.3. For easy reference, the underlying speed-density curve is
plotted as a dashed line in the background to show how it relates to the
flow-density curve.

The above relation between the Greenberg model and GM3 suggests
that one might be able to relate some of the existing equilibrium traffic
flow models to GM5 by aggregating or integrating this model with varying
speed and spacing exponents. The following constitutes some additional
examples.

Density, k
kmkc kj

0

F
lo

w
, q

q m

Figure 14.3 Flow-density relationship.
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14.3.2 Greenshields Model
Setting l = 2 and m = 0 in GM5 (Equation 14.5) yields

ẍi(t + τi) = α
[ẋi−1(t) − ẋi(t)]
[xi−1(t) − xi(t)]2 , (14.9)

where all variables are defined as before. It can be proved that this
microscopic model can be transformed into the Greenshields model:

v = vf − vf
kj
k. (14.10)

14.3.3 UnderwoodModel
Setting l = 2 and m = 1 in GM5 yields

ẍi(t + τi) = α
ẋi(t + τi)[ẋi−1(t) − ẋi(t)]

[xi−1(t) − xi(t)]2 . (14.11)

It can be proved that this microscopic model can be transformed into
the Underwood model:

v = vfe
−k/km. (14.12)

14.3.4 Model of Drake et al. (Northwestern Model)
Setting l = 3 and m = 1 in GM5 yields

ẍi(t + τi) = α
ẋi(t + τi)[ẋi−1(t) − ẋi(t)]

[xi−1(t) − xi(t)]3 . (14.13)

It can be proved that this microscopic model can be transformed into
the model of Drake et al.:

v = vfe
− 1

2

(
k
km

)2
. (14.14)

14.3.5 Pipes-Munjal Model
Setting l = n+ 1 and m = 0 in GM5 yields

ẍi(t + τi) = α
[ẋi−1(t) − ẋi(t)]

[xi−1(t) − xi(t)]n+1 . (14.15)

It can be proved that this microscopic model can be transformed into
the Pipes-Munjal model:

v = vf

[
1 −

(
k
kj

)n]
. (14.16)
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14.3.6 DrewModel
Since the Drew model and the Pipes-Munjal model are exactly the same
except for their exponent, one only needs to replace n with n + 1

2 in
the above derivation to obtain the Drew model. Hence, the Drew model
corresponds to GM5 with l = n+ 1.5 and m = 0.

14.3.7 Summary of the Bridge
Summarizing the above, we can draw a diagram that relates the models
discussed above to GM5. Figure 14.4 serves such a purpose, with the speed
exponent m of GM5 on the horizontal axis and the spacing exponent l of
GM5 on the vertical axis. Macroscopic equilibrium models are labeled in
red and microscopic car-following models are labeled in blue. Circles on
the grid denote models and their corresponding m and l combination in
relation to GM5.

The Pipes and Forbes models are actually a special case of GM1:

ẍi(t + τi) = α[ẋi−1(t) − ẋi(t)].
Integrating both sides yields

ẋi(t + τi) = α[xi−1(t) − xi(t)] + C = αsi(t) + C.

If one chooses α = li
4.47 and C = li−1, one obtains the Pipes model,

while α = τi and C = li leads to the Pipes model.
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14.4 MACROSCOPIC BENCHMARKING

Macroscopic benchmarking refers to the scenario presented in Section
12.3.2. Fundamental diagrams implied by GM models and their associated
equilibrium models are presented in Figure 14.5 against empirical observa-
tions. It can be seen that these fundamental diagrams achieve varying success
in fitting empirical data, but none of them fit the data reasonably well in the
entire range of density. For example, the Greenshields model overpredicts
speed (and hence flow) in the majority of the density range except for the
free-flow (i.e., low-density) condition; the Greenberg model has a problem
fitting the data under the free-flow condition; the Underwood model,
perhaps the best among the models, underestimates speed at low densities
and overestimates speed at high densities, and capacity occurs at much lower
speed than it ought to; the model of Drake et al. (Northwestern model) has
a flow-density curve that is convex in the high-density range; the Drew
and Pipes-Munjal models, which are essentially the same but are shown
slightly differently to avoid complete overlap, share the same problem as the
Greenshields model but to a lesser extent.

The above benchmarking is based on the set of parameters in Table 14.3,
and the outcome may differ for a different set of parameters

14.5 LIMITATIONS OF GMMODELS

As seminal work in the early history, GM models spawned and inspired
numerous research efforts that have shaped today’s traffic flow theory, and
thus the importance of this work cannot be underestimated. Meanwhile,

Table 14.3 Macroscopic benchmarking parameters of models associated with GM
models

Greenshields
vf kj –
30m/s 1/6 vehicles/m –

Greenberg
vm kj kc
10.7m/s 1/6 vehicles/m 0.01 vehicles/m

Underwood
vf km –
30m/s 0.05 vehicles/m –

Drake et al. (Northwestern)
vf km n
30m/s 0.04 vehicles/m 2

Drew
vf kj n
30m/s 1/6 vehicles/m 0.1

Pipes and Munjal
vf kj n
30m/s 1/6 vehicles/m 0.5
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GM models suffer from some limitations, which are presented below with
use of GM4 as an example.

Universal car following
On the one hand, GM4 is mathematically attractive since it has only
one equation that covers all situations. On the other hand, such a one-
regime property stipulates universal car following, which is not realistic.
For example, the model predicts that a vehicle in Atlanta must be following
another vehicle in Boston even though they are over 1000 km apart.

Attraction as a mechanism of motion
If one compares GM4 (Equation 14.4) against Newton’s law of universal
gravitation (Equation 14.17) and Coulomb’s law (Equation 14.18), one finds
that they are strikingly similar to each other.

F = G
m1m2

r2
, (14.17)

where F is the force between two masses, G is the gravitational constant,
m1 is the first mass, m2 is the second mass, and r is the distance between the
masses.

F = ke
q1q2
r2

, (14.18)

where F is the electrostatic force between two point charges (like charges
repel each other and opposite charges attract each other), q1 is the first point
charge, q2 is the second point charge, r is the distance between the two point
charges, and ke is a proportionality constant.

Therefore, GM4 can be interpreted as equivalent to Coulomb’s law
as follows. Vehicle i will be repelled by its leader i − 1 when vehicle i is
approaching vehicle i−1 at a higher speed, while vehicle i will be attracted
to vehicle i − 1 should vehicle i fall behind at a slower speed. Though the
first half of the reasoning seems to make some sense, the second half does
not. For example, what if the subject vehicle does not have a leader—for
example, the first vehicle to enter the highway. Then the subject vehicle
could not start because there would be no vehicle to pull it forward. Even
if the subject vehicle is following a leader and the gap between them is
increasing, it does not feel as if the subject vehicle is attracted to the leader.
Actually, the subject vehicle speeds up because one would like to achieve
the desired speed.
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Slow start
According to GM4, a vehicle at a stopped position is unable to start. This
is because the vehicle’s speed at the current step (ẋi(t) = 0) determines its
acceleration in the next step (ẍi(t+τi) = 0) (see Equation 14.4). Therefore,
the vehicle has to maintain a nonzero speed at any time in order to avoid
being trapped. As such, the model fails to apply when a vehicle is stopped by
a red light at an intersection or is completely blocked by another vehicle on a
highway. Otherwise, the subject vehicle has to slow down to an infinitesimal
speed rather than to a complete stop in order to avoid being trapped. When
the light turns green or the leading vehicle resumes motion, the subject
vehicle will take a long time to get up to speed. This is because the vehicle’s
infinitesimal speed results in a weak attraction, which is the only mechanism
to accelerate the vehicle. Figure 14.6 illustrates such a scenario, where a
noticeable gap results between the first vehicle and the second vehicle.

An intimate pair
According to GM4, two vehicles can get arbitrarily close to each other as
long as they are traveling at the same speed, which is certainly not true—no
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one would dare follow another 1 inch apart at 120 km/h! The reason why
GM4 allows such a ridiculous car-following distance is because, regardless
of how close the two vehicles are, the model predicts no response as long as
the two vehicles are moving at the same speed.

PROBLEMS

1. Prove that if one chooses m = 0 and l = 0, GM5 integrates to the
Pipes/Forbes model.

2. Prove that if one chooses m = 0 and l = 1, GM5 integrates to the
Greenberg model.

3. Prove that if one chooses m = 0 and l = 2, GM5 integrates to
the Greenshields model.

4. Prove that if one chooses m = 1 and l = 2, GM5 integrates to the
Underwood model.

5. Prove that if one chooses m = 1 and l = 3, GM5 integrates to the model
of Drake et al. (Northwestern model).

6. Prove that if one chooses m = 0 and l = n + 1, GM5 integrates to
the Pipes-Munjal model.

7. Prove that if one chooses m = 0 and l = n+ 1.5, GM5 integrates to the
Drew model.

8. Perform a one-step simulation based on the following conditions: Two
cars are traveling in the same lane on a freeway. The length of both
vehicles is li−1 = li = 6m. Lane change is not considered in this
problem. At time t, the leading vehicle i − 1 is traveling at a speed of
ẋi−1(t) = 72 km/h and the following vehicle i is traveling at a speed
of ẋi(t) = 108 km/h. The spacing between the two vehicles (measured
from front bumper to front bumper) is si(t) = 40m. The perception-
reaction time of the following driver is τi = 1.5 s.
a. Use GM1 to predict the deceleration that the following driver will

adopt after a perception-reaction time. Assume the sensitivity factor
is 0.5 1/s .

b. Use GM2 to predict the acceleration that the following driver will
adopt after a perception-reaction time.

c. Use common sense to decide which sensitivity factor to use.
d. Use GM3 to predict the acceleration that the following driver will

adopt after a perception-reaction time. Assume the sensitivity factor
is 10m/s .
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e. Use GM4 to predict the acceleration that the following driver will
adopt after a perception-reaction time. Assume vehicles keep their
speeds unchanged until after a perception-reaction time and the
sensitivity factor is 0.5 .

f. Use GM5 to predict the acceleration that the following driver will
adopt after a perception-reaction time. Assume vehicles keep their
speeds unchanged until after a perception-reaction time, a sensitivity
factor α of 0.5, l = 2, and m = 2.



CHAPTER 15

Gipps Model

The Pipes, Forbes, and General Motors models introduced in previous
chapters are all single-regime models—that is, they have only one equation
that applies to the entire driving process and do not consider different
driving scenarios or regimes. On the positive side, such models are simple
and mathematically attractive. On the flip side, however, their descriptive
power is frequently of concern. For example, a driver may encounter
different regimes such as start-up, speedup, free flow, cutoff, following, stop
and go, trailing, approaching, and stopping. A one-equation model may
or may not apply to all regimes. As such, multiregime models might be
helpful in capturing different driving scenarios. This chapter introduces a
model along this line—the Gipps model.

15.1 MODEL FORMULATION

Just like the Pipes and Forbes models, the Gipps model [57] is derived
from a safe driving rule, perhaps a more realistic but conservative one. A
driver typically employs a safety rule to evaluate if the current car-following
situation is safe. For example,
• The Pipes rule stipulates that at each moment the driver needs to

estimate his or her own speed (in miles per hour), divide it by 10, and
multiply the quotient by a car length, and the result is the minimum gap
that should be maintained. If the actual gap is less, one should fall back;
otherwise, it is safe.

• The Forbes rule ensures safe headway. For example, a driver with a
perception-reaction time of 3 s can use the following to ensure safety.
When the vehicle in front passes a roadside utility pole, start counting
“one thousand one, one thousand two, one thousand three.” If the driver
passes the pole before the counting is finished, a 3 s headway is not
maintained; otherwise, it is safe.
Though the above two safety rules may sound reasonable to a certain

degree, rarely do drivers in the real world drive in such a manner. Perhaps
a more realistic safety rule is the following. “The driver of the following
vehicle selects his speed to ensure that he can bring his vehicle to a safe stop

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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Figure 15.1 Gipps car-following scenario.

should the vehicle ahead come to a sudden stop” [57]. Put another way,
at any moment the following driver should leave enough safe distance in
front such that in case the leading vehicle commences an emergency brake,
the subject driver has time to responde and decelerate to a stop behind the
leading vehicle without a collision. The Gipps car-following model is based
on such an assumption, and the scenario is depicted in Figure 15.1.

At time t, vehicle i is located at xi(t) and the leading vehicle i − 1 is
at xi−1(t). At this moment, vehicle i − 1 at speed ẋi−1(t) commences an
emergency brake at a rate of Bi−1. Alerted by the braking light in front,
driver i at speed ẋi(t) goes through a perception-reaction process of duration
τi, trying to understand the situation, evaluate potential options, and then
decides to brake as well at a tolerable rate of bi. Hence, the vehicle starts to
decelerate from ẋi(t + τi) to a stop, with the most adverse situation being
stopped right after vehicle i− 1.

Therefore, the distance traveled by vehicle i − 1 during its emergency

brake is − ẋ2i−1(t)
2Bi−1

since Bi−1 is negative, so the vehicle stops at location

x∗
i−1 = xi−1(t) − ẋ2i−1(t)

2Bi−1
. (15.1)

Meanwhile, vehicle i travels a distance of ẋi(t)+ẋi(t+τi)
2 τi during the

perception-reaction time and then travels a braking distance of − ẋi(t+τi)
2

2bi
.

Hence, the vehicle stops at location

x∗
i = xi(t) + ẋi(t) + ẋi(t + τi)

2
τi − ẋ2i (t + τi)

2bi
. (15.2)
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To be conservative, Gipps added onemore buffer space term in the above
equation:

x∗
i = xi(t) + ẋi(t) + ẋi(t + τi)

2
τi + ẋi(t + τi)θ − ẋ2i (t + τi)

2bi
, (15.3)

where θ is an extra buffer time appended to the perception-reaction time.
To ensure safety, the following relationship must hold:

x∗
i−1 − li−1 ≥ x∗

i . (15.4)

Plugging in everything, we find the above inequality translates to

xi−1(t)− ẋ2i−1(t)

2Bi−1
−li−1 ≥ xi(t)+ ẋi(t) + ẋi(t + τi)

2
τi+ẋi(t+τi)θ− ẋ2i (t + τi)

2bi
.

(15.5)

Note that the actual spacing is si(t) = xi−1(t)−xi(t), so the safe spacing is

si(t) ≥ ẋi(t) + ẋi(t + τi)

2
τi+ẋi(t+τi)θ− ẋ2i (t + τi)

2bi
+ ẋ2i−1(t)

2Bi−1
+li−1. (15.6)

Though the above inequality can serve the need of a safety check, the
driver needs a basis to determine what to do next in order to achieve the
safety goal. Hence, it is necessary to identify which variables in the above
inequality are the inputs and which variable is the output. Our daily driving
experience suggests the following: si(t) and li−1 can be visually estimated;
ẋi(t) and ẋi−1(t) are measurable from the speedometer or motion relative
to the roadside; τi, θ , bi, and Bi−1 are internal to the driver and hence are
implicitly known. As such, these variables can be treated as the inputs, while
the only output in the above inequality is ẋi(t+τi), which is the target speed
that the driver tries to achieve next. Therefore, finding the output translates
to solving the following quadratic inequality:

− 1
2bi
ẋ2i (t+ τi)+

( τi

2
+ θ

)
ẋi(t+ τi)+ ẋi(t)τi

2
+ ẋ2i−1(t)

2Bi−1
+ li−1 − si(t) ≤ 0.

(15.7)
The roots of the above quadratic equation are

ẋi(t + τi) = bi
(τi

2
+ θ

)

±
√
b2i

(τi

2
+ θ

)2 − bi[−ẋi(t)τi −
ẋ2i−1(t)

Bi−1
− 2li−1 + 2si(t)].

(15.8)
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Let θ = τi/2 as suggested by Gipps. Then,

ẋi(t + τi) = −biτi ±
√
b2i τ

2
i − bi[−ẋi(t)τi −

ẋ2i−1(t)

Bi−1
− 2li−1 + 2si(t)].

(15.9)
Consider the signs of the roots and that speed is a positive value, then

the solution to inequality (15.7) is

0 ≤ ẋi(t + τi) ≤ −biτi +
√
b2i τ

2
i − bi[−ẋi(t)τi −

ẋ2i−1(t)

Bi−1
− 2li−1 + 2si(t)].

(15.10)
The above derivation has formulated the Gipps model in the car-

following regime. In the free-flow regime—that is,, vehicle i is not blocked
by a leading vehicle, Gipps suggests the following speed choice:

0 ≤ ẋi(t + τi) ≤ ẋi(t) + 2.5Aiτi(1 − ẋi(t)
vi

)

√
0.025 + ẋi(t)

vi
, (15.11)

where Ai is the maximum acceleration that driver i is willing to apply and
vi is the desirable speed that driver i is willing to travel at whenever possible.
Unlike inequality (15.10), which is derived from a safety rule, this speed
choice model is an empirical one obtained from fitting vehicle experimental
data. It basically accelerates/decelerates the vehicle to the desirable speed
without causing oscillation.

The above two speed choices may cause a little confusion when they
are applied to vehicle control because one has to constantly decide for
one of them. For example, one should choose (15.10) in the case of car
following and (15.11) in the case of free flow. However, what is the cutoff
point between free flow and car following? To resolve this confusion, Gipps
suggests that there is no need to make a distinction. Under any situation, one
just needs to compute the two speeds and choose the lower one—that is,

ẋi(t + τi) = min

⎧⎪⎨
⎪⎩
ẋi(t) + 2.5Aiτi(1 − ẋi(t)

vi
)

√
0.025 + ẋi(t)

vi
(free flow),

−biτi +
√
b2i τ

2
i −bi[ẋi(t)τi −

ẋ2i−1(t)

Bi−1
+ 2li−1 − 2si(t)] (car following).

(15.12)
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15.2 PROPERTIES OF THE GIPPS MODEL

As usual, the macroscopic property of the Gipps model under equilibrium
conditions is of primary interest. To simplify the analysis, the Gipps safety
rule presented in (15.6) can be simplified as follows if one ignores the speed
change during the perception-reaction process and the additional buffer
time θ :

si(t) ≥ ẋi(t)τi − ẋ2i (t)

2bi
+ ẋ2i−1(t)

2Bi−1
+ li−1. (15.13)

Setting both sides equal and rearranging terms yields

si(t) = ẋi(t)τi − ẋ2i (t)

2bi
+ ẋ2i−1(t)

2Bi−1
+ li−1. (15.14)

Under equilibrium conditions, the above car-following model leads to
the following speed-density relationship:

1
k

=
(

− 1
2b

+ 1
2B

)
v2 + τ v+ l (15.15)

or
1

k
= γ v2 + τ v+ l, (15.16)

where k is traffic density, γ = − 1
2b + 1

2B , b < 0 is the average tolerable
braking rate, B < 0 is the average emergency braking rate, v is the average
traffic speed, τ is the average perception-reaction time, and l is the average
nominal vehicle length. The corresponding flow-speed relationship is

q = v
γ v2 + τ v+ l

. (15.17)

To find the capacity, one takes the first derivative of flow q with respect
to v and sets the result to zero:

dq

dv

∣∣∣∣
vm

= − γ − l
v2

(γ v + τ ′ + l
v )

2

∣∣∣∣
vm

= 0. (15.18)

Solving the equation yields

vm =
√
l

γ
, (15.19)
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and correspondingly,

qm = 1

2
√

γ l + τ
. (15.20)

From a check of the second derivative of q at vm, it turns out that qm is
indeed the maximum value of q.

15.3 BENCHMARKING

The microscopic benchmarking refers to the scenario presented in Section
12.3.1 and the macroscopic benchmarking refers to the scenario presented
in Section 12.3.2.

15.3.1 Microscopic Benchmarking
The benchmarking result of the Gipps model is plotted in Figure 15.2. The
performance of the Gipps model is summarized as follows:
• Start-up: the model is able to start the vehicle up from standstill. See

Figure 15.2 when t > 0 s.
• Speedup: the model is able to speed the vehicle up realistically to its

desired speed. See Figure 15.2 when 0 s < t < 100 s.
• Free flow: the model is able to reach and settle at the desired speed under

free-flow conditions. See Figure 15.2 when 0 s < t < 100 s.
• Cutoff: the model overdecelerates slightly, which causes a small oscilla-

tion in speed, but in general the model retains control and responds
reasonably when a vehicle cuts in in front. See Figure 15.2 around
t = 100 s.

• Following: the model is able to adopt the leader’s speed and follow the
leader at a reasonable distance. See Figure 15.2 when 100 s < t < 200 s.

• Stop and go: the model is able to stop the vehicle safely behind its leader
and start the vehicle moving when the leader departs. See Figure 15.2
when 200 s ≥ t ≤ 300 s.

• Trailing: the model is able to speed up normally without being tempted
to speed up by its speeding leader. See Figure 15.2 when 300 s < t <

400 s.
• Approaching: the model is able to decelerate properly when approaching

a stationary vehicle at a distance. See Figure 15.2 when 400 s ≥ t <

420 s.
• Stopping: the model is able to stop the vehicle safely behind the

stationary vehicle. See Figure 15.2 when t ≥ 420 s.
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Figure 15.2 Microscopic benchmarking of the Gipps model.
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Table 15.1 Microscopic benchmarking parameters of the
Gipps model

li vi τi bi
6m 30m/s 1.0 s −3.4m/s2

Ai Bi−1 xi(0) ẋi(0) ẍi(0)
1.7m/s2 −6.0m/s2 120m 0m/s 0m/s2

The above benchmarking is based on the set of parameters in Table 15.1,
and the outcome may differ for a different set of parameters.

15.3.2 Macroscopic Benchmarking
The fundamental diagram implied by the Gipps model is plotted in Figure
15.3 against empirical observations. The model parameters are set the same
as suggested in the original paper. It can be seen that the model fits empirical

Figure 15.3 Fundamental diagram implied by the Gipps model.
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Table 15.2 Macroscopic benchmarking
parameters of the Gipps model

b B τ l
−3.0m/s2 −3.5m/s2 1 s 6.5m

data reasonably well except for free-flow conditions (i.e., in the low-density
range). In addition, the speed at capacity predicted by the Gipps model is
much lower than it should be.

The above benchmarking is based on the set of parameters in Table 15.2,
and the outcome may differ for a different set of parameters.

PROBLEMS

1. Compare the Forbes model and the Gipps model and explain the
difference in their modeling philosophy.

2. The following figure is the result of macroscopic benchmarking of the
Gipps model with the following model formulation and parameters:

1
k

=
(
− 1
2b

+ 1
2B

)
v2 + τ v+ l,

where tolerable deceleration b = −3.0m/s2, emergency braking rate
B = −3.5m/s2, perception-reaction time τ = 1.0 sm and nominal
vehicle length l = 6.5m.

Find the capacity condition (qm, km, vm) of the model and comment
on your result.

3. Perform a one-step simulation based on the following conditions: Two
cars are traveling in the same lane on a freeway. The length of both
vehicles is li−1 = li = 6m. Lane change is not considered in this
problem. At time t, the leading vehicle i − 1 is traveling at a speed of
ẋi−1(t) = 72 km/h and the following vehicle i is traveling at a speed
of ẋi(t) = 108 km/h. The spacing between the two vehicles (measured
from front bumper to front bumper) is si(t) = 40m. The perception-
reaction time of the following driver is τi = 1.5 s. Use the Gipps
model to predict the speed that the following driver will adopt after
a perception-reaction time. Assume the model parameters take the same
values as those in Section 15.3.1.
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4. Building on the above problem, at time t, a third vehicle at speed
108 km/h cuts in between the two vehicles. The spacing between the
third vehicle and the following vehicle is 15m. Use the Gipps model
to compute the speed that the following driver needs to adopt after a
perception-reaction time.



CHAPTER 16

More Single-RegimeModels

This chapter presents a few more car-following models, including the
Newell nonlinear model, the Newell simplified model, the intelligent driver
model (IDM), and the Van Aerde model. Except for the Newell simplified
model, these models not only capture the essence of car-following behavior
but also aggregate to sound macroscopic behavior.

16.1 NEWELL NONLINEARMODEL

Newell actually proposed two car-following models, one in 1961, which
will be referred to as the “Newell nonlinear” car-following model [58], and
the other in 2002, which will be referred to as the “Newell simplified” car-
following model [59] hereafter . The Newell nonlinear car-following model
takes the following form:

ẋi(t + τi) = vi(1 − e−
λi
vi

(si(t)−li)
), (16.1)

where ẋi(t) is the speed of the vehicle with ID i at time t, τi is driver i’s
perception-reaction time, vi is driver i’s desired speed, λi is a parameter
associated with driver i (i.e., the slope of driver i’s speed-spacing curve
evaluated at ẋi = 0), si = xi−1 − xi is the spacing between vehicle i and
its leader i − 1, and li is the minimum value of si, which can be viewed as
the nominal vehicle length. Note that, in microscopic modeling, the driver
and his/her vehicle is considered as a single unit and treated as a particle.
Therefore, the “driver”, the “vehicle”, the “unit”, and the “particle” are the
same thing and used interchangeably according to the context throughout
the book.

16.1.1 Properties of the Newell Nonlinear Model
Newell acknowledged that “no motivation for this choice is proposed other
than the claim that it has approximately the correct shape and is reasonably
simple.” This acknowledgment seems to tell us two things:
1. Unlike the Pipes, Forbes, and Gipps models, which are derived from

driving experiences such as safety rules, this model does not seem to be

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
http://dx.doi.org/10.1016/B978-0-12-804134-5.00016-7 All rights reserved. 223
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based on driving experiences, but seems to be based rather on a discovery
after some contemplation and empirical studies.

2. If there were something behind the contemplation, it might have been
the correct shape—the model leads to an equilibrium speed-density curve
that resembles field observations.
Under equilibrium conditions, Equation 16.1 reduces to the following

speed-density relationship:

v = vf

⎛
⎝1 − e

− λ
vf

(
1
k− 1

kj

)⎞
⎠ . (16.2)

where v is traffic speed, which is aggregated from vehicle speed ẋi, vf is free-
flow speed, which is aggregated from vi, λ is a parameter aggregated from
λi, k is traffic density, which is the reciprocal of average spacing s, which,
in turn, is aggregated from spacing si, and kj is jam density, which is the
reciprocal of average vehicle length l, which, in turn, is aggregated from
nominal vehicle length li.

16.1.2 Benchmarking
Microscopic benchmarking refers to the scenario presented in Section
12.3.1 and macroscopic benchmarking refers to the scenario presented in
Section 12.3.2.

Microscopic Benchmarking
The benchmarking result of the Newell nonlinear model is plotted in
Figure 16.1. The performance of the Newell nonlinear model is summa-
rized as follows:
• Start-up: The model is able to start a vehicle up from standstill. See

Figure 16.1 when t > 0 s.
• Speedup: The model allows the vehicle speed to jump from 0 to

30m/s in one time step, resulting in an acceleration of 30m/s2. This
is unrealistic, so an external logic has to be imposed to limit the
maximum acceleration. Note that simply setting a limiting acceleration
would result in an unrealistic acceleration profile (e.g., the vehicle may
attain maximum acceleration at high speeds). Therefore, a more realistic
acceleration logic is necessary. However, with this addition, the Newell
nonlinear model ceases to be a steady-state model, and instead becomes
a dynamic model. See Figure 16.1 when 0 s < t < 100 s.

• Free flow: The model is able to reach and settle at the desired speed
under free-flow conditions. See Figure 16.1 when 0 s < t < 100 s.
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Table 16.1 Microscopic benchmarking parameters
of the Newell nonlinear model
li vi τi λ −
6m 30m/s 1.0 s 7.9 −
Ai Bi xi(0) ẋi(0) ẍi(0)

4.0m/s2 6.0m/s2 −97m 0m/s 0m/s2

• Cutoff: By itself, the Newell nonlinear model would predict a decel-
eration of about −184.6m/s2 when the third vehicle cuts in and an
acceleration of 182.9m/s2 in the next time step. This is a very unrealistic
jerking, so an external logic has to be imposed to limit the maximum
acceleration and deceleration. Hence, the same argument as for speedup
applies here. See Figure 16.1 around t = 100 s after these external
conditions have bene incorporated.

• Following: The model is able to adopt the leader’s speed and follow the
leader at a reasonable distance. See Figure 16.1 when 100 s < t < 200 s.

• Stop and go: The model is able to stop the vehicle safely behind its leader
and start the vehicle moving when the leader departs. See Figure 16.1
when 200 s ≥ t ≤ 300 s.

• Trailing: The model is able to speed up normally without being tempted
to speed up by its speeding leader. See Figure 16.1 when 300 s < t <

400 s.
• Approaching: With the above external logic on limiting deceleration,

the model is able to decelerate properly when approaching a stationary
vehicle. See Figure 16.1 when 400 s ≥ t < 420 s.

• Stopping: The model is able to stop the vehicle safely behind the
stationary vehicle. See Figure 16.1 when t ≥ 420 s.
The above benchmarking is based on the set of parameters in Table 16.1,

and the outcome may differ for a different set of parameters.

Macroscopic Benchmarking
The fundamental diagram implied by the Newell nonlinear model is
presented in Figure 16.2, where the model parameters are adopted from
Newell’s original paper.

The Newell nonlinear model indeed exhibits the correct shape that
resembles field observations in the entire density range, as claimed by
Newell. First, the model meets the boundary conditions at (k = 0, v = vf )
and (k = kj, v = 0). Second, the flow-density exhibits a concave shape, and
the fitting quality is reasonably good given that only three parameters are
employed.
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Figure 16.2 Fundamental diagram implied by the Newell nonlinear model.
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Table 16.2 Macroscopic benchmarking
parameters of the Newell nonlinear model

vf kj λ

29.5m/s 0.2 vehicles/m 0.8

The above benchmarking is based on the set of parameters in Table 16.2,
and the outcome may differ for different set of parameters.

16.2 NEWELL SIMPLIFIED MODEL

After about 40 years, Newell published a simplified car-following model
[59]. This is indeed a very simple model because one does not need to worry
about safety rules, speed choices, and acceleration responses. What one
needs to do is simply to translate the leading vehicle’s trajectory. For exam-
ple, if vehicle i−1’s trajectory xi(t) is given in the right panel in Figure 16.3,
vehicle i’s trajectory can be directly determined by the following equation:

xi(t + τi) = xi−1(t) − li. (16.3)

Graphically, this means translating trajectory xi−1(t) to the right by a
horizontal distance of τi and then downward by a vertical distance of li—
that is, one can squeeze a rectangle with dimensions τi × li between the two
trajectories. From the speed-spacing relationship in the right panel in Figure
16.3, it becomes clear that the physical meaning of li is the minimumvalue of
the spacing—that is, the nominal vehicle length—and τi is the reciprocal of
the tangent to the speed-spacing relationship drawn at point (0, li). Evidence
shows that τi canmost likely be interpreted as the perception-reaction time of
driver i. Figure 16.3 also reveals that the spacing between the two vehicles is

si(t) = xi−1(t) − xi(t). (16.4)

Figure 16.3 Newell simplified car-following model.
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In addition, the locations of vehicle i at time t and t+τi can be related as

xi(t + τi) = xi(t) + ẋi(t)τi. (16.5)

Combining the above three equations, we get

si(t) = ẋi(t)τi + li. (16.6)

This is the same as the Pipes/Forbes model (by taking the minimum
spacing), which, in turn, is equivalent to GM1. Since the Newell simplified
model is essentially the Pipes/Forbes model, the properties and benchmark-
ing of the latter apply to the former.

16.3 INTELLIGENT DRIVERMODEL

The intelligent driver model (IDM) [60, 61] is expressed as a superposition
of the follower i’s acceleration term and a deceleration term which depends
on the desired spacing s∗i :

ẍi(t + τi) = Ai

[
1 −

(
ẋi
vi

)δ

−
(
s∗i
si

)2
]
, (16.7)

where ẍi is driver i’s acceleration,Ai is driver i’s maximum acceleration when
starting from standstill, δ is the acceleration exponent, si = xi−1 − xi is the
spacing between vehicle i and its leader i − 1, and the desired spacing s∗i is
a function of speed ẋi and relative speed (ẋi − ẋi−1):

s∗i = s0 + s1

√
ẋi
vi

+ Tiẋi + ẋi[ẋi − ẋi−1]
2
√
gibi

, (16.8)

where s0, si, and Ti are parameters.

16.3.1 Properties of the IDM
Under equilibrium conditions, Equation 16.7 reduces to the following
density-speed relationship:

k = 1

(s0 + vT)

[
1 −

(
v
vf

)δ
]−1/2 . (16.9)

If one further assumes that s0 = s1 = 0 and δ = 1, a special case of
Equation 16.9 results:
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v = (s− L)2

2vfT2 [−1 +
√
1 + 4T2v2f

(s− L)2
], (16.10)

where T is the average safe time headway, s = 1/k is the average spacing,
and k is traffic density.

16.3.2 Benchmarking
Microscopic benchmarking refers to the scenario presented in Section
12.3.1 and macroscopic benchmarking refers to the scenario presented in
Section 12.3.2.

Microscopic Benchmarking
The benchmarking result of the IDM is plotted in Figure 16.4. The
performance of the IDM is summarized as follows:
• Start-up: The model is able to start the vehicle up from standstill. See

Figure 16.4 when t > 0 s.
• Speedup: The model is able to speed the vehicle up realistically to its

desired speed. See Figure 16.4 when 0 s < t < 100 s.
• Free flow: The model is able to reach and settle at the desired speed

under free-flow conditions. See Figure 16.4 when 0 s < t < 100 s.
• Cutoff: The model retains control and responds reasonably when a

vehicle cuts in in front. See Figure 16.4 around t = 100 s.
• Following: The model is able to adopt the leader’s speed and follow the

leader at a reasonable distance. See Figure 16.4 when 100 s < t < 200 s.
• Stop and go: The model exhibits some oscillation in acceleration,

stopping behind the leading vehicle. The model is able to start moving
when the leader departs. See Figure 16.4 when 200 s ≥ t ≤ 300 s.

• Trailing: The model is able to speed up normally without being tempted
to speed up by its speeding leader. See Figure 16.4 when 300 s < t <

400 s.
• Approaching: The model is able to decelerate properly when approach-

ing a stationary vehicle. See Figure 16.4 when 400 s ≥ t < 420 s.
• Stopping: The model is able to stop the vehicle safely behind the

stationary vehicle. See Figure 16.4 when t ≥ 420 s.
The above benchmarking is based on the set of parameters in Table 16.3,

and the outcome may differ for a different set of parameters.
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Figure 16.4 Microscopic benchmarking of the IDM.
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Table 16.3 Microscopic benchmarking
parameters of the IDM

li vi τi δ s0
6m 30m/s 1.0 s 2 2m

Ai bi xi(0) ẋi(0) ẍi(0)

2.0m/s2 4.0m/s2 39.5m 0m/s 0m/s2

Table 16.4 Macroscopic
benchmarking parameters
of the IDM
vf T δ s0
29.5m/s 1.7 s 15 4m

Macroscopic Benchmarking
The fundamental diagram implied by the IDM, in particular Equation 16.9,
is presented in Figure 16.5. The model employs four parameters and exhibits
a desirable shape with good fitting quality.

The above benchmarking is based on the set of parameters in Table 16.4,
and the outcome may differ for a different set of parameters.

16.4 VANAERDEMODEL

The Van Aerde car-following model [62, 63] combines the Pipes model
[52] and the Greenshields model [9] into a single equation:

si = c1 + c3ẋi + c2/(vf − ẋi), (16.11)

where ⎧⎪⎪⎨
⎪⎪⎩
c1 = vf

kjv2m
(2vm − vf),

c2 = vf
kjv2m

(vf − vm)2,

c3 = 1
qm

− vf
kjv2m

,

(16.12)

where vf is the free-flow speed of the roadway facility, kj is the jam density,
and vm is the optimal speed at capacity qm.

16.4.1 Properties of the Van AerdeModel
Under equilibrium conditions, Equation 16.11 reduces to the following
density-speed relationship:
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k = 1
c1 + c3v + c2/(vf − v)

, (16.13)

where all variables are as defined before.

16.4.2 Benchmarking
Microscopic Benchmarking
The benchmarking result of the Van Aerde model is plotted in Figure 16.6.
The performance of the Van Aerde model is summarized as follows:
• Start-up: The model is able to start the vehicle up from standstill. See

Figure 16.6 when t > 0 s.
• Speedup: The same argument as in the corresponding part for the

Newell nonlinear car-following model applies here. See Figure 16.6
when 0 s < t < 100 s.

• Free flow: The model is able to reach and settle at the desired speed
under free-flow conditions. See Figure 16.6 when 0 s < t < 100 s.

• Cutoff: The same argument as in the corresponding part for the Newell
nonlinear car-following model applies here. See Figure 16.6 around t =
100 s.

• Following: The model is able to adopt the leader’s speed and follow the
leader at a reasonable distance. See Figure 16.6 when 100 s < t < 200 s.

• Stop and go: The model is able to stop the vehicle safely behind its leader
and start the vehicle moving when the leader departs. See Figure 16.6
when 200 s ≥ t ≤ 300 s.

• Trailing: The model is able to speed up normally without being tempted
to speed up by its speeding leader. See Figure 16.6 when 300 s < t <

400 s.
• Approaching:With limiting deceleration, the model is able to decelerate

properly when approaching a stationary vehicle. See Figure 16.6 when
400 s ≥ t < 420 s.

• Stopping: The model is able to stop the vehicle safely behind the
stationary vehicle. See Figure 16.6 when t ≥ 420 s.
The above benchmarking is based on the set of parameters in Table 16.5,

and the outcome may differ for a different set of parameters.

Macroscopic Benchmarking
The fundamental diagram implied by the Van Aerde model is presented in
Figure 16.7. The model employs four parameters and exhibits a desirable
shape with good fitting quality.
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Figure 16.5 Fundamental diagram implied by the IDM.
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Table 16.5 Microscopic benchmarking parameters of the Van
Aerde model

kj vf τi vm qm

1/6 vehicles/m 30m/s 1.0 s 25m/s 1800 vehicles/h

xi(0) ẋi(0) ẍi(0)

-99.4m 0m/s 0m/s2

Table 16.6 Macroscopic benchmarking parameters of the
Van Aerde model
vf kj vm qm
29.5m/s 0.25 vehicles/m 20m/s 1950 vehicles/h

The above benchmarking is based on the set of parameters in Table 16.6,
and the outcome may differ for a under different set of parameters.

PROBLEMS

1. Read the capacity condition (qm, km, vm) off the Newell nonlinear
model in Figure 16.2, which is generated with the following parameters:
vf = 29.5m/s, kj = 0.2 vehicles per meter, and λ = 0.8 1/s.
What capacity condition does the “cloud” (i.e., empirical data) tell
you? Comment on how realistic the Newell nonlinear model is when
compared with the empirical data.

2. The plot at the bottom right of Figure 16.2 depicts the speed-spacing
relationship of the Newell nonlinear model. The curve starts at a point
where the spacing is s = 5m and the speed is v = 0m/s. Then the curve
runs upward with a slope of λ = 0.8 1/s.
a. Assume that this portion of the curve is linear, and establish the

underlying linear equation s = f (v).
b. Assume a vehicle length of l = 5m and perception-reaction time

τ = 1.25 s. What is the underlying space-speed relationship—that
is, s = g(v)—according to the Forbes model?

c. How do you compare the above two models?
d. What would you say about the physical meaning of parameter λ?

3. Show that Van Aerde model is a combination of the Pipes model and
the Greenshields model.

4. Vehicle B is following vehicle A according to the Newell simplified car-
following model with parameters τ = 2 s and l = 5m.
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a. Write the underlying car-following model.
b. Assume that vehicle A’s trajectory is described by the following

equation: xA (t) = √
t − 10, where t > 0. Determine vehicle B’s

trajectory.
c. At time t = 16, find the spacing between vehicles A and B.

5. Derive the corresponding density-speed relationship k = K(v) from the
IDM under he assumption that s∗ = s0 + Tiẋi.

6. Further assume s0 = 0 and δ = 1, and derive the corresponding speed-
spacing relationship v = V (s) from the above density-speed model.

7. Derive the capacity condition of the Van Aerde model.



CHAPTER 17

More Intelligent Models

The car-following models introduced up to this point share one thing in
common: they are one-equationmodels, except for the Gipps model, which
has two equations. This means that these models use a single equation
to handle all driving situations, including start-up, speedup, free flow,
approaching, following, and stopping. Hence, these models are referred to
as single-regime models. The Gipps model is a two-regime model since
it has an equation for free flow and another for car following. A model is
called a multiregime model if it differentiates driving regimes and handles
them using different equations. The car-following models introduced in this
chapter fall into this category. In addition, car-following models can mimic
the way of human thinking, e.g., using rules and reasoning based on neural
networks.

17.1 PSYCHOPHYSICAL MODEL

A typical psychophysical model is the one proposed by Wiedemann [64]
in 1974. The model considers two major factors influencing driver’s
operational control: relative position �x = xi−1 − xi and relative speed
�ẋ = ẋi − ẋi−1. Hence, the working principle of the model can be
illustrated by a diagram with�ẋ as the horizontal axis and �x as the vertical
axis (see Figure 17.1).

The operating condition of a vehicle i in relation to its leading vehicle
i − 1 can be represented as a point (�ẋ, �x) in the diagram. As vehicle i
moves, its operating point changes accordingly, leaving a trajectory in the
diagram. The relation of the two vehicles can be interpreted by examination
of the location of the operating point. For example, if the point is on the
negative side of �ẋ, vehicle i is traveling more slowly than vehicle i − 1,
while the relation is reversed if the point is on the positive side of �ẋ. In
addition, the point is always on the positive side of �x since vehicle i − 1
is in front. The smaller �x is, the closer the two vehicles are to each other.
Hence, the two vehicles collide if �x is less than one vehicle length l. This

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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Figure 17.1 Illustration of a psychophysical model.

situation is depicted by the collision area in the diagram bounded by the
horizontal axis and a horizontal line at �x = l.

On top of this area is another area, denoted the deceleration area, where
the two vehicles are so close that an imminent collision causes the following
vehicle to back up for safety.

Now, suppose vehicle i is traveling on a highway with the leading vehicle
i − 1 far ahead and vehicle i is faster than vehicle i − 1. The operating
condition can be represented by point A, which has a large positive�x and a
positive�ẋ. Since vehicle i−1 is far ahead, driver i does not have to respond
to vehicle i− 1, an area of which is denoted as no reaction in the diagram.

As vehicle i keeps moving, the relative speed �ẋ remains unchanged,
but the relative separation �x decreases. Hence, the operating point moves
downward. Sooner or later, vehicle i will catch up and begin to respond
to vehicle i − 1 as the gap is closing. However, the cutoff point is rather
vague since this is a subjective matter. Perhaps a better way to draw the
line is to set an upper limit such as point B, before which drivers are less
likely to respond, and a lower limit such as point B′, after which drivers
definitely need to respond. Note that points B and B′ vary as �ẋ changes.
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The trajectory of point B or point B′ under different�ẋ separates the reaction
area from the no reaction area.

Since driver i is most likely to respond to vehicle i− 1 by slowing down
(if lane change is not an option), the operating point moves downward and
left toward to point C and finally to point D when the two vehicles are
traveling at the same speed. Now the two vehicles are in the car-following
regime, during which driver i tries to keep the same pace as vehicle i− 1
separated by a comfortable distance. However, drivers are easily bored and
distracted, especially during long trips. As a result, driver i might slow
down unconsciously (e.g., when using a cell phone). Consequently, �ẋ
becomes negative and keeps decreasing while �x increases. As such, the
operating point moves from D toward E, at which point the opening gap
reminds driver i that he or she is falling behind. Hence, the driver begins
to catch up, during which time �ẋ increases but is still negative, while �x
keeps increasing. This corresponds to a transition from E to F, when the
two vehicles are again traveling at the same speed but with a large gap in
between. Next, driver i may want to keep accelerating in order to shorten
the gap to a comfortable level, which is denoted as a transition from F
back to C. Therefore, as the driver oscillates back and forth around his or
her comfortable car-following distance, the operating point drifts around
within an area in the diagram denoted as car following.

The psychophysical model got its name because it involves both psy-
chological activities (such as perception-reaction threshold and unconscious
car following) and physical behavior (e.g., accelerating and decelerating
efforts). Compared with the models introduced before, this model captures
more driving regimes explicitly, such as free flow (no reaction area), approach-
ing (reaction area), following (car following area), and decelerating (deceleration
area).

17.2 CARSIMMODEL

The CARSIM model [65] is another multiregime model which consists of
a set of acceleration algorithms:

A1: Vehicle i is moving but has not yet reached its desired speed vi.
Depending on vehicle i’s initial speed and the urgency of the task, the
acceleration rate is found by from Figures 17.2 and 17.3.
A2: Vehicle i has reached its desired speed vi. No specific algorithm is
provided except that the driver will try to reach vi as fast as possible while
satisfying all safety and operational constraints.
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Figure 17.2 Typical acceleration rates on a level road.
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Figure 17.3 Normal acceleration and deceleration rates for passenger cars.

A3: Vehicle i was stopped and has to start from standstill. A maximum
acceleration rate is applied constrained by a noncollision constraint after
a response delay.
A4: Vehicle i is in car-following mode with its leader i − 1. A4 is
determined by the following safety rule being satisfied: vehicle i should
leave a nonnegative gap (si − li−1 ≥ 0) from vehicle i− 1 should vehicle
i be advanced one time step �t: si(t) = xi−1(t) − xi(t + �t) ≥ li−1
where xi(t+�t) = xi(t)+ ẋi�t− 0.5A4�t2 and the other variables are
as defined before.
A5: Vehicle i in car-following mode is subject to a noncollision con-
straint which is reinforced by considering the desired spacing:

s∗i (t) = xi−1(t)−xi(t+�t) ≥ max

⎧⎨
⎩
ẋi(t + �t)τi + li−1or

ẋi(t + �t)τi + [ẋi(t+�t)]2
2Bi

− [ẋi−1(t)]2
2Bi−1

+li−1,

where ẋi(t + �t) = ẋi(t) + A5�t, and Bi and Bi−1 are the maximum
deceleration rates of vehicle i and vehicle i− 1, respectively. The astute
reader immediately recognizes that the first choice of the right-hand side
follows the rationale of the Forbes model [53, 54, 66] and the second
choice is similar to that of the Gipps model [57] if driver i is willing to
apply the emergency brake (i.e., bi = Bi) as well.
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Figure 17.4 Illustration of a rule-based model.

17.3 RULE-BASED MODEL

The model developed by Kosonen [67] is a representative of rule-based
models (see Figure 17.4), and is reproduced below:

1. NO SPEED CHANGE

Keep the present speed level (default case).

2. ACCELERATE IF [ẋi < vi] and [t − tlast > Tacc(ẋi)]
The current speed ẋi is less than the desired speed vi and the

time elapsed from the last acceleration tlast is more than Tacc.

3. NO ACCELERATION IF [sij < smin(ẋi, ẋj) + wstab(ẋi, ẋj)]

The distance from obstacle sij is less than the minimum safe

distance smin plus the width of the stable area wstab.

4. SLOW DOWN IF [sij < smin(ẋi, ẋj)]

The distance from obstacle sij is less than the minimum safe

distance smin.

5. DO NOT SLOW DOWN IF [ẋi < ẋj] or [t − tlast < Tmaxdec]

Own speed is less than obstacle speed or maximum deceleration

rate is exceeded.

6. GOTO ZERO IF [sij < 0] and (Obstacle = physical)

Distance to physical obstacle is below zero (= collision).

At each time step, the motion of vehicle i is checked against the above
rules one by one. A later rule always supersedes earlier ones should there
be a conflict. Compared with the models presented before, the rule-based
model is closer to human intelligence with less mathematical tractability.

17.4 NEURAL NETWORKMODEL

Perhaps the approach that best mimics driver behavior is artificial neural
networks [68, 69]. This is because artificial neural networks are capable of
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Figure 17.5 Illustration of a neural network model.

associating, recognizing, organizing, memorizing, learning, and adapting.
A neural network typically consists of many interconnected working units
called neurons; see Figure 17.5 for an example of a neural network in
the right panel and a neuron in the left panel. A neuron receives inputs
x1, x2, . . . , xn which are weighted w1,w2, . . . ,wn, respectively. The total
input to the neuron is the weighted sum of individual inputs: z =∑n

i=1 wixi. The output of the neuron y depends not only on z but also
on the threshold of the neuron θ . The neuron outputs 1 if z ≥ θ and 0
otherwise.

Neurons with such a simple functionality can be organized into
neural networks of varying complexity and topology. The right panel in
Figure 17.5 illustrates an example of a back-propagation neural network.
The network consists of one input layer (which in turn consists of a set
of neurons), one output layer, and one or more hidden layers. Each neuron
feeds its output only forward to neurons in the next layer, without backward
feeding and cross-layer connection.

To apply neural networks to themodeling of car-following behavior, one
first identifies a set of factors to be considered that influence the driver’s
operational control. For example, as discussed before, these influencing
factors can be spacing s, speed ẋ, relative speed �ẋ, etc. It is also possible
to include other factors not considered before, such as a tailgating vehicle
behind, weather, and intervehicular communication. These factors are
represented by neurons in the input layer. The output layer in this example
consists of only one neuron—acceleration/deceleration or speed choice. If
one needs to model not only longitudinal but also lateral motion, a second
neuron is necessary to represent steering effort. Between input and output
layers lie one or more hidden layers. The more hidden layers the network
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has, the more flexible it is, but the more complex it becomes. After the
neural network has been constructed, it needs to be trained before it can be
useful.

The training process starts with data collection. For example, from
field experiments, one observes that, at time t1, a vector of input
[s(1), ẋ(1),�ẋ(1), . . .] results in driver operational control [ẍ(1)], and more
patterns are observed at t2, t3, . . . , tm:

⎡
⎢⎢⎣

s(1), ẋ(1),�ẋ(1), . . .
s(2), ẋ(2),�ẋ(2), . . .

. . .

s(m), ẋ(m),�ẋ(m), . . .

⎤
⎥⎥⎦ ⇒

⎡
⎢⎢⎣

ẍ(1)
ẍ(2)
. . .

ẍ(m)

⎤
⎥⎥⎦ . (17.1)

After initializing the neural network (i.e., assigning initial values to
connection weights and neuron thresholds), one imposes observations at
t1 (i.e., the first row of input data) at the input layer, which feeds forward to
hidden layers and eventually to the output layer. If the computed output is
different from the observed output, the error is propagated backward layer
by layer to adjust their connection weights and neuron thresholds. This is
why networks of this kind are called back-propagation networks. After the
error has been propagated backward, the same input is imposed again at the
input layer and the network computes a new output. This time, the output
error, if any, should be smaller than in the previous round. Again, the error
needs to be propagated back, and all the weights and thresholds are adjusted
for a new round of learning. The process continues until the computed
output becomes sufficiently close or equal to the observed output. This
completes the learning of the first input-output pattern (i.e., the first row
of data set 17.1). Next, one continues with the training of the second row,
the third row, and so on. The training is completed after all data in the set
have been trained and the neural network is able to associate the correct
output with the corresponding input.

The trained neural network is now ready to be applied to vehicle
operational control. At any moment, the neural network is able to search
for an output (i.e., acceleration/deceleration or speed in the next step) on
the basis of the input it receives (i.e., current spacing s, speed ẋ, relative
speed �ẋ, etc.). In addition, the neural network may continue learning
while working, and hence adapt to a new environment which it has never
encountered before.
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17.5 SUMMARYOF CAR-FOLLOWINGMODELS

It is time to summarize the car-following models introduced so far. One
way to classify these models is to look at the model output. Dynamic
models employ acceleration/deceleration ẍi(t) as the model output and the
modeling philosophy behind these models is that, at any time, the driver tries
to answer the following questions: Should I speed up or slow down next? By
how much? Example models for this category are General Motors models
(GM models), the IDM, the CARSIM model, the rule-based model, the
psychophysical model, and the longitudinal control model, which will be
introduced in Chapter 22. Steady-state models use speed ẋi(t) as the model
output, and the modeling philosophy behind these models is that, at any
time, the driver tries to answer the following question: What is my target
speed next? Example models for this category are the Pipes model, the
Forbes model, the Gipps model, the Newell nonlinear model, and the Van
Aerde model. Static models employ displacement xi(t) as the model output,
and the modeling philosophy behind these models is that, at any time, the
driver tries to answer the following question: Where should I be next?
An example model for this category is the Newell simplified car-following
model.

Another way to classify these models is to examine model intelligence.
For example, the Pipes model is a one-equation model, and this equation
handles all driving situations—that is, they are treated as a single regime.
Hence, the Pipes model is a single-regime model. Also in this category are
the Forbes model, GM models, Newell models, the IDM, and the Van
Aerde model. The Gipps model consists of two equations, one for free
flow and the other for car following, and hence is a two-regime model.
Both the CARSIMmodel and the psychophysical model differentiate more
driving regimes, and hence are multiregime models. Further, the rule-based
model incorporates driving strategies for various driving regimes into a set
of simple IF-THEN rules. Better yet, the neural network model applies
artificial intelligence to organize, learn, and adapt to driving experiences.
Illustrated in Figure 17.6, car-following models become more and more
intelligent as one moves from left to right.

On the other hand, since there is only one equation in a single-regime
model, it is easy to track the effect of an input on the output. In addition,
it is tractable to aggregate/integrate such a microscopic model in order to
understand its macroscopic properties. Therefore, single-regime models are
mathematically attractive. Two-regime or multiregime models, however,
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are inevitably piecewise and involve discontinuity, which makes them less
mathematically attractive. Though computationally simple, the rule-based
model consists of a set of IF-THEN rules rather than a clearly defined
mathematical formulation. Hence, it is very difficult to analyze macroscopic
properties of this kind of model. The neural network model, in the extreme,
is very intractable because there is no clear mathematical formulation that
defines the relation between input variables and the output variable. If a
model with a clear mathematical formulation is analogous to a transparent
box through which one can trace an input all the way to the output, a neural
network is like a black box in which what is happening is a mystery.

A more rigorous effort with regard to the taxonomy of micro-
scopic models was made by the Next-Generation Simulation program1

(see Figure 17.7). The diagram consists of four modules/rows from top
to bottom: route-choice models, lane-changing models, gap-acceptance models,
and car-following models. In the car-following module, there are a few lines
representing different modeling approaches. For example, one approach
is called stimulus-response, which starts with with a few papers published
around 1960 serving as the basis of GM models. Labeled along this line are
further models that have been proposed or existing models that have been
revised, showing the historical evolution of this modeling approach. One
line up is the desired measure approach, along which are the Pipes model,
the Newell nonlinear model, the Gipps model, and the CARSIM model.
The next line is the psychophysical approach, where one finds the Wiedeman
model. This is followed by the rule-based approach, an example of which is
the Kosonen model. The IDM is on its own at the top. Note that the neural
network model a potential addition to this module. The other modules and
models shown can be interpreted in a similar way.
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Figure 17.6 Summary of car-following models.

1 http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
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Implementation Snapshot

Tactical Lane Changing

Toledo, 2002

Stochastic

Dial, 1971

Multi-Regime ModelsCar-Following Models

Current

Figure 17.7 Taxonomy of microscopic models.
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On the right-hand side of Figure 17.7 there are a set of vertical lines.
On top of them are a set of transportation simulators (or simulation software
packages), such as AIMSUN, CORSIM, HUTSIM, Integration, Paramics,
and VISSIM. The intersection of a horizontal line (a modeling approach)
and a vertical line (a simulator) denotes potential implementation of a car-
following model of this approach in the simulator. If the implementation
is true, a diamond-shaped dot is placed at the intersection. Therefore, it is
clear that car following in CORSIM is based on a desired measuremodel, car
following in VISSIM is based on a psychophysical model, and car following
in HUTSIM is based on a rule-based model. The connection of simulators
and models in other modules can be interpreted in a similar way.

PROBLEMS

1. The figure below was used by Wiedemann in his psychophysical model
to determine the desired minimum following distance as a function of
speed. Use the figure to answer the following questions and do the
following task:

a. What is the assumed nominal vehicle length (i.e., the average spacing
when traffic is jammed)?

b. According to the middle curve, what is the desired minimum
following distance when the speed is 30m/s?

c. Plug the results of (a) and (b) into the Pipes model to estimate the
corresponding perception-reaction time.

2. The figure below was used by Wiedemann in his psychophysical model
to determine the maximum acceleration of passenger cars as a function
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of speed. Use the figure to answer the following questions and do the
following tasks:

a. What is the assumed maximum acceleration?
b. What is the assumed cruise speed according to the middle curve?
c. Formulate the underlying acceleration profile—that is, express ac-

celeration as a function of speed.
d. Derive the corresponding equations to calculate acceleration, speed,

and displacement from initial conditions x(t = 0) = x0 and v(t =
0) = v0.

e. If the vehicle is traveling at 20m/s, determine its speed after 5 s of
acceleration and the distance traveled during that time.

3. Figure 17.2 depicts typical acceleration rates on a level road used by the
CARSIM model. Convert the units to the metric system and plot the
data on top of the figure in problem 2 (use the column for cars and
take the midpoint of each speed range). Comment on how the accel-
eration profiles differ in the CARSIM model and the psychophysical
model.

4. Determine all the rules that apply and the rule that actually takes effect
in each of the following scenarios according to the rule-based model:
a. A vehicle is entering an empty freeway at a speed of 60 km/h. The

freeway speed limit is 90 km/h.
b. A vehicle is cruising on the freeway at a desired speed of 95 km/h.

There is no other vehicle in the visible range in front.
c. A vehicle at a speed of 100 km/h is approaching a leader at a speed

of 90 km/h. Their current spacing is 70m, and the minimum safe
distance 100m.
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d. A vehicle with a desired speed of 95 km/h is following its leader, both
traveling at a speed 90 km/h with a spacing of 120m. The minimum
safe distance is 100m, and the stable area is 25m.

e. A vehicle at a speed of 70 km/h is changing to the target lane, where
there is a leader traveling at a speed of 90 km/h. The spacing between
the two vehicles is 70m, and the minimum safe distance is 100m.

5. The minimum safe distance in the rule-based model can be formulated
in many ways. Use your car-following knowledge learned in previous
chapters to propose two ways to determine the minimum safe distance.



CHAPTER 18

Picoscopic Modeling

Suppose one is observing traffic 10,000m above the ground, and the
traffic behaves as a compressible fluid whose states (speed, flow, density,
etc.) propagate back and forth like waves. This is a scenario of macroscopic
modeling. If one goes to 3000m above the ground, the sense of waves
recedes and a scene of particles emerges. A vehicle behaves as a particle
hopping from one cell to another governed by predetermined logic. This is
a scenario of mesoscopic modeling. If one goes even lower to 1000m above
the ground, the scene is dominated by moving particles which interact with
each other so as to maintain safe positions in the traffic stream. This is a
scenario of microscopic modeling as well as the state of the art.

What is the next level of traffic flow modeling? Continuing with the
above analogy, the next level should provide a perspective as if one were on
the ground and driving in one of the vehicles in the traffic. What one sees
now is neither a wave nor a particle, but a detailed picture incorporating
drivers, vehicles, and the environment (e.g., roadway, signs, signals) (see
Figure 18.1). Drivers collect information and make control decisions in
terms of steering, acceleration, and deceleration. Vehicles dynamically
respond to their drivers by executing their control decisions and moving
on the ground accordingly. Feedback from vehicle dynamics, together with
information from the environment, constitutes the basis for drivers to make
control decisions in the next step. Traffic operation is simply the movement
and interaction of all vehicles in the system over time and space. This is a
scenario of picoscopic modeling.

18.1 DRIVER, VEHICLE, AND ENVIRONMENT

Traffic flow modeling at the picoscopic level should not only represent
drivers, vehicles, and the environment in different models, but should also
capture the interaction among these components. Therefore, a natural ap-
proach is to address the modeling problem as a driver-vehicle-environment
closed-loop system [70, 71] as illustrated in Figure 18.2.

In a transportation system, drivers are active components which make
decisions, while vehicles are passive components which execute decisions.

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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Figure 18.1 A picoscopic view of a transportation system.

Figure 18.2 A driver-vehicle-environment closed-loop system.

The interaction between a driver and his/her vehicle constitutes a basic unit
in a traffic stream. Therefore, a natural way to mimic the real-world system
is to model drivers and vehicles separately but with interaction between
them. Drivers are motivated by goals, act autonomously, and reason on the
basis of their knowledge. Figure 18.3 presents the structure of such a driver
modeling approach.

This approach involves three components: inputs, driver, and outputs.
Inputs to the model are environment information and vehicle feedback.
The environment loosely refers to the entire system, including drivers,
vehicles, pedestrians, roadway infrastructure, traffic control devices, road-
side, abutting lands, nearby business, etc. Vehicle feedback includes part
of vehicle dynamic responses, such as vehicle speed, acceleration, and yaw
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Figure 18.3 Picoscopic modeling: driver modeling.

velocity, perceived by the driver and affecting his/her driving decision. As an
intelligent agent, a driver is able to (a) respond in a timely fashion to changes
in the environment, (b) exercise control over his/her own actions, (c) pursue
a goal which motivates his/her actions, (d) communicate with other agents,
and (e) change his/her behavior on the basis of previous experience. With
these considerations, the driver model consists of the following components:
a perception interface which collects and transforms information before
it enters the driver, a reaction interface which converts driver decisions
to actionable instructions before they are executed by the vehicle, driver
properties including driver’s goals and characteristics, a knowledge base
including experiences and decision rules that govern driving behavior,
and an information dispatcher, which is the central processing unit of the
driver. Outputs of the driver model are driving decisions, including steering,
accelerating, and braking.

In Chapter 21, a field theory will be introduced that can serve as the basis
for the intelligent driver. In this theory, highways and vehicles are perceived
as a field by a subject driver whose driving strategy is to navigate through
the field along its valley.

The approach to vehicle modeling needs to incorporate vehicle dynam-
ics so that vehicle dynamic responses and lateral movement can be captured.
Figure 18.4 illustrates such an approach which includes inputs, dynamic
vehicle, and outputs. Inputs to the vehicle come from two sources: inputs
from the driver, including steering, throttle position, and brake position,
and inputs from environment such as roadway surfaces, lanes, curves, and
resistances. The vehicle model consists of vehicle-specific information (i.e.,
vehicle properties such as mass, dimension, and engine power) and vehicle-
generic information, including a set of dynamic equations describing the
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Figure 18.4 Picoscopic modeling: vehicle modeling.

dynamic performance of a class of vehicles, such as acceleration/deceleration
and steering performance. Outputs of the dynamic vehicle are vehicle
dynamic responses, of which longitudinal acceleration, lateral acceleration,
and yaw velocity are of particular interest.

In Chapter 19, a simple engine model will be formulated with reason-
able accuracy and excellent computational efficiency to facilitate vehicle
modeling. In Chapter 20, a simple dynamic interactive vehicle model will
be formulated that requires minimal calibration effort and computational
resources.

Combining the above driver and vehicle models results in a driver-
vehicle unit which constitutes a basic building block of roadway traffic. Such
units as well as roadways, traffic control devices, and other transportation
system components constitute a general environment in which a driver-
vehicle unit operates. The interactions among drivers, vehicles, and the
environment are summarized in the picoscopic transportation modeling
architecture shown in Figure 18.5.

In this architecture, the driver receives information from the environ-
ment such as roadways, traffic control devices, and the presence of other
vehicles. The driver also receives information from his/her own vehicle
such as speed, acceleration, and yaw velocity. These sources of information,
together with driver properties (such as characteristics and goals), are used
to determine driving strategies (such as steering and accelerating/braking).
The driving strategies are fed forward to the vehicle, which also receives
roadway information from the environment. These sources of information,
together with vehicle properties, determine the vehicle’s dynamic responses
on the basis of vehicle dynamic equations. Moving longitudinally and
laterally, the vehicle constitutes part of the environment. Some of vehicle
dynamic responses such as speed, acceleration, and yaw velocity are fed back
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Figure 18.5 Picoscopic modeling: modeling architecture.

to the driver to determine driving strategies in the next step. Therefore,
the architecture creates an environment, in which each vehicle is an
autonomous agent which is driven by goals and is able to achieve the goals
by moving through the environment. Thus, traffic operation is simply the
motion and interaction of all vehicles in the environment.

18.2 APPLICATIONS OF PICOSCOPIC MODELING

Transportation modeling and simulation is characterized by two competing
dimensions: scale (i.e., geographical scope covered in the modeling) and
level of detail (i.e., resolution provided by the model). Because of the pro-
cessing power of today’s computers, a macroscopic model can achieve a very
large modeling scale, such as the Commonwealth of Massachusetts, with
relatively low resolution. A mesoscopic model strikes a balance between the
two; a microscopic model is able to provide fine modeling resolution within
a limited geographical area, such as the city of Boston. Following this trend, a
picoscopic model would furnish ultrahigh modeling resolution but within a
very limited geographical area, such as the roads surrounding Public Garden
in Boston. With such a fine level of detail, picoscopic modeling can help
address many transportation-related problems, among which the following
are a few examples.

18.2.1 Interactive Highway Safety Design
Picoscopic transportation modeling can be used to assist highway design.
For example, a highway design can be tested by different “drivers” and
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“vehicles” in a computer to check if the highway provides sufficient sight
distance to avoid accidents or a curve is properly superelevated to allow safe
turning. Such an interactive highway safety design not only ensures design
quality but also saves time and resources to achieve the design goal.

18.2.2 Connected Vehicle Technology
Future vehicles will be equipped with dedicated short-range commu-
nications, along with sensing, positioning, and computing devices. As
such, vehicles will be able to communicate with other vehicles as well as
the roadside. Such a connected vehicle technology will transform future
highways and streets into an environment that encompasses ubiquitous
computing and communication (see Figure 18.6). Consequently, innovative
applications can be deployed to dramatically increase safety, throughput, and
energy efficiency. However, such systems elude mathematical analysis and
conventional simulation because of the complexity and interdependency
involved. Picoscopic modeling might be able to address these systems
because it not only captures sufficient modeling details but also allows
the incorporation of the effects of connected vehicle technology into
modeling.

18.2.3 Transportation Forensics
Investigation of a traffic accident frequently requires the ability to deci-
pher what happens shortly before, during, and after the accident. This
involves reconstruction of the accident during which the driver perceives

IntelliDrive-quipped vehicle

Roadside
equipment

Communication link

Vehicular ad-hoc
network (VANET)

Non-equipped vehicle

Figure 18.6 An illustration of connected vehicle technology.
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an immediate hazard, makes a decision, and executes control, while the
vehicle’s dynamically responds to control instructions, moves on the ground,
collides with another vehicle, and is redirected, potentially causing a
second crash. Modeling at such a level of detail necessitates a picoscopic
approach.

18.2.4 Emergency Management
In analyzing transportation systems under extreme conditions, one must
have both the capability of overseeing the full picture (e.g., a regional
transportation network) and the capability of zooming in for local details
(e.g., a corridor or an intersection). Anyone who is familiar with Google
Maps or Google Earth develops a sense of the importance of having
global information yet being able to zoom in and view local details.
The transportation modeling and simulation tools developed so far have
offered only a single-level resolution. As such, they are suited for either
solving large-scale transportation problems with coarse resolution or solving
small-scale problems with fine details. Though these tools can provide a
partial solution, efforts are needed to integrate them to provide an integral
analysis with both scale and detail because emergency management involves
addressing multiple aspects of the emergency.

Transportation modeling at the picoscopic level is essential to help
achieve very fine modeling detail and address problems that are beyond the
capabilities of conventional modeling tools. For example, conventional tools
are developed for use under peaceful settings, and thus they are not suited for
coping with unusual traffic operations. Under extreme conditions, drivers
are under great pressure, and their driving behavior changes drastically from
their usual ways. As a result, safety as a primary goal may give way to the
need of getting out of the endangered site as quickly as possible. Traffic rules
may not be observed, and consequently, unusual operations such as running
a red light, violating priority rules, and off-road operations are possible.
Existing modeling and simulation tools are based on the assumption of
driving in a safe world, so they have difficulty to replicate situations under
extreme conditions. Moreover, panic behavior is likely to result in more
frequent accidents and crashes than usual. However, existing modeling and
simulation tools are designed to guarantee “accident-free” situations, which
prevents these tools from modeling and simulating transportation systems
under extreme conditions.
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PROBLEMS

1. Where do car-following models fit in the driver-vehicle-environment
closed-loop system framework?

2. Comment on the potential benefits of picoscopic traffic flow modeling.
3. Comment on the potential costs of picoscopic traffic flow modeling.
4. Comment on the appropriate applications of picoscopic traffic flow

modeling.



CHAPTER 19

Engine Modeling

As discussed in the previous chapter, a key component of picoscopic model-
ing is to capture vehicle dynamics. Such an issue has been greatly simplified
in microscopic modeling where the driver and vehicle are combined into
a single unit called an active particle. Vehicle dynamic properties are either
ignored or simplified. For example, in steady-state car-following models
such as the Pipes model, a vehicle’s speed can jump from zero to an arbitrary
full speed, resulting in an unrealistic acceleration profile. In dynamic car-
following models such as General Motors models, the rate of acceleration
can change in such a way that is beyond the capability of real-world vehicles.
However, in picoscopic modeling, finer details and accuracy are called for,
and hence the above simplified approach becomes inadequate. Because
vehicle acceleration plays an important role in traffic operation such as in
the calculation safe car-following distances, the determination of acceptable
gap sizes, and bypassing slow vehicles, it is critical to base the modeling on
sound dynamic vehicle models. Toward this goal, engine modeling is the
first step which determines the available power and further torque under
varying speeds. Then, the power and torque are fed into dynamic vehicle
models to determine the vehicle’s acceleration capability.1

19.1 INTRODUCTION

Though there has been a wealth of literature in the modeling of internal
combustion (IC) engines, these models were developed with a special
interest in assisting engine design, analysis, control, and diagnosis. While
these models are quite successful for their intended purposes, several reasons
prevent them from being equally successful in traffic flow modeling and
further the modeling of connected vehicle technology (CVT). For example,
a typical procedure in these applications is to invoke routines such as car-
following, lane-changing, and gap-acceptance logic to check for potential
collisions. To ensure safety, this procedure has to be repeated with such a
high frequency that conventional engine models, owing to their intrinsic
complexity, are beyond the capacity of a contemporary onboard computer.

1 This chapter is reproduced from [72].
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In addition, most of these engine models require proprietary parameters
such as throttle body size and mass of the piston. This prevents the adoption
of these models across a wide variety of vehicles. Therefore, an ideal
engine model suited for the above-mentioned applications should meet the
following criteria:
• Accuracy: The engine model must provide reasonable accuracy to

predict engine performance with throttle and engine speed as inputs
and engine power and torque as outputs.

• Computational efficiency: The engine model must be simple enough to
facilitate onboard computing with high frequency in real time.

• Accessibility: To assist wide deployment across different vehicles, the
engine model should not rely on proprietary parameters and variables
that are difficult to obtain. All the information needed to run the model
(such as peak engine power, torque, and the associated engine speeds)
should be publicly available (e.g., http://www.cars.com).

• Formulation: The engine model should be analytical. Engine models
based on lookup tables are not only prohibitive to prepare wide classes
of vehicles but are also resource-demanding in computation and storage.

• Calibration: The engine model should involve the least calibration effort
or better yet should be calibration-free. Again, it would be a daunting
task if an engine model had to be calibrated for every vehicle.
With the above list of criteria, the objective of this chapter is to

develop a simple engine model that is suited for these applications. Three
simple engine models are presented in this chapter. These engine models
will be formulated and empirically validated. Special attention will be
paid to the above criteria when we compare the performance of these
models, on the basis of which the best model will be recommended.
Compared with existing work reviewed in the next section, a limited
theoretical contribution is claimed in that these models are rather simple
and some of the modeling concepts (such as polynomial fitting and the
Bernoulli principle) have already been explored in the past. However, the
recommended model does fill a gap in a nonconventional arena such as
CVT-enabled applications, where excellent computational efficiency and
reasonable accuracy are desirable.

19.2 REVIEWOF EXISTING ENGINEMODELS

The objective of this section is to highlight existing work in engine
modeling with an emphasis on IC engines. Given the wealth of literature, it
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is practically intractable to include all work. Nevertheless, the review should
present a reasonable overview of historical efforts and the current state.

It appears that efforts to model engines have a much shorter history
than the engine itself. The first physically based dynamic engine models
were reported in Refs. [73–76] which recognized the effects of throttle and
intake manifold dynamics. Much of the early effort in engine modeling was
surveyed in Ref. [77], with a focus on IC engine models for control.

A trend of increasing modeling accuracy was quite noticeable in the
historical evolution. The engine models developed in Refs. [78, 79]
included fuel film dynamics and engine rotational dynamics with transport
delays. Continuing this modeling approach, a three-state engine model was
developed in Ref. [80] based on the work in Refs. [74, 75, 81]. Shortly
afterward, Akinci et al. [82] also presented a nonlinear three-state dynamic
model of a spark-ignition engine and further effort was reported in Ref.
[83]. Rizzoni [84] formulated a global model for the IC engine, and a
concurrent paper [85] described a stochastic model. A nonlinear engine
model was proposed in Ref. [86]. Hong [87] developed an engine model
based on the “filling and emptying” method for unsteady gas flow across
the engine cylinder [88]. A low-dimensional, physically motivated engine
model was proposed in Ref. [89]. Shiao et al. [90] proposed remedies to the
assumption of constant mass moments of inertia which had led many engine
models to perform poorly under high engine speed. To serve the purpose
of engine design, Chiavola [91] described the unsteady gas flow in both
intake and exhaust systems. A very complicated engine model involving 12
degrees of freedom [92] was proposed to capture even more details.

On the applied side, efforts were identified which adopted existing
models or extended existing work. Kabganian and Kazemi [93] applied
the two-state engine model developed in Ref. [80] to slip control. A real-
time engine model [94] similar to that in Ref. [78] was used to develop a
nonlinear model-based control strategy for hybrid vehicles. Delprat et al.
[95] modeled an IC engine as part of hybrid vehicle modeling. Scillieri
et al. [96] developed a direct-injection spark-ignition engine model to
demonstrate the potential performance benefits of reference feed-forward
control. Two simulation packages involving IC engine models [97, 98] were
also identified.

In contrast to the ever-increasing desire for modeling details, some
applications such as real-time engine control necessitate simpler engine
models. Recognizing the inherently nonlinear nature of IC engines, Cook
and Powell [99] argued that a linear engine model reduced from the model
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in Ref. [73] might be desirable for the purpose of engine control analysis.
To facilitate the development of autonomous intelligent cruise control),
Swaroop et al. [100] used an engine model which was essentially the first
state equation developed in Ref. [80]. A very simple engine model was
presented in Ref. [101] for teaching purposes. An even simpler model was
suggested by Genta [102] to assist the modeling of vehicle dynamics, and
we shall revisit this model shortly.

To facilitate a cross-comparison of engine models in terms of their
complexity, accuracy, accessibility, and intended applications, a summary
table is provided in Appendix 19.A.

19.3 SIMPLEMATHEMATICAL ENGINEMODELS

This section presents three simple engine models. Model I is an existing
model [102], while models II and III were developed by the author.

19.3.1 Model I: Polynomial Model
In an effort to develop a dynamic vehicle model, Genta [102] suggested
a very simple engine model which used a polynomial to empirically
approximate the relationship between engine power, P, and engine speed,
ω—that is,

P =
3∑
i=1

Ciω
i, (19.1)

where the Ci (i = 0, 1, 2, 3) are coefficients and can be estimated from
empirical engine curves. Artamonov et al. [103] suggested the following
values for a spark-injection engine:

C1 = Pmax/ωp,
C2 = Pmax/ω

2
p,

C3 = −Pmax/ω
3
p,

(19.2)

where Pmax is the peak power and ωmax is the engine speed at which the
power peaks. As is well known, engine torque, �, is engine power divided
by engine speed:

� =
3∑
i=1

Ciω
i−1, (19.3)

where coefficients Ci (i = 0, 1, 2, 3) remain the same as in Equation 19.1.
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19.3.2 Model II: Parabolic Model
Motivated by the simplicity of model I and noticing the peak in a typical
engine torque curve, one conjectures that a parabola might suffice to
approximate the torque curve:

� = C1 +C2(ω − ωt)
2, (19.4)

where C1 and C2 are constants and ωt is the engine speed at peak torque.
To ensure that the power curve peaks at ωp, one replaces C1 with a different
coefficient C3:

P = C3ω + C2(ω − ωt)
2ω. (19.5)

Given that the engine outputs Pmax at ωp and outputs �max at ωt, the
following result:

�max = C1 + C2(ωt − ωt)
2 = C1, (19.6)

Pmax = C3ωp + C2(ωp − ωt)
2ωp, (19.7)

dP
dω

|ω=ωp = (C3 + C2(ω − ωt)
2 + 2C2ω(ω − ωt))|ω=ωp = 0. (19.8)

Solve Equations 19.7 and 19.8:

C2 = − Pmax

2ω2
p(ωp − ωt)

, (19.9)

C3 = Pmax

2ω2
p

(3ωp − ωt). (19.10)

Therefore,

� = �max − Pmax

2ω2
p(ωp − ωt)

(ω − ωt)
2, (19.11)

P = Pmax

2ω2
p

(3ωp − ωt)ω − Pmax

2ω2
p(ωp − ωt)

(ω − ωt)
2ω. (19.12)

Equations 19.11 and 19.12 constitute model II, and guarantees that its
power and torque curves peak at their respective peak engine speeds.

19.3.3 Model III: Bernoulli Model
This model is based on the Bernoulli principle, which states that for an
ideal fluid (e.g., air) on which no external work is performed, an increase in
velocity occurs simultaneously with a decrease in pressure or a change in the
fluid’s gravitational potential energy. When the fluid flows through a pipe
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(e.g., the intake manifold) with a constriction (e.g., the throttle) in it, the
fluid velocity at the constrictionmust increase in order to satisfy the equation
of continuity, while its pressure must decrease because of conservation of
energy. The limiting condition of this effect is choked flow, where the mass
flow rate is independent of the downstream pressure (e.g., in the combustion
chamber), depending only on the temperature and pressure on the upstream
side of the constriction (e.g., the atmosphere). The physical point at which
the choking occurs is when the fluid velocity at the constriction is at sonic
conditions or at a Mach number (the ratio of fluid velocity and sound speed)
of 1. With the above knowledge, the Bernoulli engine model is developed
as follows.

The theoretical volumetric fresh mixture flow rate into the engine, V̇t, is

V̇t (m
3/s) = Ve (m

3/cycle) × cycles/revolution

× enginespeed(revolutions/s), (19.13)

where Ve is engine displacement, the number of cycles per revolution
is 1/2 for a four-stroke engine, and the engine speed (revolutions per
second) is ωe/2, where ωe is the engine speed in radians per second.
Therefore,

V̇t = Ve × 1

2
× ω

2π
= Veωe

4π
. (19.14)

This model assumes that the air is an ideal gas. According to the ideal
gas law,

pV = m
m′RT , (19.15)

where p is the absolute pressure, V is the volume of the vessel containing
the gas, m is the mass of the gas, m′ is the molar mass of the gas, R is the gas

constant, and T is the temperature in kelvins. Therefore, m = pm′V
RT , and

the density of the gas in the vessel is

ρ = m

V
= pm′

RT
= p

RaT
, (19.16)

where Ra = R/m′ and for air Ra ≈ 287 Nm/kg/K. Further, the mass air
flow rate, ṁ, as a function of the volumetric air flow rate, V̇ , is

ṁ = pm′

RT
V̇ = p

RaT
V̇ . (19.17)

For an engine, V̇ is replaced by V̇t and the speed of air flow is v = V̇/A,
where A is the cross-sectional area of any point in the intake manifold. The
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constriction in the manifold is the throttle, whose cross-sectional area is
θ × A, where θ is percent of throttle opening. So the mass flow rate of air
entering the engine is

ṁ = p
RaT

V̇t = p
RaT

vA. (19.18)

According to compressible fluid mechanics [104], the speed of air flow,
v, is related to a Mach number, Ma, which is the ratio of air flow speed to
sound speed vs = √

kRaT—that is,

Ma = v
vs

= v√
kRaT

= V̇t

A
√
kRaT

, (19.19)

where k is the specific heat ratio. Assume the stagnation state (where the
flow is brought into a complete motionless condition in an isentropic
process without other forces) holds. With the stagnation state for the ideal
gas model in Sections 4.1 and 4.2 in Ref. [104], Equation 19.18 can be
translated to

ṁ = A

(√
kMap0√
RaT0

)(
1 + k− 1

2
M2

a

)− k+1
2(k−1)

, (19.20)

where p0 and T0 are the stagnation pressure and temperature, respectively.
Plugging 19.19 into 19.20 yields

ṁ = A
(

V̇tp0
ARaT0

) (
1 + V̇ 2

t (k− 1)
2A2kRaT0

)− k+1
2(k−1)

. (19.21)

Notice that Equations 19.20 and 19.21 apply to flow everywhere. When
the flow is choked (i.e., Ma = 1) and the stagnation conditions (i.e.,
temperature, pressure) do not change, Equation 19.20 reduces to

ṁ = A

( √
kp0√
RaT0

)(
1 + k− 1

2

)− k+1
2(k−1)

. (19.22)

For exact stoichiometric air-fuel ratio λ, fuel energy density Ef , and
engine thermal efficiency η, the power developed by the engine is

P = λEfη

⎡
⎣A( V̇tp0

ARaT0

)(
1 + V̇ 2

t (k− 1)

2A2kRaT0

)− k+1
2(k−1)

⎤
⎦ . (19.23)
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Plugging in equation 19.14, we obtain

P = λEfη

⎡
⎣A( Veωep0

4πARaT0

)(
1 + V 2

e ω2
e (k− 1)

32π2A2kRaT0

)− k+1
2(k−1)

⎤
⎦ . (19.24)

The torque that the engine develops is

� = λEfη

⎡
⎣A( Vep0

4πARaT0

)(
1 + V 2

e ω2
e(k− 1)

32π2A2kRaT0

)− k+1
2(k−1)

⎤
⎦ . (19.25)

Empirical comparison shows that this model explains engine perfor-
mance quite well up to peak torque and power. However, there are
considerable differences between the model and the empirical engine curves
after peak torque and power. Therefore, the engine model is modified by
the addition of a correction term:

P = λEfη

⎡
⎣A( Veωep0

4πARaT0

)(
1+ V 2

e ω2
e(k− 1)

32π2A2kRaT0

)− k+1
2(k−1)

⎤
⎦− αPmaxe

β(ω−ωp)

ωp ,

(19.26)
where α and β are coefficients to be calibrated. The specific form of
the correction term is obtained mainly by trial and error from fitting a
wide variety of engine power curves. This model, because of its simplicity,
captures only the major aspect of an engine. Since many of the engine
details are left out, the model exhibits only moderate accuracy even with
the correction term. We also recognize that the concept of this Bernoulli
principle—based model is not new, and a similar discussion can be found in
existing work, such as [105].

19.4 VALIDATIONAND COMPARISONOF THE
ENGINEMODELS

To validate the three engine models as well as to compare their relative
performance, we need empirical engine power and torque curves. Un-
fortunately, we do not have much choice because such empirical data are
typically proprietary unless they are made available by interested parties.
Provided in this validation study are empirical curves for the following
four automotive engines: 2008 Mercedes CLS, 2006 Honda Civic, 2006
Pagani Zonda, and 1964 Chevrolet Corvair. Hopefully, these engines
provide a good representation of vehicle makes, models, and model years.
Technical specifications of these engines are listed in Table 19.1. Additional
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Table 19.1 Technical specifications of engines used in the validation study

Engine Mercedes Honda Civic Pagani Zonda Chevrolet
Tech specification CLS 2008 2006 2006 Corvair 1964
Peak power (kW) 286 103 408 84
ω at peak power (rpm) 6000 6300 5900 4400
Peak torque (Nm) 531 174 750 209
ω at peak torque (rpm) 4000 4300 4050 2800
Engine volume (L) 5.46 1.80 7.30 2.68
Compression ratio 10.7:1 10.5:1 10:1 9.25:1
Throttle diameter (mm) 50* 60 80* 58
*Value is estimated.

information regarding parameter values used in this study is provided in
Appendix 19.B.

The primary criterion to evaluate these models is their accuracy. Figures
19.1-19.4 illustrate the relative performance of the three models with use of
the empirical engine data as a benchmark. Each figure pertains to one of the
engines and consists of two plots—one for power and the other for torque.
In principle, the torque curve should contain the same information as the
power curve because power is simply the product of torque and engine
speed. However, many empirical torque curves exhibit some differences
from what their expected form, so both power and torque curves are
included here for complete information.

In Figure 19.1, model II fits the empirical power curve very well.
Model III also fits well except for the peak power. Model I meets the peak
power but overestimates the remaining part of the empirical curve. In terms
of torque, model II meets the peak torque but generally falls under the
empirical curve. Model III would give a better fit if it were shifted slightly
to the left. Model I generally deviates from the empirical curve by a shift to
the left and translation upward.

Figure 19.2 generally shows about the same pattern as that in Figure
19.1, with more noticeable deviations for models I and III. Though model
II agrees with the peak torque, the model does not fit the empirical torque
curve well under very low and very high engine speeds.

In Figure 19.3, model II generally fits the empirical curves well except
for the depressed parts under low to middle engine speeds. Model III’s
torque curve drops too fast after the peak torque. Model I increasingly
deviates from the empirical curves as engine speed decreases.



272 Traffic Flow Theory

100
0

0.5

1

1.5

E
ng

in
e 

po
w

er
, k

W

2

2.5

3

3.5
�105

200 300 400
Engine speed, rad/s

500 600

Empirical
Model I
Model II
Model III

700 100
350

400

450

E
ng

in
e 

to
rq

ue
, N

m

500

550

600

200 300 400
Engine speed, rad/s

500 600

Empirical
Model I
Model II
Model III

700

Figure 19.1 Model comparison based on the 2008 Mercedes CLS engine.
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Figure 19.2 Model comparison based on the 2006 Honda Civic engine.
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Figure 19.3 Model comparison based on the 2006 Pagani Zonda engine.
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Figure 19.4 Model comparison based on the 1964 Chevrolet Corvair engine.

In Figure 19.4, model II generally overestimates the torque before the
peak torque. Except for a good fit of the peak torque, models I and III
generally overestimate the torque.

To quantify the accuracy of the three models, the mean absolute
percentage error (MAPE) is used as the measure of effectiveness. TheMAPE
is calculated as

MAPE = 1
n

n∑
i=1

Yi − Xi
Yi

, (19.27)

where n is number of samples, Xi is the model estimate, and Yi is the
corresponding empirical value. Figure 19.5 confirms that model II performs
consistently well in both power and torque across the four engines. Its
MAPE generally ranges between 3% and 7%. Though less well than model
II, model III generally performs quite well, and its MAPE ranges between
4% and 9%. Model I performs the least well of the three models, and its
MAPE can be as high as 18%.

The second criterion to evaluate these models is accessibility—that
is, the involvement of proprietary parameters and difficult-to-measure
variables. In this regard, models I and II are excellent because all they
need are peak power and torque and the associated engine speeds. Such
information is readily available on the Internet. Model III requires the
throttle body diameter, a proprietary parameter, which is less desirable. The
third criterion is computational efficiency/model complexity. On average,
models I and II consume about 3.2 × 10−5 CPU time to complete a run,
while model III takes 0.075 CPU time. Though these numbers appear
negligible, the difference is pronounced in real-time applications, especially
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where a procedure has to be repeated very frequently. In terms of the fourth
criterion—formulation—all three models are analytical, so no lookup table
is involved. The fifth criterion is the need for calibration. In this regard,
models I and II involve minimal calibratio—all they need are peak power
and torque and the associated engine speeds. Calibration of model III is quite
involved owing to its proprietary parameter and calibration coefficients.
The above comparison results are also highlighted in Appendix 19.A.
Overall, model II outperforms the other two models in terms of the above-
mentioned evaluation criteria.

19.5 CONCLUSION

An ideal engine model suitable for in-vehicle applications such as a
cooperative driving assistance system is expected to have reasonable ac-
curacy, excellent computational efficiency, high accessibility, an analytical
formulation, and little need for calibration. Toward these goals, this chapter
has presented three simple engine models: model I is an existing one,
and models II and III were developed by the author. These models were
formulated, validated, and evaluated. In terms of accuracy, models II and
III have moderate accuracy, while model I has low accuracy. In terms of
computational efficiency, the three models are all acceptable, with models
I and II being particularly efficient. In terms of accessibility, models I and
II are excellent because they do not require any proprietary parameter or
difficult-to-measure variable. All three models are equally good in terms of
analytical formulation. Model III requires much effort for calibration, while
models I and II involve minimal calibration. Overall, model II appears the
best among the three models in terms of all the evaluation criteria.

19.A A CROSS-COMPARISON OF ENGINEMODELS
19.B PARAMETER VALUES

Engine efficiency η = 0.29
Fuel energy density Ef = 46900000 J/kg
Stoichiometric air-fuel ratio λ = 0.068
Air density ρ = 1.29 kg/m3

Atmospheric pressure p = 101325 Pa
π = 3.14159
Heat capacity ratio of ideal gas k = 1.407
Molar mass of air m′ = 28.9
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Model Accuracy Complexity Accessibility Applications
I [102] Low Low High Vehicle dynamics
II Moderate Low High CVT-enabled in-vehicle

control
III Moderate Moderate Moderate Vehicle dynamics
[101] Low Low Moderate Vehicle dynamics
[100] Moderate Low Low Autonomous cruise control
[99] Moderate Moderate Low Engine control analysis
[73–75] Moderate Moderate Low Engine control analysis
[78, 79] High High Low Engine control algorithms
[80] High High NA Powertrain controllers and

dynamics
[82] High High Low Electric throttle control

algorithm
[83] High High Low Air-fuel ratio control and

speed control
[90] High High Low Engine diagnostics and control
[91] High High Low The design procedure for IC

engines
[92] High Very high Low Upfront design of engines for

noise and vibration targets

Universal gas constant R = 8314.5 (Nm)/(molK)
Coefficients in model III, α = 0.15 and β = 10

PROBLEMS

1. State at least three criteria that you would use to evaluate an engine
model.

2. Do an Internet search on manufacturer specifications for the 2016
Volvo XC90 engine and find its peak power and torque as well as the
corresponding engine speeds. Use the above information to determine
the parameters in Section 19.3.1 (model I) and write the specific
functional form of power.

3. Use the result from problem 2 to determine the specific functional
form of torque and check whether its peak condition matches the
manufacturer specification from an Internet search.

4. Use the results of the Internet search in problem 2 to determine the
parameters in Section 19.3.2 (model II) and write the specific functional
form of power and torque.
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5. Verify if the peak power and torque conditions predicted by the model
in problem 4 indeed match those of the manufacturer’s specifications.

6. Use the results of the Internet search in problem 2 as well as information
in Appendices 19.A and 19.B to determine the parameters in Section
19.3.3 (model III) for the 2016 Volvo XC90 engine. Assume a throttle
diameter of 70 mm, engine displacement Ve = 0.002m3, stagnation
pressure p0 = 101.325 kPa, and stagnation temperature T0 = 293.15K.



CHAPTER 20

Vehicle Modeling

Picoscopic modeling requires explicit models for vehicles that are separated
from driver models. As an attempt in this direction, this chapter is devoted
to the modeling of individual vehicle dynamics, using a driver’s desired
acceleration, deceleration, and steering as inputs to determine vehicle
dynamic responses, including longitudinal acceleration, lateral acceleration,
and yaw velocity. The vehicle model derived herein is called the dynamic
interactive vehicle (DIV) model.1

20.1 OVERVIEW OF THE DIVMODEL

In automotive engineering, there is a wealth of literature discussing dynamic
vehicle models. These models typically come with many degrees of freedom
and high modeling fidelity. Typical to these models are their applications
in vehicle design, handling, and stability, involving one or a few vehicles.
Our interest is a dynamic vehicle model which is well suited for the
simulation of a network of vehicles. Such an application involves a large
number of interacting vehicles, yet demands a modeling fidelity beyond
the microscopic level. On this note, those vehicle models in automotive
engineering are overqualified given their complexity and high computation
costs. Therefore, a DIV model with high computational efficiency and
reasonable modeling fidelity is desirable.

The DIV model will be capable of accepting three inputs from its driver:
throttle position, brake pedal position, and steering angle. The model will
relate each input to a particular driver’s desire and represent the desire on
a scale of 0 to 1 for the throttle and brake positions, and on a scale from
−1 to 1 for the steering angle. Each of these inputs will then play a role
in vehicle dynamics to produce vehicle motion. The following subsections
present how the DIV model incorporates essential components of vehicle
dynamics in order to faithfully model its motion. These components include
the engine, the braking system, and the steering mechanism. Details of

1This chapter is reproduced from [106].

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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how the DIV model will account for effects due to rolling resistance, air
resistance, and gravity are also presented in the following subsections.

20.2 MODELING LONGITUDINALMOVEMENT

Forces in the longitudinal direction of the DIVmodel include the forces due
to the engine and the braking system, rolling and aerodynamic resistances,
and the force due to gravity. The equation of motion for such a vehicle can
be derived by use of Newton’s second law of motion:

∑
F = mẍ = Fe − Fb − Ra − Rr − Rg, (20.1)

where m is the mass of the vehicle (kg), ẍ is vehicle acceleration (m/s2), Fe
is the tractive force produced by the engine (N), Fb is the force produced
by the brake (N), Ra is aerodynamic resistance (N), Rr is rolling resistance
(N), and Rg is grade resistance (N).

20.2.1 Modeling Acceleration Performance
The engine plays an important role in vehicle acceleration performance.
Here we adopt the engine model recommended in Ref. [72] where engine
power P and torque � are functions of engine speed ω:

� = �max − Pmax

2ω2
p(ωp − ωt)

(ω − ωt)
2, (20.2)

P = Pmax

2ω2
p

(3ωp − ωt)ω − Pmax

2ω2
p(ωp − ωt)

(ω − ωt)
2ω, (20.3)

where Pmax is the maximum engine power achieved at engine speed ωp and
�max is the maximum engine torque achieved at engine speed ωt. The four
parameters for a specific vehicle are publicly available on the Internet. This
model automatically guarantees that � = P

ω
.

Using the torque being delivered to the wheel, we can calculate the
engine force Fe produced by the engine to promote vehicle motion with
the aid of the appropriate final transmission gear ratio Nft, wheel radius r,
and mechanical efficiency of the driveline ζ :

Fe = �Nftζ

r
. (20.4)
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20.2.2 Modeling Braking Performance
The brake system is represented by equating the force applied to the brake
pedal by the driver to the corresponding deceleration of the vehicle. This
means of representing the braking ability of a vehicle is as a result of the
work presented in Ref. [107]. The objective of this study was to define the
brake characteristics within the space bounded by the relationship between
brake pedal force and vehicle deceleration, which will lead to acceptable
driver-vehicle performance. In essence, this study determined ergonomic
properties for brake pedals that would give drivers the most effective control
[108]. Therefore, using the results from this study, the DIV model will be
able to account not only for the braking performance of the vehicle but also
the manner in which the driver interacts with the brake system.

The results of the aforementioned study include several linear relation-
ships which describe the force being applied to the brake pedal and the
rate of deceleration of the vehicle. From these relationships, the DIV model
will use the proportionality constant to provide optimal pedal force gain.
This proportionality constant, 0.021 g/lb, corresponds to the maximum
deceleration rate through minimal pedal force. Using this proportionality
constant, we will use the following formulation in the DIV model to
represent the brake system of a vehicle and the driver’s interaction with
that system:

Fb = dbpfW , (20.5)

where Fb is brake force (N), db is the driver’s desire to brake (0-1), and pf
is the pedal-force gain coefficient.

20.2.3 Modeling Aerodynamic Drag
Aerodynamic drag is another force that retards the motion of a vehicle. This
force is dependent on atmospheric conditions, the frontal area of the vehicle,
Af , and the velocity at which the vehicle is traveling relative to the wind, vr.
The equation below further describes aerodynamic drag:

Ra = ρ

2
CDAfv2r , (20.6)

where ρ is the mass density of air (1.2041 kg/m3) and CD is the coefficient
of aerodynamic resistance.
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20.2.4 Modeling Grade Resistance
The force due to gravity is mainly experienced when the vehicle is on an
incline. The force due to gravity that is acting on the vehicle is calculated as

Fg = W sin θ ≈ W tan θ = WG, (20.7)

where θ is the angle of the incline in radians and G is the grade of the
incline with positive sign for upgrade and negative sign for downgrade.

20.3 MODELING LATERALMOVEMENT

The structure used to represent the movement of the DIV model in the
X-Y plane was adapted from Ref. [109], which included the formulation
of a kinematics framework and a dynamic framework to model a vehicle’s
motion in a two-dimensional space. The kinematics framework that was
presented in Ref. [109] was chosen for the DIV model for two primary
reasons: (1) all the pertinent dynamic properties of the vehicle have already
been accounted for by other means in the DIV model, and (2) the ease of
use with an accurate X-Y position representation.

At the base of the kinematics framework for the two-dimensional
representation of vehicle motion is the treatment of the vehicle as a
nonholonomic system, which is a system whose state depends on the path
taken in order to achieve it. In addition, nonholonomic constraints are
employed under the assumption that there is no slippage at the wheels
during a turn. The assumption that there is no slippage at the wheels is
predominantly applicable to instances of high-speed cornering, as wheel
slippage at low speeds is negligible. The general form of the nonholonomic
constraint may be represented as

ẋ sin(φ) − ẏ cos(φ) = 0, (20.8)

where ẋ and ẏ represent the velocities in the x and y directions of the vehicle
coordinate system and φ is the vehicle orientation with respect to the global
X-Y coordinate system. See Figure 20.1 for an illustration of the coordinate
system being used and also for the definition of the variables that will be
used in the development of the DIV model.

After a few more iterations of Equation 20.8, the velocity of the center
of gravity with respect to the global coordinate system is defined as

Ẋ = ẋ cos(φ) − ẏ sin(φ) (20.9)

Ẏ = ẋ sin(φ) + ẏ cos(φ) (20.10)
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Figure 20.1 DIV model in the X-Y plane.

With Equations 20.9 and 20.10, the global position of the vehicle can
now be determined. However, before these equations can be used, lateral
velocity, ẏ, has to be defined. The definition of the Ackerman angle, δ, also
has to be introduced as this is the parameter that is responsible for changing
the orientation of the vehicle.

ẏ = φ̇b (20.11)

φ̇ = tan(δ)
l

ẋ, (20.12)

and

δ = dt
πNs

rs
, (20.13)

where dt is the driver’s desire to turn (-1 to 1), Ns is the number of steering
wheel revolutions, and rs is the steer ratio (ratio of radians turned to the
Ackerman angle)

20.4 MODEL CALIBRATION ANDVALIDATION

A key feature of the DIV model is that it is meant to be easily calibrated.
The calibration of the DIV model will entail the user providing the model
with a few performance specifications of the vehicle being modeled. These
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specifications will be assessable as they are available to the public via car
manufactures and various organizations that offer tools to research a myriad
of vehicles—for example, Cars.com. The vehicle performance specifications
that the DIV model requires include the aerodynamic resistance coefficient,
engine displacement, gear ratios, steer ratio, and the vehicle dimensions.

In addition to these specifications, the model also has a few variables
relating to the environment that impact vehicle motion, including wind
speed and the gradient of the roadway. Once the values of the vehicle per-
formance specifications and the various values describing the surrounding
environment have been entered into the DIV model, it will be able to
replicate the motion of the vehicle.

In the validation of the DIV model, three standard performance tests
were used to determine whether or not the DIV model is capable of
successfully replicating the movement of the vehicle. These tests are typically
conducted on vehicles to determine their capabilities of accelerating,
braking, and handling. To test vehicle acceleration, the time for a vehicle to
go from rest to 97 km/h (60 miles per hour) is recorded, as is the time it takes
a vehicle to cover 402m (a quarter of a mile). The Federal Motor Carrier
Safety Administration dictates maximum allowable stopping distances from
various speeds that all vehicle manufacturers must satisfy, standardizing
vehicle braking. Finally, to measure howwell a vehicle handles, the diameter
of the circle traced by the vehicle’s outer front wheel with the maximum
steering angle is recorded.

For details of model calibration and validation, see Ref. [106].

PROBLEMS

1. Conduct an Internet search and find the following information about
the 2016 Volvo XC90 engine:
a. final drive axle ratio
b. first gear ratio
c. sixth gear ratio
d. tire size
e. base curb weight

2. It is known that the vehicle speed v (m/s) is related to the engine speed
ω (revolutions per minute) as follows:

v = πr
30Nft

ω, (20.14)



Vehicle Modeling 285

where r is the tire radius in meters and Nft is the final transmission gear
ratio, which is the product of the axle ratio and the gear ratio. Use the
information from the previous Internet search and assume the vehicle
is cruising at 30m/s in sixth gear, and find the corresponding engine
speed.

3. When a vehicle is starting up, it needs the maximum torque to generate
engine force. Assume first gear is used and half of the maximum torque is
available at start-up. Calculate the corresponding engine force for a 2016
Volvo XC90 engine assuming the mechanical efficiency of the driveline
is 80%.

4. A 2016 Volvo XC90 engine has a drag coefficient CF of 0.32 and a
frontal area Af of 2.79 m2, and is traveling at 100 km/h. How much
aerodynamic drag results if the air density ρ is 1.20 kg/m3?

5. The above-mentioned vehicle is running up a hill with a grade G of 5%.
Calculate the grade resistance acting on the vehicle.

6. Assume that the above-mentioned vehicle is subject only to aerodynamic
drag and grade resistance. Calculate the maximum acceleration available
at start-up.
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The Field Theory

In picoscopic modeling, drivers are modeled as an intelligent agent who
is able to gather information from his or her driving environment and
make a decision to achieve his or her goals—for example, traveling to
the destination on the preferred route at the desired speed while avoiding
hazards. The outputs of the driver model are driving decisions, including
steering, accelerating, and braking, which, in turn, can be represented by
acceleration in the longitudinal and lateral directions. To serve this purpose,
this chapter introduces a generic modeling approach, called the field theory
of traffic flow, that represents everything in the environment as a field
perceived by the subject driver whose mission is to achieve his or her goals
by navigating through the overall field.1

21.1 MOTIVATION

Research on highway traffic flow over the past half century has resulted
in many follow-the-leader theories, each of which was proposed with its
own motivation. For examples, in the General Motors family of models
[55, 56], a driver’s response (e.g., desired acceleration or deceleration) was
the result of stimuli (e.g., spacing and relative speed) from his or her leader;
the Pipes model [52], the Forbes model [53, 54, 66], and the Gipps model
[57] were inspired by safe driving rules; in psychophysical models [64, 111],
driver reactions were triggered by perception thresholds; rule-based models
[67, 112] were motivated by the fuzzy logic in driver decision making.
Though the motivation behind some other car-following models such as
the Newell nonlinear model [58] and equilibrium traffic flow models such
as those in Refs. [9–12] might not be clear, they were so formulated
because of their reasonable performance. Two questions naturally arise.
First, would it be possible to have a unifying framework that coherently
interprets and relates these models? Second, would it be possible to root
such a unifying framework in first principles so that traffic flow theory

1 This chapter is reproduced from [110].
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is furnished with a solid foundation and connected to other branches of
sciences and engineering?

This chapter and Chapters 23 and 24 are motivated by the above
questions. This chapter attempts to address the second question; Chapter 23
is intended for the first question; Chapter 24 presents a multiscale modeling
perspective. In this chapter, our attention shall be devoted to the modeling
of driver operational control in a transportation system—that is, the motion
and interaction of driver-vehicle units on a long homogeneous highway.
From first principles (e.g., physical laws and social rules), a phenomenology
is postulated which represents the driving environment perceived by a
subject driver as an overall field. In this field, objects (e.g., roadways and
vehicles) in the environment are each represented as a component field, and
their superposition represents the overall hazard that the subject driver tries
to avoid. Hence, the modeling of vehicle motion is simply seeks the least
hazardous route by navigating through the overall field along its valley.

21.2 PHYSICAL BASIS OF TRAFFIC FLOW

Three systems are of particular interest: a physical system, a transportation
system, and a social system, as illustrated in Figure 21.1. The physical system
typically consists of nonliving objects whose motion and interaction are
subject to physical laws such as Newton’s laws of motion. In contrast, the
social system involves living entities such as humans whose behaviors differ
widely among the population but generally follow some loosely defined
rules (e.g., seeking gains and avoiding losses). As such, physical science is
recognized as “hard” since it is more objective, rigorous, and accurate, while
social science is perceived as “soft” because of its subjectivity, vagueness, and
inexactness. Straddling the above two systems is the transportation system,
which involves both living entities (human drivers) and nonliving objects
(roadways and vehicles). Hence, transportation science can be perceived as
“firm” (for the lack of a proper word between “hard” and “soft”) since it
deals with both physical laws and social rules. Actually, it is close to the
“soft” end when strategic planning is concerned, while it migrates toward
the “hard” end if tactical decisions and particularly operational control are
of interest.

Many traffic flow phenomena are similar to those in the physical system,
yet the transportation system has something special to distinguish itself.
Some examples of such similarities are given below.
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A social system
Strategic planning:
e.g. route choice

“Soft”

“Hard”

Tactical decision:
e.g. lane changing

Operational control:
e.g. car following

A transportation system

A physical system

Figure 21.1 Three systems.

21.2.1 Mechanics Phenomena
In physics, forces are the cause of a change of motion. In addition, they
are measurable and their effects are reproducible. For example, Newton’s
second law of motion stipulates that the velocity of an object changes if it is
subject to a nonzero external force; Newton’s third law says that for every
action there is an equal and opposite reaction. Similarly, “forces” exist in
traffic flow, but such forces are subjective matters. Consequently, they are
nonmeasurable, and their effects do not repeat precisely. For example, a fast
driver feels a “force” (a stress in the driver’s mind) when he or she approaches
a slow vehicle, and hence needs to slow down or change lane. In return, the
slow driver may or may not be subject to the reaction “force” depending
on whether or not the driver pays attention and responds to the force. If the
driver does so, he or she speeds up or gives way in response. Otherwise,
Newton’s third law does not take effect in this case. More examples of
mechanics phenomena are provided below:

M1: Directional flow
Traffic always flows in a predetermined direction much like free objects
always fall to the ground. Free objects fall because they are constantly subject
to Earth’s gravity. Similarly, it is reasonable to imagine that vehicles in the
traffic are subject to a “gravity” along the roadway. Such a roadway gravity
is, again, a subjective matter since it exists in the mind of drivers and is not
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measurable, but it is recognized that the gravity is related to factors such
as driver personalities (e.g., aggressiveness), vehicle properties (e.g., engine
power), and road conditions (e.g., freeways versus streets).

M2: Free flow
An object in free fall will accelerate to an equilibrium speed because of air
resistance, and so does a vehicle in free flow. In this case, the “resistance”
comes from the driver’s willingness to comply with traffic rules (e.g., speed
limits) as opposed to rolling, grade, and air resistances. Unlike the free-
fall speed, which is deterministic and replicable given the same condition,
the free speed of a vehicle is, once again, a subjective matter because it is
largely the driver’s choice. Given the same conditions, the choice may differ
for different drivers and, for the same driver, at different times. In addition,
different roadways support different free speeds. To avoid confusion, the free
speed chosen by a driver is termed his or her “desired speed,” whereas the
free speed aggregated over a group of vehicles on a particular road is called
the “free-flow speed” supported by the road. Generally, the desired speed is
related to driver personalities and road conditions, while the free-flow speed
is affected by road conditions and the driver population.

M3: Stopping at a red light
Much like a moving object being slowed to a stop behind a wall, a vehicle
decelerates to a stop in front of a red light. The analogous “repelling force”
in the latter case resides in the driver in that if he or she ignores the red light,
the consequence is costly (e.g., an accident or a ticket). Unlike the moving
object, which always stops in the same fashion in repeated experiments,
drivers are entitled to decelerate at a comfortable rate to a stop and, in some
extreme cases, drivers may forget to stop.

M4: Road barriers
Vehicles moving in the same direction on a roadway are separated by lane
lines. To avoid colliding with vehicles in adjacent lanes, a driver must keep
in his or her lane as if he or she were guided by barriers at both edges of the
lane. If, however, the driver unconsciously departs from the current lane, he
or she will perceive some stress, which motivates him or her to steer back
into the lane as if a correction “force” from the barrier acts on the vehicle
and pushes it toward the center of the lane. If the driver is blocked by a slow
vehicle, the desire for mobility will motivate the driver to change lane as
if he or she were energized or elevated above the barrier so he or she can
cross it and land on the adjacent lane. Running off the road is discouraged,
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Figure 21.2 Road barriers.

so barriers at road edges are typically higher than lane barriers. Encroaching
into the opposite direction of travel is so dangerous that the barrier at the
center line is very high (see Figure 21.2 for an illustration of the barriers).
These barriers are not real objects, but are only imaginary in drivers’ minds.

21.2.2 Electromagnetic Phenomena
An object can exert a force on another object in either of the following ways:
collision and action at a distance. For example, hitting a ball with a bat is
an example of the former and finding a needle with use of a magnet is an
example of the latter. Though collisions are not uncommon on highways,
action at a distance is how vehicles normally interact with each other, and
examples of this kind include some of the above-mentioned mechanics
phenomena as well as the following:

E1: Car following
When a fast vehicle catches up with a slow vehicle, the fast driver perceives
an imminent collision if he or she keeps driving at the high speed. The cost
and fear of the collision motivates the fast driver to take actions in advance.
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If a lane change is not an option and the slow driver does not speed up, the
fast driver has to decelerate when he or she approaches the slow vehicle, and
then adopts the slow vehicle’s speed separated by a safe following distance.
This is analogous to moving a charge A toward a like charge B. According
to Coulomb’s law, the electric force between them is directly proportional
to the product of their charges and inversely proportional to the square
of their distance. Similarly in car following, the “force” (stress) acting on
the fast driver is larger if he or she runs into the slow vehicle faster and
their separation is shorter. However, the same opposite force may or may
not act on the slow driver as he or she may or may not notice the vehicle
approaching from behind.

E2: Tailgating
We continuing with the above example and assume that the fast vehicle
tailgates (i.e., follows at a dangerously short distance). Then, it is likely that
the opposite force is perceived by the slow driver, who may respond by
speeding up or giving way to the fast follower. We return to the analogy,
but charge B is now driven (or driven away) by charge A and Newton’s third
law holds in this case. In general, a “force” must be perceived by a driver
before the force has an effect on the person. In addition, a driver’s ability to
perceive something depends on where he or she scans and how frequently
this happens.

E3: Shying away
If two vehicles happen to run in parallel, one or both drivers may feel
intimidated. The fear of a side collision motivates them to spread out in
space (longitudinally or laterally). Such a shying-away effect becomes more
evident when one of the vehicles is a heavy truck.

21.2.3 Wave Phenomena
W1: Harmonic wave
A platoon of vehicles on a roadway is like a harmonic wave. The platoon is
characterized by flow (in vehicles per hour), traffic speed (in kilometers per
hour), and density (in vehicles per kilometer), while the wave is determined
by frequency (in hertz, or cycles per second), wave speed (in meters per
second), and wave length (in meters). One immediately recognizes that flow
is equivalent to frequency, traffic speed is equivalent to wave speed, and the
spacing (the inverse of density) is equivalent to wave length. The upper part
of Figure 21.3 shows a platoon of vehicles as a harmonic wave.
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Shock waves

Wave length
or spacing

Figure 21.3 Traffic and waves.

W2: Signal propagation
The signal here does not mean a traffic signal, rather it refers to any quantity
that clearly defines the location and speed of a perturbation in a medium.
When the leading vehicle of a compact platoon brakes briefly, a kinematic
wave forms and propagates against the platoon, where the signal here is the
brief speed reduction. When a platoon of fast vehicles catches up with a
platoon of slow vehicles, a shock wave is generated and propagates against
the traffic, where the signal here is the interface between fast and slow
vehicles. The bottom part of Figure 21.3 illustrates a few shock waves
observed in vehicle trajectories.

W3: Wave-particle duality
All matter, particularly small-scale objects, exhibits both wavelike and
particle-like properties. The latter is prominent when individual objects
are concerned (e.g., the photoelectric effect), while the former becomes
significant when the behavior of many objects is viewed collectively (e.g.,
diffraction of waves). In traffic flow, individual vehicles act like particles (e.g.,
car following and lane changing), while a platoon or platoons of vehicles
act like waves (e.g., kinematic waves and shock waves).

21.2.4 Statistical Mechanics Phenomena
Traffic flow has been modeled by many authors as a one-dimensional
compressible fluid, such as a gas. In gases, the speeds of gas molecules
follow a Maxwell-Boltzmann distribution (see Figure 21.4), top left, for
an illustration. Remarkable in the distribution is the increase in average
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speed and speed variance as temperature increases. In contrast, traffic flow
exhibits a different trend. Empirical observations (Figure 21.4, top right)
show that the variance of traffic speed peaks around the optimal density
(where capacity flow occurs) and drops at both ends. Such a distribution is
illustrated Figure 21.4, bottom left, in contrast to the Maxwell-Boltzmann
distribution, and is further elaborated in a three-dimensional model in
Figure 21.4, bottom right, which forms the basis of a stochastic fundamental
diagram.

21.3 THE FIELD THEORY

The above-mentioned similarities between the transportation system and
the physical system provide motivation for a phenomenology of traffic flow
(i.e., the field theory) which aims to describe traffic phenomena in a way that
is consistent with first principles but is not directly derived from them. Since
the transportation system involves both living entities (e.g., human drivers)
and nonliving objects (e.g., roadways and vehicles), it is subject to both
physical laws and social rules. As such, the phenomenology is formulated
progressively on the basis of a set of postulates, two of which (Postulates 1
and 3) are physical and two of which (Postulates 2 and 4) are social.

21.3.1 Postulate 1: A Road is a Physical Field
Postulate 1 is motivated by phenomena M1, M2, and M4 in Section 21.2.
In the longitudinal (x) direction, a driver-vehicle unit is subject to a gravity
along the road:

Gi = mi × gi, (21.1)

where i denotes the unit’s ID,Gi is the roadway gravity acting on the unit,mi
is the mass of the unit, and gi is the acceleration of roadway gravity perceived
by driver i. As discussed in M1, gi is a function of driver personalities �,
vehicle properties �, and road conditions �—that is, gi = gi(�,�,�).

Meanwhile, the unit is also subject to a resistance Ri perceived by the
driver due to his or her willingness to observe traffic rules (e.g., speed limits).
As discussed in M2, Ri is related to the driver’s perceived difference between
his or her actual speed ẋi and the desired speed vi, which in turn is related to
the free-flow speed of the road vf—that is,Ri = Ri(ẋi, vi, vf ). Therefore, the
net force acting on unit i in the longitudinal direction can be expressed as

miẍi = Gi − Ri, (21.2)
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where ẍi is the acceleration of unit i. Since the right-hand side represents
the amount of net force that can be used to accelerate the unit, it can be
interpreted as the driver’s unsatisfied desire for mobility. As the unit speeds up,
the right-hand side decreases (because Ri increases). Eventually, the right-
hand side varnishes, at which time the unit reaches its desired speed vi. If,
somehow, a random disturbance brings the unit’s speed above vi, the right-
hand side becomes negative. In this case, the unit decelerates and finally
settles back to vi.

In the lateral direction of the road, there are lane lines, road edges, and
center lines to guide and separate traffic. As discussed in M4 in Section
21.2, these cross-section elements of the road can be mapped into a roadway
potential field UR

i perceived by the driver. When the unit deviates from its
lane, the unit is subject to a correction forceNi, which can be interpreted as
the stress on the driver to keep in his or her lane (see Figures 21.2 and 21.6).
The effect of such a force is to push the unit back to the center of the current
lane. On the basis of physical principles, the force can be determined as
the derivative of the roadway field, UR

i , with respect to the unit’s lateral
displacement yi:

Ni = −∂UR
i

∂yi
. (21.3)

21.3.2 Postulate 2: A Driver Responds to His or Her
Surroundings Anisotropically
The interaction between two driver-vehicle units differs from the collision
of two objects in two ways: one pertains to Newton’s third law of motion,
which is discussed below, and the other concerns noncontact forces, which
are the subject of the next postulate.

In classical physics, Newton’s third law of motion holds when two
objects collide with each other. However, the law generally does not hold in
the interaction between two driver-vehicle units. For example, when a fast
vehicle catches up with a slow vehicle, the fast driver perceives a “repelling
force” (i.e., stress) as the gap closes. The smaller the gap, the greater the
force. Conversely, the reaction force may or may not be perceived by the
slow driver depending on whether he or she notices the approaching fast
vehicle and his or her willingness to respond. Since drivers all sit facing the
front, it is the driver behind who is responsible for watching fir safe distances
and who is held liable for a rear-end collision should it happen. Therefore,
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it is not uncommon that a leading driver does not respond to situations
happening behind such as an approaching fast vehicle.

In general, a driver’s responsiveness to his or her surroundings varies
with his or her viewing angle and scanning frequency (see Figure 21.5).
For example, the area immediately in front of the driver, especially in the
same lane, falls into the driver’s acute vision zone. The driver is responsible
for watching this area constantly and responding to a situation promptly.
Roughly in the driver’s fair vision zones, the frontal areas in side lanes receive
a considerable amount of the driver’s attention since vehicles in the side lanes
may change to the subject lane and the driver needs to watch this area when
changing lanes. In comparison, the driver scans less frequently at both sides
of his or her vehicle (roughly the driver’s peripheral vision zones) unless
the driver needs to change lanes or avoid parallel running. The last and least
attended area is the rear of the vehicle, not only because it is difficult to access
(indirectly by means of side or rear mirrors), but also because liability rests
with drivers behind. Therefore, it is reasonable to assume that the driver’s
directional response to his or her surroundings, γi, is a function of his or
her viewing angle αi—that is, γi = γ (αi). Consequently, the force that
actually acts on the unit, F̃i, is the product of the force that might have been
perceived by the driver if he or she had paid full attention to it, Fi, and his
or her directional response γi—that is,

F̃i = Fi × γ (αi), (21.4)

where αi ∈ [−π,π] is the viewing angle. For example, if one chooses
γ (0) = 1 and γ (π) = 0, the driver responds to Fi in full when it comes
from a leading vehicle (i.e., αi = 0) and ignores Fi when it comes from a
trailing vehicle (i.e., αi = π).
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21.3.3 Postulate 3: A Driver Interacts with Others
by Action at a Distance
As described in E1, E2, and E3 in Section 21.2, a driver is able to sense
the presence of other vehicles and obstacles in his or her vicinity and take
preventive actions to avoid a collision. It is postulated that such an action
at a distance is mediated by a field which is perceived by the driver as the
danger of a collision. One may imagine the field as a hill; the higher and
steeper the hill is, the more difficult it is to climb. The base of the hill/field
delineates a region, outside of which the driver is not influenced by the
field. For example, the dash-dotted oval (labeled as “Base j”) in Figure 21.6
represents the base of the field perceived by driver i due to unit j. One may
also interpret the field as the personal space of unit j, into which intrusion
is discouraged. The deeper unit i intrudes, the stronger the repelling force
it receives. The longitudinal section of the field is illustrated as the curve
above the x-axis.

Similarly, unit k represents another field (whose base is labeled as “Base
k”) which also exerts an influence on unit i. Since unit k is in the lane at
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the side of unit i, the influence is not in the longitudinal x direction but is
in the lateral y direction—that is, the field results in a repelling force, Fki ,
on unit i, which motivates it to shy away from unit k.

The above fields and, consequently, forces are related to driver per-
sonalities � and vehicle dynamics �—that is, U = U(�,�) and F =
F(�,�). For example, since an aggressive driver accepts shorter car-
following distances, the field perceived by such a driver covers a smaller base.
On the other hand, the faster a unit moves, the more hazard it imposes on
neighboring vehicles, and thus the larger and steeper is the field it creates.

21.3.4 Postulate 4: A Driver Tries to Achieve Gains
and Avoid Losses
A driver’s strategy of moving on roadways is to achieve mobility and safety
(gains) while avoiding collisions and violation of traffic rules (losses). Such
a strategy can be represented with use of an overall potential field Ui which
consists of component fields such as those due to moving unitsUB

i , roadways
UR
i , and traffic control devices UC

i —that is,

Ui = UB
i + UR

i + UC
i . (21.5)

If Ui is viewed as a mountain range whose elevation denotes the risk of
losses, the driver’s strategy is to navigate through the mountain range along
its valley—that is, the least stressful route. For example, Figure 21.6 illustrates
two sections of such a field. Perceived by driver i, the longitudinal x section
of the field, Ui,x, is dominated by unit j since it is the only neighboring
vehicle in the center lane. Unit i is represented as a ball which rides on the
tail of curve Ui,x since the vehicle is within unit j’s field. Therefore, unit i
is subject to a repelling force F ji which is derived from Ui,x as

F ji = −∂Ui,x
∂x

. (21.6)

The effect of F ji is to push unit i back to keep a safe distance. By
incorporating the driver’s unsatisfied desire for mobility (Gi − Ri), we can
determine the net force in the x direction as:

miẍi =
∑

Fi,x = Gi − Ri − F ji = (migi − Ri) + ∂Ui,x
∂x

. (21.7)

The section of Ui in the lateral y direction, Ui,y (the bold curve), is
the sum of two components: the cross section of the field due to unit k
(the dashed curve) and that due to the roadway field (the dotted curve).
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The former results in a repelling force Fki which makes unit i to shy away
from unit k and the latter generates a correction forceNi should unit i depart
its lane center. Therefore, the net effect can be expressed as:

miÿi =
∑

Fi,y = Fki −Ni = −∂Ui,y
∂y

(21.8)

By incorporating time t, driver i’s perception-reaction time τi, and driver
i’s directional response γi, we can express Equations 21.7 and 21.8 as

miẍi(t + τi) =
∑

F̃i,x(t) = γ 0
i [Gi(t) − Ri(t)] + γ (α

j
i )

∂Ui,x
∂x

, (21.9a)

miÿi(t + τi) =
∑

F̃i,y(t) = −γ (αki )
∂Ui,y
∂y

, (21.9b)

where γ 0
i ∈ [0, 1] represents the unit’s attention to its unsatisfied desire

for mobility (typically γ 0
i = 1), and α

j
i and αki are viewing angles, which

are also functions of time. The above system of equations summarizes the
field theory in generic terms and constitutes the basic law governing a unit’s
motion on a planar surface.

21.4 SIMPLIFICATION OF THE FIELD THEORY

Though the generic form of the field theory is able to explain some
traffic phenomena qualitatively, rigorous modeling of traffic flow requires
a specific form, which is the focus of this section and the next chapter. In
the generic theory, the functional forms of the field Ui, roadway gravity
Gi, and resistance Ri are undetermined. It appears that the generic theory
can take many specific forms, and it is impractical to enumerate all of
them. In choosing a specific form, we find that Occam’s razor turns out
to be a good rule of thumb, and basically says that “entities should not
be multiplied unnecessarily.” Hence, the razor gives rise to the following
considerations: (1) the chosen specific form should make physical sense,
for which empirical observations are good tests, (2) it should take a simple
functional form that involves physically meaningful parameters but not
calibration coefficients, and (3) it should provide a sound microscopic basis
for aggregated behavior—that is macroscopic equilibrium models. With
these considerations in mind, some simplifications are made to the generic
theory as the first step in the formulation of a specific form.
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Simplification 1
Rather than formulating the field itself, the specific form formulates forces
resulting from the field directly.

Simplification 2
The specific form decouples equations in the longitudinal x direction and
lateral y direction—that is, the longitudinal equation is used to model
driver’s longitudinal control (e.g., car-following behavior) and the lateral
equation is used only when a lane change is to be considered.

Simplification 3
Directional response γ (α) is treated as follows: for car following, the subject
driver responds only to his or her leader; for lane changing, the subject
driver responds to the leading and trailing vehicles in the current lane and
the target lane.

21.4.1 Motion in a Longitudinal Direction
With these simplifications, vehicle motion in the longitudinal direction is
formulated as follows. Note that time t and response delay (i.e., perception-
reaction time τ ) are dropped for convenience.

The term (Gi−Ri) explains a driver-vehicle unit’s unsatisfied desire for
mobility. Intuitively, when a unit starts from standstill—that is, ẋi = 0—its
unsatisfied desire for mobility is the greatest. As the unit speeds up, (Gi−Ri)
decreases accordingly, but is still positive—that is, it still accelerates the unit
to higher speeds. When the unit achieves its desired speed—that is, ẋi =
vi—its desire for mobility has been fully satisfied and, hence, Gi − Ri =
0, which means that the unit settles at vi if no other forces act on it. If
a random perturbation brings ẋi over vi, the unit’s desire for mobility is
oversatisfied andGi−Ri becomes negative, which decelerates the unit back
to vi. With the above understanding, a specific form of the unsatisfied desire
for mobility can be formulated as

Gi − Ri = migi

[
1 −

(
ẋi
vi

)δ
]
, (21.10)

where δ is a calibration parameter.
When a fast unit i (with displacement xi, speed ẋi, and acceleration ẍi)

catches up with a slow unit j (with xj, ẋj, and ẍj), the former is subject

to a noncontact force, F ji , from the latter. Such a noncontact force varies
with the spacing between the two units, sij = xj−xi. For example, the force
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virtually has no effect on unit iwhen it is distant, but has an effect when unit
i becomes close (e.g., within the range of its desired spacing s∗ij), increases as
the spacing becomes even shorter (sij ↓), and it goes to a maximum when
sij → lj, where lj represents the minimum “safety room” required by unit j,
an extreme case of which is the length of vehicle j. In addition, the effect
of the force is also related to the speeds and relative speed of units i and j.
Such an effect can be incorporated into the formulation of driver i’s desired
spacing s∗ij.

Therefore, a simple way to represent the force is to use an exponential
function. The general idea of this model is to set the desired spacing s∗ij as
a baseline, beyond which the intrusion by unit i is translated exponentially
to the repelling force acting on the unit. As such, a more specific but still
quite generic form of the force is

F ji = f (es
∗
ij−sij), (21.11)

where s∗ij − sij represents how far unit i intrudes into s∗ij .
Combining the above, we can express the effort that is required by driver

i to control his or her vehicle in the longitudinal direction as

miẍi = Gi − Ri − F ji = migi

[
1 −

(
ẋi
vi

)δ
]

− f (es
∗
ij−sij) (21.12)

or

miẍi = migi

[
1 −

(
ẋi
vi

)δ

− f (es
∗
ij−sij)

]
(21.13)

if the coefficient of F ji is chosen properly. Though Equation 21.13 can be
instantiated in many possible ways, the following special case is of particular
interest. Putting time t and response delay τ back in and eliminating vehicle
mass m from both sides, we find Equation 21.13 can take the following
special form:

ẍi(t + τi) = gi

[
1 −

(
ẋi(t)
vi

)δ

− e
sij(t)

∗−sij(t)
Z

]
. (21.14)

If one chooses δ = 1 and Z = sij(t)∗, the above equation reduces to a
more specific form:

ẍi(t + τi) = gi

[
1 −

(
ẋi(t)
vi

)
− e

sij(t)
∗−sij(t)
sij(t)∗

]
. (21.15)
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This model will be further elaborated and analyzed in the next chapter.

21.4.2 Motion in a Lateral Direction
A driver-vehicle unit’s motion in the lateral y direction involves a decision
at two levels: lane change and gap acceptance. A lane-change decision
concerns the driver’s desire to change to an adjacent lane to better achieve
his or her goals such as mobility and safety, a situation which typically
happens when the driver is blocked by a slow leader in the current lane.
A gap-acceptance decision addresses the execution of the lane change
decision by physically moving the vehicle into the target lane when an
opportunity comes up (e.g., a safe gap is available in the target lane). Figure
21.8 illustrates the scenario in Figure 21.7 from a different and broader
perspective involving the subject unit i and its leader j in the right lane and a
trailing neighbor p in the left lane. The top part of Figure 21.8 illustrates unit
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i (the ball) in its perceived potential fields: U j
i due to unit j in the same lane,

Up
i due to unit p in the left lane, and UR

i due to the road barrier (lane line).

Driven by its desire for mobility, unit i climbs up onto U j
i , during which

time unit i has to adapt to unit j’s speed while achieving a balance between
(Gi − Ri) and F ji . Under this circumstance, unit i reaches its decision on
a lane change in order to satisfy its desire for mobility. With this decision,
driver i begins to seek opportunities in adjacent lanes. In this particular
example, the right side is obviously not an option since it is prohibitive to
move off the road. Hopefully, an opportunity exists in the left lane because
the elevation of unit i (where the ball rides) is higher than both the lane
barrier UR

i and the front of field Up
i . Therefore, unit i initiates a smooth

transition by laterally rolling off the tail ofU j
i , crossing overU

R
i , and landing

on the front of Up
i , the effect of which is shown in the middle part of

Figure 21.8.
We can further simplify the above lateral control model by reducing a

smooth field to a flat “personal space” into which intrusion by another unit
is undesirable. For example, the bottom part of Figure 21.8 illustrates units
j and p’s personal spaces after elimination of the lane barrier. A lane-change
decision is reached whenever a unit intrudes into another unit’s personal
space, which certainly applies to unit i. With such a decision, unit i begins
to search for open spaces in adjacent lanes, and one happens to be available in
the left lane. Hence, the result of the gap-acceptance decision is to abruptly
switch unit i to the left lane.

21.5 DISCUSSION OF THE FIELD THEORY

Responding to the two questions posed at the beginning of this chapter,
we state the field theory can serve as a unifying framework that is able to
coherently relate existing models to each other. This will be the topic of
Chapter 23. Meanwhile, the field theory is proposed with its roots in both
physical science and social science and, therefore, establishes the foundation
that allows transportation to be treated as a science. Such a role of the field
theory is discussed further below.

21.5.1 Tentative Definition of Two Vague Terms
On the basis of the field theory, it is possible to quantify two vague
terms—namely, mobility and congestion—which are frequently used in the
transportation profession without rigorous definition.
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Mobility
The dictionary definition of mobility is “the quality of moving freely.” As
such, the quality reaches 100% if an individual is able to move as he or she
desires, while the quality drops to 0 if the person is stuck in a traffic jam.
Therefore, the phenomenological interpretation of personal mobilityMi(t)
at an instant of time t perceived by driver i can be expressed as the portion
of his or her desired speed which has been satisfied—that is,

Mi(t) = ẋi(t)
vi

, (21.16)

where ẋi(t) is driver i’s actual speed and vi is the desired speed. Since vi is
(typically) greater than ẋi(t), personal instant mobilityMi(t) ranges between
0 and 1. The mobility perceived by the same driver over the course of a
journey can be represented as the average of Mi(t) over trip time Ti:

Mi = 1
Ti

∫ Ti

0

ẋi(t)
vi

dt. (21.17)

Again, personal mobilityMi falls between 0 and 1. Similarly, the mobility
perceived by all drivers in a traffic system can be calculated as

M = 1
N

N∑
i=1

(
1
T

∫ Ti

0

ẋi(t)
vi

dt
)
, (21.18)

whereN is number of drivers in the traffic system.Note that systemmobility
M ∈ [0, 1] can be used as an indication of the level of service provided by
the traffic system and perceived by drivers.

Congestion
The dictionary definition of congestion is “a state that is so crowded as to
hinder or prevent freedom of movement.” One candidate quantification of
congestion,C, can be the opposite of mobility—that is, C = 1−M , which
is expressed relatively as a percentage. Another, perhaps more meaningful,
way to quantify congestion is to recognize the “stress” experienced by a
driver when he or she moves in a traffic system. Therefore, the phenomeno-
logical interpretation of personal congestion Ci(t) at an instant of time
t can be expressed in absolute terms as the stress (or equivalently hazard
or potential) Ui(t) perceived by driver i—that is,

Ci(t) = Ui(t). (21.19)
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As defined in Equation 21.5, the overall potential consists of potentials
due to moving units UB

i , roadways U
R
i , and traffic control devices UC

i .
Therefore, a driver would experience no congestion if he or she moves on
a roadway that is free of impedance from other moving units, the need for
lane changes, and traffic control devices. Therefore, any increase of these
would add to the driver’s perception of congestion. Consequently, personal
congestion perceived by the same driver over the course of a journey can
be represented as the sum of Ci(t) over trip time Ti:

Ci =
∫ Ti

0
Ci(t)dt. (21.20)

Further, the congestion experienced by all drivers in a traffic system can
be calculated as the sum of personal congestion over the driver population:

C =
N∑
i=1

Ci. (21.21)

21.5.2 Connection to the Existing Knowledge Base
The purpose of this discussion is to place the field theory in a broader
context and show how the field theory relates to the existing knowledge base
and, in return, how successful experience of related fields can be transferred
to solve our problems at hand.

Connection to Other Traffic Flow Theories
Existing microscopic traffic flow models emphasize the application of social
rules or human factors in the modeling of car-following behavior, whereas
the work presented in this chapter attempts to integrate both social rules
and physical principles in the modeling of traffic flow. Readers are referred
to Chapter 23, where such a connection is elaborated and presented from a
unified perspective.

Connection to Other Engineering Disciplines
The Lennard-Jones potential plays an important role in engineering, par-
ticularly in granular flow and molecular dynamics. In molecular dynamics,
computer simulation is employed to trace the time evolution of a set
of interacting particles (e.g., atoms or molecules) by integrating their
equations of motion. The Lennard-Jones potential is the underlying model
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Figure 21.9 Lennard-Jones potential.

to determine the motion and interaction of these particles. In materials
engineering and granular flow, the Lennard-Jones potential is typically
used as the constitutive law to determine the interaction of two particles.
With a clear understanding of the constitutive law of two particles, systems
consisting of a large quantity of these particles (e.g., many-body systems)
can be simulated and analyzed. Illustrated in Figure 21.9, the Lennard-Jones
potential takes the following form:

U(r) = 4ε
[(σ

r

)12 − (
σ

r
)6

]
, (21.22)

where U is the Lennard-Jones potential due to particle interaction, r is the
distance between two particles, ε is the depth of the potential well, and σ

is the distance at which the interparticle potential is zero. The equation is
actually a superposition of two terms: a long-range attraction term (σ

r )
6 and

a short-range repulsion term (σ
r )

12.
The phenomenology, in particular Equation 21.12, takes a similar form.

For example, the long-range attraction (miẍi = migi[1 − ( ẋivi
)]) is due

to a driver’s desire for mobility and the short-range repulsion f (es
∗
ij−sij) is

due to safety rules. In addition, the interaction between two vehicles is a
function of the spacing sij (equivalent to r) between them, and there is an
equilibrium spacing s∗ij (equivalent to σ ) around which the attraction equals
the repulsion. Therefore, the Lennard-Jones potential in a transportation
system can be derived from the phenomenology. With such a bridge,
transportation and related engineering disciplines are able to not only learn
from but also shed light on each other.
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Connection to Physical Science
The phenomenology proposed herein represents a body of knowledge
that originates from empirical observations and, in return, that is able to
explain real-world phenomena. Rather than being derived directly from
first principles, the phenomenology is formulated in a way that is consistent
with fundamental theory. For example, the essence of the field theory in
the phenomenology is the explanation of an individual driver’s action by
recourse to his or her position in relation to others. The driver’s position
in the field in turn gives rise to a force acting on the person, but such a
force is motivated from within as opposed to being applied from without.
As another example, Equation 21.9 is a special form of Newton’s second
law of motion if one ignores the driver’s perception-reaction time τ and
directional response γ . In addition, action at a distance as a means of
interaction between drivers becomes a hard collision if the driver’s need
for safety disappears (i.e., the potential field as a function of spacing U(sij)
becomes a spike). Moreover, Newton’s third law of motion holds if drivers
respond to their surroundings isotropically. Furthermore, isotropic response,
together with a hard collision, gives rise to the laws of momentum and
energy conservation. Therefore, the phenomenology represents a special
form of Newton’s laws in a social setting (i.e., a transportation system
involving human drivers). With its interpretation of the mean free path
(i.e., desired car-following distance s∗ij) and a molecular collision (i.e., action
at a distance between vehicles), the phenomenology allows the application
of other physical principles (such as kinetic theory) to further understand
transportation systems as an ensemble.

21.6 SUMMARY

Involving both physical objects (e.g., vehicles) and living entities (e.g.,
drivers), a transportation system shares many commonalities with social and
physical systems. The social side of the transportation system has long been
recognized, as evidenced by applications of social rules and human factors in
microscopic traffic flow modeling such as car following, lane changing, and
route choice. In contrast, the physical side of the system has yet to receive
proper attention. The transportation system does, however, exhibit many
physical properties, which provides part of motivation for the proposed field
theory of traffic flow.

To pave the foundation for the field theory, some physical phenomena
in traffic flow were analyzed in relation to its social properties, in particular
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motivations for drivers’ decisions observed from their driving experi-
ences. These phenomena, including those of mechanics, electromagnetics,
waves, and statistical mechanics, strongly suggest that it is meaningful
to integrate both physical and social principles into the modeling of
traffic flow.

With the above understanding, the field theory was progressively formu-
lated on the basis of a series of postulates, two of which are physical and two
are social. The first postulate (physical) assumes that a roadway is a physical
field in which a vehicle is subject to a roadway gravity and also a resistance
due to the driver’s willingness to observe traffic rules (e.g., speed limits). The
second postulate (social) accounts for the driver’s directional responsiveness
to his or her surroundings. The third postulate (physical) imposes an action
at a distance between two neighboring vehicles, and such an interaction is
mediated by a potential field which is perceived as the danger of a collision.
The distinction between a field perceived by a driver and a physical field is
that the former impinges from the inside of the driver through motivation
as opposed to through external compulsion. The fourth postulate (social)
interprets driving strategy as a social rule—that is, a driver always tries to
achieve gains (e.g., mobility and safety) and avoid losses (e.g., collisions
and violation of traffic rules). From combination of the above postulates,
the field theory was generically formulated as a system of equations
governing the motion of a vehicle on a roadway in relation to other
vehicles.

PROBLEMS

1. Use the field theory to explain the following phenomena:
a. A vehicle begins to accelerate after an emergency stop on the hard

shoulder.
b. The vehicle gradually settles at its desired speed,
c. After a momentary speeding, the driver beings to speed up to the

desired speed.
d. The driver applies the brakes when approaching a slow vehicle.
e. The driver adopts the leading vehicle’s speed by following the leader.
f. The driver brakes again because a third vehicle cuts in between two

vehicles in car-following mode.
g. The vehicle being cut off from the leading vehicle changes lane to

seek speed gains.
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2. Elaborate your strategies on how to capture the effect of the following
traffic control devices with use of the field theory:
a. A signal
b. A STOP sign
c. A speed limit sign

3. Use the field theory to explain a rear-end accident.
4. Comment on how realistic the field theory is. Is it feasible to find

evidence to prove or disprove the existence of a field?



CHAPTER 22

Longitudinal Control Model

A simple yet efficient traffic flow model, in particular one that describes
vehicle longitudinal operational control and further characterizes the traffic
flow fundamental diagram, is always desirable. Though many models have
been proposed in the past, with each having its merits, research in this area
is far from conclusive. This chapter introduces a new model—that is, the
longitudinal control model (LCM)—with a unique set of properties to the
arsenal. The model is suited for a variety of transportation applications,
among which a concrete example is provided.1

22.1 INTRODUCTION

A simple yet efficient traffic flow model, in particular one that describes
vehicle longitudinal operational control and further characterizes the traffic
flow fundamental diagram, is always desirable. For example, researchers can
use such a model to study traffic flow phenomena, system analysts need the
model to predict system utilization and congestion, accident investigators
find the model handy to reconstruct accidents, software developers may
implement the model to enable computerized simulation, and practitioners
can devise strategies to improve traffic flow using such a simulation package.

Research has resulted in many traffic flowmodels, includingmicroscopic
car-following models and macroscopic steady-state models, each of which
has its merits and is applicable in a certain context with varying constraints.
An overview of these historical efforts will be provided in Section 22.6.
Nevertheless, research on traffic flow modeling is far from conclusive, and
there is a constant a quest for better models. Joining such a journey, this
chapter presents a new model, the LCM, as a result of modeling from a
combined perspective of physics and human factors (Section 22.2). The
model seems to possess a unique set of properties:
• The model is physically meaningful because it captures the essentials of

longitudinal vehicle control and motion on roadways with the presence
of other vehicles (Subsection 22.2.1)

1 This chapter is reproduced from [113].
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• The model is simple because it uses one equation to handle all driv-
ing situations in the longitudinal direction (Equation 22.2), and this
microscopic equation aggregates to a steady-state macroscopic equiv-
alent that characterizes the traffic stream in the entire density range
(Equation 22.5).

• The model is flexible because the microscopic equation provides the
mechanism to admit different safety rules that govern vehicle driving
(Section 22.2.1), and the macroscopic equation has the flexibility to fit
empirical traffic flow data from a variety of sources which exhibit varying
flow-density relationships, including an reverse-lambda type (Section
22.3.2 and Figures 22.3-22.8).

• The model is consistent because the microscopic equation aggregates to
its macroscopic equivalent, so the microscopic-macroscopic coupling is
well defined (Section 22.2.2). As a result, traffic flow modeling and
simulation based on the microscopic model aggregates to predictable
macroscopic behavior (Section 22.5; see how the results of the micro-
scopic and macroscopic approaches match).

• The model is valid as verified by field observations from a variety of
locations (Section 22.4), and the model is realistic as demonstrated in an
example application (Section 22.5).
The unique set of properties possessed by the LCM lend it to various

transportation applications, including those mentioned above. An example
of such applications is described in Section 22.5, where the LCM is applied
to analyze traffic congestion macroscopically and microscopically. Research
findings are summed up in Section 22.7.

22.2 THE LCM

Vehicle operational control in the longitudinal direction concerns a driver’s
response in terms of acceleration and deceleration on a highway without
the worrying about steering, including lane changing. Rather than car fol-
lowing as it is conventionally termed, vehicle longitudinal control involves
more driving regimes than simply car following (e.g., free flow, approaching,
stopping). A field theory was proposed in Refs. [114, 115], and represents
the environment (e.g., the roadway and other vehicles) perceived by a driver
with ID i as an overall field Ui. As such, the driver is subject to forces as a
result of the field. These forces, which impinge upon the driver’s mentality,
are the driving force Gi, roadway resistance Ri, and vehicle interaction F ji
with the leading vehicle j (see Figure 22.1). Hence, the driver’s response is
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Figure 22.1 Forces acting on a vehicle.

the result of the net force
∑
Fi acting on the vehicle according to Newton’s

second law of motion: ∑
Fi = Gi − Ri − Fji . (22.1)

22.2.1 Microscopic Model
If the functional forms of the terms in Equation 22.1 are carefully chosen
(mainly by experimentation with empirical data), a special case called the
LCM can be explicitly derived from Equation 22.1 as

ẍi(t + τi) = Ai

[
1 −

(
ẋi(t)
vi

)
− e

1− sij(t)

s∗ij (t)
]
, (22.2)

where ẍi(t + τi) is the operational control (acceleration or deceleration)
of driver i executed after a perception-reaction time τi from the current
moment t. Ai is the maximum acceleration desired by driver i when starting
from standing still, ẋi is vehicle i’s speed, vi is driver i’s desired speed, sij is
the actual spacing between vehicle i and its leading vehicle j, and s∗ij is the
desired value of sij.

No further motivation for this special case is provided other than the
following claims: (1) it takes a simple functional form that involves physically
meaningful parameters but not arbitrary coefficients (see this and the next
section), (2) it makes physical and empirical sense (see this section and
Section 22.4), (3) it provides a sound microscopic basis for aggregated
behavior—that is, traffic stream modeling (see the remainder of this section
and Section 22.4)—and (4) it is simple and easy to apply (see Section 22.5).

The determination of the desired spacing s∗ij(t) admits safety rules.
Basically, any safety rule that relates spacing to the driver’s speed choice can
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be inserted here. Of particular interest is an algorithm for the desired spacing
that allows vehicle i to stop behind its leading vehicle j after a perception-
reaction time τi and a deceleration process (at rate bi > 0 which driver i
believes that he or she is capable of applying in an emergency) should the
leading vehicle j apply an emergency brake (at rate Bj > 0). After some
math, the desired spacing can be determined as

s∗ij(t) = ẋ2i (t)

2bi
− ẋ2j (t)

2Bj
+ ẋiτi + lj, (22.3)

where s∗ij ≥ lj and lj is vehicle j’s effective length (i.e., actual vehicle length

plus some buffer spaces at both ends). Note that the term
ẋ2i (t)
2bi

− ẋ2j (t)
2Bj

represents the degree of aggressiveness that driver i chooses. For example,
when the two vehicles travel at the same speed, this term becomes γiẋ2i ,
where

γi = 1
2

(
1
bi

− 1
Bj

)
, (22.4)

where Bj represents driver i’s estimate of the emergency deceleration which
is most likely to be applied by driver j, while bi is the deceleration which
driver i believes that he or she is capable of applying in an emergency. It may
be that bi is greater than Bj in magnitude, which translates to the willingness
(or aggressive characteristic) of driver i to take the risk of tailgating.

It is necessary to point out that though both Bj and bi carry a sense
of “emergency,” the model itself (i.e., Equations 22.2 and 22.3) is meant
to describe all situations, including both “emergency” and “normal”
operations. Or put it in another way, the LCMmodels a driver’s operational
control ẍi over a wide range on the basis of the interaction of a set of
parameters, some of which concern the driver’s emergency responses—for
example, Bj and bi. This modeling philosophy echoes the “complete” car-
following model described in Ref. [116, p. 158].

22.2.2 Macroscopic Model
Under steady-state conditions, vehicles in the traffic behave uniformly, and
thus their identities can be dropped. Therefore, the microscopic LCM
(Equations 22.2 and 22.3) can be aggregated to its macroscopic equivalent
(traffic stream model):

v = vf (1 − e1−
k∗
k ), (22.5)
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where v is traffic space mean speed, vf is free-flow speed, k is traffic density,
and k∗ takes the following form:

k∗ = 1
s∗

= 1
γ v2 + τ v+ l

, (22.6)

where γ and τ denote the aggressiveness and average response time,
respectively, that characterize the driver population, and l denotes the
average effective vehicle length. Equivalently, the macroscopic LCM can
be expressed as

k = 1
s

= 1
(γ v2 + τ v+ l)[1 − ln(1 − v

vf
)] . (22.7)

22.3 MODEL PROPERTIES

The LCM features a set of appealing properties that make the model unique.
Firstly, it is a one-equation model that applies to a wide range of situations.
More specifically, the microscopic LCM captures not only the car-following
regime, but also other regimes, such as starting up, free flow, approaching,
cutting off, and stopping (see Ref. [117] for more details). The macroscopic
LCM applies to the entire range of density and speed without the need to
identify break points.

Secondly, the LCM makes physical sense since it is rooted in basic
principles (such as field theory and Newton’s second law of motion).
In addition, the LCM employs a set of model parameters that are not
only physically meaningful but also easy to calibrate. For example, the
microscopic LCM involves desired speed vi, perception-reaction time τi,
desired maximum acceleration when starting from standing still Ai, the
deceleration which driver i believes that he or she is capable of applying in an
emergency bi, emergency deceleration Bj by driver j in front, and effective
vehicle length lj. The macroscopic LCM includes aggregated parameters,
including free-flow speed vf , aggressiveness γ , average response time τ ,
and effective vehicle length l. Data to calibrate the above parameters are
either readily available in publications (such as Motor Trend and human
factors study reports) or can be sampled in the field with reasonable
efforts.

Lastly, the LCM is a consistent modeling approach—that is, the macro-
scopic LCM is derived from its microscopic counterpart when aggregated
over vehicles and time. Such microscopic-macroscopic consistency not
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only provides macroscopic modeling with a microscopic basis, but also
ensures that microscopic modeling aggregates to a predictable macroscopic
behavior.

More properties are discussed in the following subsections.

22.3.1 Boundary Conditions
Themacroscopic LCM has two clearly defined boundary conditions.When
density approaches zero (k → 0), traffic speed approaches the free-flow
speed (v → vf ); when density approaches the jam density (k → kj = 1/l),
traffic speed approaches zero (v → 0) (see Figure 22.9).

One can determine the kinematic wave speed at jam density ωj c by
finding the first derivative of flow q with respect to density k and evaluating
the result at k = kj. Hence,

q = kv = v
(γ v2 + τ v+ l)[1 − ln(1 − v

vf
)] . (22.8)

After some math,

dq
dk

= v − s
s′

= v−
(γ v2 + τ v+ l)[1 − ln(1 − v

vf
)]

(2γ v + τ )[1 − ln(1 − v
vf
)] + (γ v2 + τ v+ l)

(
1

vf−v
) .

(22.9)

Therefore, ωj can be evaluated as

ωj = dq

dk

∣∣∣∣
k=kj,v=0

= − l

τ + l
vf

. (22.10)

We can find capacity qm by first setting Equation 22.9 to zero to solve
for optimal speed vm or optimal density km and then plugging vm or km
into Equation 22.8 to calculate qm. However, it appears that an analytical
solution of (qm, km, vm) is not easy to find, and this is a limitation of the
LCM. Fortunately, the problem can be easily addressed numerically.

On another note, the spacing-speed relationship is

s = (γ v2 + τ v+ l)
[
1 − ln

(
1 − v

vf

)]
. (22.11)
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We can determine the slope of the speed-spacing relationship when
traffic is jammed by finding the first derivative of v = f (s) with respect
to spacing s and evaluating the result at s = l and v = 0:

dv

ds

∣∣∣∣
s=l,v=0

= 1

(2γ v + τ )[1− ln(1 − v
vf
)] + (γ v2 + τ v+ l)

(
1

vf−v
)
∣∣∣∣∣∣
s=l,v=0

= 1

τ + l
vf

. (22.12)

22.3.2 Model Flexibility
The macroscopic LCM employs four parameters that allow sufficient
flexibility to fit data from a wide range of facilities (see the following
section for details). As originally noted in Ref. [38] and later in Refs.
[118, 119] concavity is a desirable property of the flow-density relationship.
This property is empirically evident in field observations frommost highway
facilities, especially in outer lanes, and the shape of the flow-density
relationship looks like a skewed parabola. In addition, some researchers
[28, 31, 118–120] have recognized the attractiveness of having a triangular
flow-density relationship. Moreover, an reverse-lambda shape was reported
in Refs. [121, 122], most likely in the inner lane of freeway facilities.
Therefore, a desirable property of a traffic stream model is its flexibility to
represent a variety of flow-density shapes ranging from skewed parabola to
triangular to reverse lambda.

The shape of the LCM is related to the second derivative of flow with
respect to density:

d2q
dk2

= − s3s′′

s′3
, (22.13)

where

s′ = ds
dv

= (2γ v + τ )

[
1 − ln

(
1 − v

vf

)]
+ (γ v2 + τ v+ l)

(
1

vf − v

)
(22.14)

and

s′′ = d2s
dv2

= 2γ
[
1 − ln

(
1 − v

vf

)]
+ 4γ v+ 2τ

vf − v
+ γ v2 + τ v+ l

(vf − v)2
. (22.15)

Note that s is always positive, so the shape of the flow-density relationship
is determined by the signs of s′ and s′′. If s′ and s′′ are both positive,
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d2q/dk2 is negative and the shape of the flow-density relationship is concave.
Otherwise, the flow-density relationship may consist of a combination
of concave, straight, and convex sections. In particular, it is possible to
obtain an almost triangular shape and even an reverse-lambda shape under
certain combinations of parameters vf , τ , γ , and l, among which γ plays
a critical role in controlling the shape of the flow-density relationship. For
example, when the driver population is not aggressive—that is, γ ≥ 0—a
concave flow-density relationship results; a moderately aggressive driver
population may give rise to an almost triangular shape, and an aggressive
driver population could lead to an reverse-lambda flow-density relationship.

The above discussion is further illustrated in Figure 22.2, where a family
of fundamental diagrams are generated from the macroscopic LCM with
the following parameters: vf = 30m/s, kj = 0.2 vehicles per meter,
τ = 1 s, and aggressiveness γ ranging from 0 to −0.03 s2/m. In the
flow-density plot, the lowest curve, exhibiting a skewed parabolic shape, is
generated with γ = 0, the second highest curve, showing a nearly triangular
shape, is generated with γ = −0.027, and the highest curve, which has an
reverse-lambda shape, is generated with γ = −0.030. From the definition

Density Flow

S
pe

ed

S
pe

ed

S
pe

ed

F
lo

w

Density Spacing

Figure 22.2 Family of curves generated from the LCM with different aggressiveness.
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of aggressiveness in Equation 22.4, one recognizes that smaller values of γ

correspond to more aggressive drivers, who are willing to accept shorter
car-following distances. Therefore, the values of γ , the shape of the q − k
curves, and field observations are consistent. Further quantitative analysis of
the effect of aggressiveness and its interaction with other model parameters
warrants further research, and is not discussed here.

22.4 EMPIRICAL RESULTS

The LCM is tested by fitting the model to traffic flow data collected from a
variety of facilities at different locations, including Atlanta (USA), Orlando
(USA), Germany, California (USA), Toronto (Canada), and Amsterdam
(Netherlands).

Figures 22.3-22.8 illustrate field data observed at these facilities with
data “clouds” in the background labeled as “Empirical.” The fitted result
of the LCM is illustrated as solid lines labeled as “LCM.” Also shown are
the fitted results of other traffic stream models, including the Underwood
model [11] (which employs two parameters) and the Newell model [58]

Figure 22.3 LCM fitted to GA400 data.
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Figure 22.4 The LCM fitted to Interstate 4 data.

(three parameters). As such, the reader is able to visually compare the
goodness of fit of two-, three-, and four-parameter models and examine
how fit quality varies with the number of parameters. Consisting of four
plots (namely, speed-density, speed-flow, flow-density, and speed-spacing),
each figure illustrates the fundamental diagrams represented by empirical
data and these models.

The empirical data in Figure 22.3 were collected on GA400, a toll
road in Atlanta, Georgia, USA, at station 4001116. Consisting of 4787
observation points, the abundant field data reveal the relationships among
flow, density, and speed by means of cloud density—that is, the intensity of
data points. Meanwhile, the wide scatter of the data points seems to suggest
that any deterministic, functional fit is merely a rough approximation, and
a stochastic approach such as in Ref. [19] might be more statistically sound.
By examining the cloud density, one is able to identify the trend of these
relationships. For example, the flow-density relationship appears to have an
reverse-lambda shape. Meanwhile, the speed-flow relationship features a ⊃
shape with its “nose” leaning upward.
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Figure 22.5 LCM fitted to autobahn data.

To fit the LCM to the empirical data, a two-level optimization procedure
similar to that in Ref. [123] is adopted. First, each set of raw data is
aggregated in order to reduce its size to a manageable level. When the data
set is aggregated, its distribution with respect to density is obtained, and
the entire density range is divided into intervals delimited by equally spaced
quantiles. Then the data are aggregated by computation of an empirical
mean (i.e., Emp mean) for each group consisting of the same number
of consecutive observations. Next, the two-level optimization procedure
is carried out. The inner loop searches for the minimum distance from
each dot of “Emp mean” (vi, ki, and qi) to the LCM curve (̂vi, k̂i, and
q̂i) normalized by (vf , kj, and qm) given a set of model parameters (vf , τ , γ ,
and l):

min di =
√√√√(

vi − v̂i
vf

)2

+
(
ki − k̂i
kj

)2

+
(
qi − q̂i
qm

)2

. (22.16)
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Figure 22.6 The LCM fitted to PeMS data.

Then, the outer loop searches for a set of optimized parameters that
minimizes the total of minimized distances D(vf , τ , γ , l):

minD =
∑

disubjecttovf,τ ,γ , andl. (22.17)

Normally, this would end the fitting process. However, the optimized
model does not always match the empirical capacity condition (qm, km, and
vm) since it consists only of a limited number of observations. If the capacity
condition is also part of the fitting objective, one may need to tweak the
optimized model, and this is typically done manually by visual inspection.

The fitting results are indicated in Tables 22.1 and 22.2. Table 22.1 com-
pares the fitted capacity condition with the empirical capacity condition.
The relative error of capacity is less than 5% and those of optimal density
and speed are generally under 10%. Table 22.2 lists fitted parameters of the
LCM. For example, the GA400 data set suggests a free-flow speed vf of
29m/s (104.4 km/h), an effective vehicle length l of 6m (or jam density
kj = 167 vehicles per kilometer), an average response time τ of 1.3 s, and
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Figure 22.7 The LCM fitted to Highway 401 data.

aggressiveness γ of −0.041 s2/m. In addition, the kinematic wave speed
at the jam condition ωj is calculated with Equation 22.10. Though ωj
typically lies in a relatively narrow range between 15 and 25 km/h, outliers
are observed in field data. For example, the CA/PeMS data set does not
provide a clear clue to estimate ωj, while the autobahn data set suggest an
ωj of 31.4 km/h or even higher.

We fitted two additional models to the data sets by matching empirical
free-flow speed and capacity, and the results are presented in Table 22.2. It
is apparent that the more parameters a model employs, the more flexible
the model becomes, and hence the more likely it is to result in a good
fit. In the speed-flow plot in Figure 22.3, the Underwood and Newell
models are comparable in the congested regime (i.e., the lower portion of
the graph), while in the free-flow regime (i.e., the upper portion of the
graph) the Newell model outperforms the Underwood model since the
Newell model is closer to the dense cloud. In contrast, the LCM (which
employs four parameters) yields the best fit among the three models, as
indicated by the close approximation of the LCM curve to the empirical
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Figure 22.8 The LCM fitted to Amsterdam data.

data. More specifically, the LCM curve runs through the dense cloud in the
free-flow regime and follows the trend nicely in the rest of the graph. In
the flow-density plot, both the Underwood model and the Newell model
peak later than do the empirical data. In the congested regime (i.e., the
portion after the peak), both models exhibit a lack of fit, with the Newell
model slightly better in terms of concavity and closeness to data points.
In contrast, the LCM is superior on all accounts. Not only does it exhibit
an reverse-lambda shape, it is also much closer to the empirical data. In
addition, the curve peaks at the same location where the empirical data
peak (km = 25 vehicles per kilometer). In the speed-density plot, the LCM
appears to overfit the data when the density is very low. Except for this,
the three models have their own relative merits since each appears to fit
the empirical data reasonably well. The speed-spacing plot emphasizes the
free-flow regime, which is the flat portion at the top of the graph. It appears
that the Underwood model takes a long way to approach free-flow speed,
while the Newell model and the LCM adapt to free-flow speed sooner.
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Table 22.1 Parameters of the LCM as a result of fitting to various facility types

Data source Empirical parameters Capacity condition
Location Facility No. of observations vf (m/s) l (m) τ (s) γ (s2/m) qm (vehicles/h) km (vehicles/km) vm (km/h)
Atlanta GA400 4787 29.5 4 1.46 -0.038 1883.8 22.0 85.8
Orlando Interstate 4 288 24.2 8.6 1.09 -0.040 1795.5 22.1 81.4
Germany Autobahn 3405 43.3 10 1.0 -0.018 2114.1 22.3 95.0
CA/PeMS Freeway 2576 31 6.3 2.4 -0.060 1124.9 11.0 102.5
Toronto Highway 401 286 29.5 12 0.8 -0.026 1945.7 21.8 89.2
Amsterdam Ring road 1199 28.4 7.5 0.82 -0.026 2452.2 27.2 90.3
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Table 22.2 Comparison of traffic stream models fitted to various facility types

Location Model Estimated parameters
Underwood vf = 29.5m/s, km = 0.050 vehicles/m

Atlanta Newell vf = 29.5m/s, l = 4.0m, λ = 0.81 1/s
LCM vf = 29.5m/s, l = 4.0m, τ = 1.46 s, γ = −0.038 s2/m
Underwood vf = 24.2m/s, km = 0.055 vehicles/m

Orlando Newell vf = 24.2m/s, l = 8.6m, λ = 1.09 1/s
LCM vf = 24.2m/s, l = 8.6m, τ = 1.09 s, γ = −0.040 s2/m
Underwood vf = 43.3m/s, km = 0.037 vehicles/m

Germany Newell vf = 43.3m/s, l = 10.0m, λ = 1.12 1/s
LCM vf = 43.3m/s, l = 10.0m, τ = 1.00 s, γ = −0.018 s2/m
Underwood vf = 31.0 m/s, km = 0.029 vehicles/m

CA/PeMS Newell vf = 31.0m/s, l = 6.3m, λ = 0.50 1/s
LCM vf = 31.0m/s, l = 6.3m, τ = 2.40 s, γ = −0.060 s2/m
Underwood vf = 29.5m/s, km = 0.050 vehicles/m

Toronto Newell vf = 29.5m/s, l = 12.0m, λ = 1.3 1/s
LCM vf = 29.5m/s, l = 12.0m, τ = 0.80 s, γ = −0.026 s2/m
Underwood vf = 28.4m/s, km = 0.064 vehicles/m

Amsterdam Newell vf = 28.4m/s, l = 7.5m, λ = 1.5 1/s
LCM vf = 28.4m/s, l = 7.5m, τ = 0.82 s, γ = −0.026 s2/m

Unfortunately, the congested regime (the slope at the beginning portion of
this graph) does not reveal much difference among the three models since
they all cluster tightly together.

As shown in Figure 22.4 and Table 22.1, Interstate 4 data in Orlando,
Florida, USA, feature a capacity qm of 1953 vehicles per hour, which is
achieved at an optimal density km of 24.9 vehicles per kilometer and optimal
speed vm of 78.4 km/h. What is striking in this set of data is that the
free-flow regime in the speed-flow plot is almost flat and this condition is
sustained almost up to capacity. This graph clearly differentiates the fitting
quality of models with different numbers of parameters. More specifically,
the two-parameter Underwoodmodel exhibits the poorest fit since its upper
branch (i.e., free-flow regime), nose (i.e., capacity), and lower branch (i.e.,
congested regime) are far from empirical observations. The three-parameter
Newell model is better, as indicated by the closer fit of its upper branch,
nose, and lower branch. The four-parameter LCM is superior in all aspects.
For example, its upper branch is almost a flat line running through empirical
data points, its nose leans upward and roughly coincides with empirically
observed capacity, and its lower branch cuts evenly through empirical
observations. Though there are discrepancies between the empirical data
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and the fitted curve, no systematic overfitting or underfitting is observed
in this graph. In the remaining three plots, the differences among the three
models and their fit quality are consistent with those observed in the speed-
flow plot.

In Figure 22.5, the autobahn data collected from Germany exhibit an
unusually high free-flow speed vf of 42.4m/s (or 152.6 km/h). Unlike
the Interstate 4 data. which feature an almost constant free-flow speed vf
up to capacity, the traffic speed in the autobahn data gradually decreases
in the free-flow regime, resulting in an optimal speed vm of only about
60% of vf as shown in the speed-flow plot. Unfortunately, the particular
nature of this set of data poses a great challenge to any attempt to fit the
data. In the speed-flow plot, one has difficulty to fit a model that meets
the observed free-flow regime, the congested regime, and the capacity
simultaneously, so a trade-off has to be made among the three portions. The
LCM curve has been tweaked between free-flow and congested regimes
while emphasizing the capacity. Though better than the Underwood and
Newell models, the LCM still exhibits some discrepancies compared with
the empirical data.

The PeMS data collected from California are plotted in Figure 22.6.
This set of data heavily emphasizes the free-flow regime (which is virtually
a flat band in the speed-flow plot), with observations elsewhere sparsely
scattered. In addition, a remarkable feature in the flow-density plot is the
spike at capacity, which clearly indicates an reverse-lambda flow-density
relationship. As expected, the LCM is able to be fitted to such a shape,
and thus approximates the free-flow regime and the capacity condition
very well. Since there are few observations in the congested regime, the
model fit in this area appears to be quite arbitrary. In comparison, the LCM
approximates the free-flow regime and the capacity condition the best,
while the Underwood and Newell models are slanted and significantly
underestimate the optimal speed vm.

Though field observations on Highway 401 in Toronto do not have
abundant data points, a trend is still clearly established in each plot in
Figure 22.7. Much like the results for the Interstate 4 data, there are
clearly differences in capabilities among themodels, with the two-parameter
Underwood model being the poorest and the four-parameter model being
the best. Notice that no systematic underfitting or overfitting is observed in
the LCM curves. The same comments as above apply to ring road data in
Amsterdam (see Figure 22.8).
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22.5 APPLICATIONS

Since the LCM takes a simple mathematical form that involves physically
meaningful parameters, the model can be easily applied to help investigate
traffic phenomena at both the microscopic ölevel and the macroscopic
level. For illustrative purposes, a concrete example is provided below, in
which a moving bottleneck is created by a sluggish truck. Microscopic
modeling allows the LCM to generate profiles of vehicle motion so that
the cause and effect of vehicles slowing down or speeding up can be
analyzed in exhaustive detail; macroscopic modeling may employ the LCM
to generate fundamental diagrams that help determine shock paths and
develop graphical solutions. Since the LCM is consistent at the microscopic
and macroscopic levels, the two sets of solutions not only agree with but
also complement each other.

In addition, the LCM can be adopted by existing commercial simulation
packages to improve their internal logic of car following, or it can serve
as the basis of a new simulation package. Moreover, the LCM can be
adopted in highway capacity and level of service analysis. For example, the
conventional level of service analysis procedure involves the use of speed-
flow curves to determine traffic speed; see Ref. [124] for the family of
curves in EXHIBIT 23-3 and the set of approximating equations under-
neath. The macroscopic LCM can help make the analysis more effective
by providing more realistic speed-density curves to facilitate analytical,
numerical, and graphical solutions. Furthermore, the LCM can be adopted
by transportation planners for use as the basis of a highway performance
function which realistically estimates travel time (via traffic speed) as a
function of traffic flow assigned to a route. The resultant travel time is the
basis of driver route choice behavior, which in turn alters dynamic traffic
assignment.

22.5.1 An Illustrative Example
A freeway segment contains an on-ramp (which is located 2000m from an
arbitrary reference point denoting the upstream end of the freeway) and an
off-ramp 2000m apart. The freeway was initially operating under condition
A (flow 0.3333 vehicles per second or 1200 vehicles per hour, density
0.0111 vehicles per meter or 11.1 vehicles per kilometer, and speed 30m/s
or 108.0 km/h). At 2:30 p.m., a slow truck enters the freeway traveling at
a speed of 5.56m/s (20 km/h), which forces the traffic to operate under
condition B (flow 0.3782 vehicöles per second or 1361 vehicles per hour,
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Figure 22.9 Fundamental diagram of the freeway generated from the LCM.

density 0.0681 vehicles per meter or 68.1 vehicles per /kilometer, and speed
5.56m/s or 20 km/h). After a while, the truck turns off the freeway at the
next exit. The impact on the traffic due to the slow truck is illustrated
macroscopically in Section 22.5.2 and microscopically in Sections 22.5.3
and 22.5.4.

A fundamental diagram, which is illustrated in Figure 22.9, is generated
with the macroscopic LCM to characterize the freeway with the following
parameters: free-flow speed vf = 30m/s, aggressiveness γ = −0.028 s2/m,
average response time τ = 1 s, and effective vehicle length l = 7.5m. In
addition, the above-mentioned traffic flow conditions, free-flow condition
O, and capacity condition C are tabulated in Table 22.3.

To illustrate the application of the LCM, the above problem is addressed
in two approaches: a macroscopic graphical solution and a microscopic sim-
ulation solution. The microscopic simulation is conducted in deterministic
and random fashions.
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Table 22.3 Traffic flow conditions
Flow, q Density k Speed v

Condition veh/s (veh/h) veh/m (veh/km) m/s (km/h)
A 0.3333 (1200.0) 0.0111 (11.1) 30 (108.0)
B 0.3782 (1361.6) 0.0681 (68.1) 5.56 (20.0)
C 0.5983 (2154.0) 0.0249 (24.9) 24.03 (86.5)
O 0 (0) 0 (0) 30 (108.0)

Figure 22.10 Amoving bottleneck due to a slow truck; deterministic simulation.

22.5.2 Macroscopic Approach—Graphical Solution
The graphical solution to the problem involves finding shock paths that de-
lineate time-space (t-x) regions of different traffic conditions. Figure 22.10
illustrates the time-space plane with the freeway overlaid on the right and
a mini version of the flow-density plot in the top-left corner. The point
when the slow truck enters the freeway (2:30 p.m.) roughly corresponds to
P1(t1 = 65, x1 = 2000) on the time-space plane, while the point when the
truck turns off the freeway is roughly P3(t3 = 425, x3 = 4000). Therefore,
constrained by the truck, the t-x region under P1P3 should contain traffic
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condition B. On the other hand, the t-x regions before the truck enters
the freeway and before congestion occurs (i.e., condition B) should have
condition A. As such, there must be a shock path that delineates the two
regions, and such a path should start at P1 with a slope equal to shock wave
speed UAB, which can be determined according to Rankine-Hugonoit
jump condition [125, 126]:

UAB = qB − qA
kB − kA

= 0.3782 − 0.3333
0.0681 − 0.0111

= 0.7877m/s. (22.18)

Meanwhile, downstream of the off-ramp, congested traffic departs at
capacity condition C, which corresponds to a t-x region that starts at P3
and extends forward in time and space. Hence, a shock path forms between
the region with condition C and the region with condition B. Such a shock
path starts at P3 and runs with a slope equal to shock wave speed UBC:

UBC = qC − qB
kC − kB

= 0.5983 − 0.3782
0.0249 − 0.0681

= −5.0949m/s. (22.19)

If the flow-density plot is properly scaled, one should be able to construct
the above shock paths in the t-x plane. The two shock paths should
eventually meet at point P2(t2, x2). Its location can be found by solving
the following set of equations:⎧⎪⎨⎪⎩

x2 − x1 = UAB × (t2 − t1),

x2 − x3 = UBC × (t2 − t3),

(x2 − x1) + (x3 − x2) = 2000.

(22.20)

After some math, P2 is determined roughly at (716.8, 2513.4). After the
two shock paths P1P2 and P3P2 meet, they both terminate and a new shock
path forms which delineates regions with conditions C and A. The slope of
the shock path should be equal to shock speed UAC:

UAC = qC − qA
kC − kA

= 0.5983 − 0.3333
0.0249 − 0.0111

= 19.2029m/s. (22.21)

As such, the shock path can be constructed as P2P4. Lastly, the blank
area in the t-x plane denotes a region with no traffic—that is, condition O.

22.5.3 Microscopic Approach—Deterministic Simulation
To double check the LCM and to verify if its macroscopic and macroscopic
solutions agree with each other reasonably, the microscopic LCM is imple-
mented in MATLAB, a computational software package. As a manageable
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starting point, the microscopic simulation is made deterministic with the
following parameters: desired speed vi = 30m/s, maximum acceleration
Ai = 4m/s2, emergency deceleration Bi = 6m/s2, the deceleration which
driver i believes that he or she is capable of applying in an emergency
bi = 9m/s2, perception-reaction time τi = 1 s, and effective vehicle length
li = 7.5m, where i ∈ {1, 2, 3, . . . , n} are unique vehicle identifiers. Vehicles
arrive at the upstream end of the freeway at a rate of one vehicle every 3 s,
which corresponds to a flow of q = 1200 vehicles per hour. The simulation
time increment is 1 s and the simulation duration is 1000 s.

Figure 22.10 illustrates the simulation result in which vehicle trajectories
are plotted in the t-x plane. The varying density of trajectories outlines a
few regions with clearly visible boundaries. The motion or trajectory of
the first vehicle is predetermined, while those of the remaining vehicles
are determined by the LCM. The first vehicle enters the freeway at time
t = 65 s (2:30 p.m.) after the simulation starts. This moment is calculated so
that the second vehicle is about to arrive at the on-ramp at this particular
moment. Hence, the second vehicle and vehicles thereafter have to adopt
the speed of the truck, forming a congested region where traffic operates at
condition B.

Upstream of this congested region B is a region where traffic arrives
according to condition A. The interface of regions B and A, P1P2, denotes
a shock path in which vehicles in fast platoon A catch up with and join slow
platoon B ahead. The situation continues, and the queue keeps growing
until the truck turns off the freeway at t = 425 s into the simulation
(2:36 p.m.). After that, vehicles at the head of the queue begin to accelerate
according to the LCM—that is, traffic begins to discharge at capacity
condition C. Therefore, the front of the queue shrinks, leaving a shock path
P3P2 that separates region C from region B. Since the queue front shrinks
faster than the growth of the queue tail, the former eventually catches up
with the later at P2, at which point both shock paths terminate, denoting
the end of congestion. After the congestion disappears, the impact of the
slow truck still remains because it leaves a capacity flow C in front, followed
by a lighter and faster flow with condition A. Hence, the trace where faster
vehicles in platoon A join platoon C denotes a new shock path P2P4.

Comparison of the macroscopic graphical solution and the microscopic
deterministic simulation reveals that they agree with each other very well,
though the microscopic simulation contains much more information about
the motion of each individual vehicle and the temporal-spatial formation
and dissipation of congestion.
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22.5.4 Microscopic Approach—Random Simulation
Since the microscopic approach allows one the luxury to account for
randomness in drivers and traffic flow, the following simulation may
replicate the originally posed problem more realistically. The randomness
of the above example is set up as follows with the choice of distribu-
tion forms being rather arbitrary provided that they are convenient and
reasonable:

• Traffic arrival follows a Poisson distribution, in which the headway
between the arrival of consecutive vehicles is exponentially distributed
with mean 3 s—that is, hi ∼ Exponential(3)s, which corresponds to a
flow of 1200 vehicles per hour.

• The desired speed follows a normal distribution: vi ∼ N(30, 2)m/s.
• The maximum acceleration follows a triangular distribution: Ai ∼

Triangular(3, 5, 4)m/s2.
• Emergency deceleration Bi ∼ Triangular(5, 7, 6)m/s2.
• The deceleration which driver i believes that he or she is capable of

applying in an emergency bi ∼ Triangular(8, 10, 9)m/s2.
• Effective vehicle length li ∼ Triangular(5.5, 9.5, 7.5)m.

The result of one random simulation run is illustrated in Figure 22.11,
where the effect of randomness is clearly observable. Trajectories in region
B seem to exhibit the least randomness because vehicles tend to behave
uniformly under congestion. Trajectories in region C are somewhat random
since the metering effect due to the congestion still remains. In contrast,
region A appears to have the most randomness, not only because of the
Poisson arrival pattern but also because of the random characteristics of
drivers. Consequently, the shock path between regions B and C, P3P2,
remains almost unaltered, while there are some noticeable changes in shock
path P1P2. The first is the roughness of the shock path, and this is because
vehicles in platoon A now join the tail of the queue in a random fashion.
The second is that the path might not be a straight line. The beginning
part of the shock path has a slope roughly equal to UAB, while the rest
has a slightly steeper slope (due to less intense arrival from the upstream
part of the freeway during this period), resulting in the termination of
congestion earlier than in the deterministic case (which is somewhere near
P2). This, in turn, causes the slope of the shock path between regions C
and A to shift left. The slope of this shock path remains nearly the same
since this scenario features a fast platoon that is caught by an even faster
platoon.
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Figure 22.11 Amoving bottleneck due to a slow truck; random simulation.

22.6 RELATEDWORK

The microscopic LCM is a dynamic model which stipulates the desired
motion (or acceleration) of a vehicle as the result of the overall field
perceived by the driver. Other examples of dynamic models are General
motors models [55, 56] and the intelligent driver model [60, 61, 116].
A dynamic model may reduce to a steady-state model when vehicle
acceleration becomes zero. A steady-state model essentially represents a
safety rule—that is, the driver’s choice of speed as a result of allowing a
safe car-following distance or vice versa. Examples of steady-state models
include the Pipes model [52], the Forbes model [53, 54, 66], the Newell
nonlinear car-following model [58], the Gipps car-following model [57],
and the Van Aerde car-following model [62, 63]. Interested readers are
referred to [127] for a detailed discussion of the relation among the LCM and
other car-following models, including a unified diagram that summarizes
such a relation.

The microscopic LCM incorporates a term called the desired spacing s∗ij
(Equation 22.2) which generally admits any safety rule and consequently any
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steady-state model. However, Equation 22.3 instantiates s∗ij in a quadratic
form as a simplified version of the Gipps car-following model [57]. The
result coincides with the speed-spacing relationship documented in the
Highway Capacity Manual [128] and Chapter 4 of Revised Monograph of Traffic
Flow Theory [3] as a result of 23 observational studies. The speed-spacing
relationship incorporates three terms: a constant term representing effective
vehicle length; a first-order term, which is the distance traveled during
perception-reaction time τ ; a second-order term, which is the difference
of the breaking distances of the following and leading vehicles, and which is
interpreted as the degree of aggressiveness that the following driver desires
to have. If one ignores the second-order term, the Pipes model [52] and
equivalently the Forbes model [53, 54, 66] result.

The macroscopic model is a single-regime traffic stream (or equilibrium)
model with four parameters. Also in the single-regime category, the Van
Aerde model [62, 63] and the intelligent driver model [60, 61] employ four
parameters, the Newell model [58] and the models of del Castillo [118,
120] have three parameters, and early traffic stream models such as those
of Greenshields [9], Greenberg [10], Underwood [11], and Drake et al.
[12] necessitate the use of only two parameters, though their flexibility and
quality of fitting vary, as illustrated in Section 22.4.

22.7 SUMMARY

This chapter introduced a simple yet efficient traffic flow model, the LCM,
which is a result of modeling from a combined perspective of physics
and human factors. The LCM is formulated in two consistent forms: the
microscopic model describes vehicle longitudinal operational control, and
the macroscopic model characterizes steady-state traffic flow behavior and
further the fundamental diagram.

The LCM was tested by fitting it to empirical data collected at a
variety of facility types in different locations, including GA400 in Atlanta
(USA), Interstate 4 in Orlando (USA), an autobahn in Germany, PeMS in
California, Highway 401 in Toronto, and a ring road in Amsterdam. The
wide scatter of these data sets suggests that any deterministic, functional
fit is merely a rough approximation, and a stochastic approach might be
more statistically sound. Test results support the claim that the LCM has
sufficient flexibility to yield quality fits to these data sets, some of which
even exhibit reverse-lambda flow-density relationships. Meanwhile, two
more models are fitted to the same data sets in order to compare them
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with LCM. These models include the two-parameter Underwood model
and the three-parameter Newell model. The fitting results reveal that the
more parameters a model employs, the more flexible the model becomes,
and hence the more potential it has to achieve a good fit. Consistently, the
Underwood model yields the poorest goodness of fit, while the Newell
model represents an upgrade and the LCM maintains the best fit to
empirical data.

The unique set of properties possessed by the LCM lend it to various
transportation applications. For example, the LCM can be easily applied
to help investigate traffic phenomena. An illustrative example was provided
showing how to apply the LCM to the impact of a sluggish truck at both
the microscopic level and the macroscopic level. Noticeably, the two sets of
solutions agree with and complement each other owing to the consistency
of the LCM. In addition, the LCM can be adopted by existing commercial
simulation packages to improve their internal logic of car following, or
perhaps serve as the basis of a new simulation package. Moreover, the LCM
may help make highway capacity and level of service analysis more effective
by providing more realistic speed-density curves to facilitate analytical,
numerical, and graphical solutions. Furthermore, the LCM can assist in
effective transportation planning by providing a better highway performance
function that helps determine driver route choice behavior.

PROBLEMS

1. Vehicle i has just resumed motion after an emergency stop on the hard
shoulder of a freeway. According to the microscopic form of the LCM,
how long does it take for the vehicle to bring its speed up to 20m/s?
Assume the parameter values specified Section 22.5.3 apply.

2. After some time, vehicle i is approaching a leading vehicle j, at which
time vehicle i is traveling at 25m/s, vehicle j is traveling at 20m/s, and
the spacing between the two vehicles is 50m. Use the LCM and use
parameter values specified above to calculate the following under this
scenario:
a. Driver i’s desired spacing
b. Driver i’s control decision
c. When driver i executes the control decision

3. Building on the above scenario, at this time a third vehicle k traveling
at 23m/s on the adjacent lane cuts in halfway between vehicles i and j.
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Assume the same set of parameters apply to vehicle k as well. Repeat the
tasks in problem 2 for vehicles i and k.

4. For the scenario above, if the underlying desired spacing model is
replaced by the Forbes model and the parameter values remain the same,
how would your answers to the above problem change?

5. Assume that the parameters in the above problem apply and are uni-
form across all drivers and vehicles, and determine the corresponding
macroscopic form of the LCM.

6. Use the above macroscopic form of the LCM to determine the
following:
a. Kinematic wave speed at jam density
b. The slope of the speed-spacing relationship when traffic is jammed.

7. Find the capacity condition of the above macroscopic form of the LCM.
8. A unique feature of the macroscopic LCM is its ability to generate

different shapes of flow-density curves by varying parameter values
within the same functional model form. Use the above set of parameters
as a starting point and tweak parameters of your choice to configure the
following types of flow-density curves and indicate your set of parameter
values for each curve:
a. A skewed parabolic shape
b. A triangular shape
c. An reverse-lambda shape



CHAPTER 23

The Unified Diagram

Using the field theory and the longitudinal control model presented in
the previous two chapters as a framework, one can conveniently relate
traffic flow models to each other. As such, a unified perspective can be
cast on traffic flow modeling with bridges not only within but also between
microscopic and macroscopic levels.1

23.1 MOTIVATION

Half a century ago, Newell [58] proposed a nonlinear car-following model
of the following form:

ẋi(t + τi) = vi

(
1 − e−

λi
vi
(sij(t)−li)

)
, (23.1)

where ẋi(t) is the speed of the vehicle with ID i at time t, τi is driver i’s
perception-reaction time, vi is driver i’s desired speed, λi is a parameter
associated with driver i (i.e., the slope of driver i’s speed-spacing curve
evaluated at ẋi = 0), sij is the spacing between vehicle i and its leader
bearing ID j, and li is the minimum value of sij. Newell acknowledged that
“no motivation for this choice is proposed other than the claim that it has
approximately the correct shape and is reasonably simple.”

It would be interesting to interpret the Newell model and furnish it
with a possible motivation (this section). In doing so, we find that the
interpretation gives rise to a broader picture that can be used to relate some
existing traffic flow models to each other (Section 23.2). As such, a unified
perspective can be cast on traffic flowmodelingwith bridges not only within
but also between microscopic and macroscopic levels (Section 23.3).

Without further delay, the Newell model can be slightly rearranged as
follows:

1 − ẋi(t + τi)

vi
− e

li−sij(t)
vi/λi = 0 (23.2)

1 This chapter is reproduced from Ref. [129].
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The above equation is, in turn, a special case of the following equation
when vehicle i’s acceleration ẍi is zero:

ẍi(t + τi) = gi

[
1 − ẋi(t)

vi
− e

li−sij(t)
vi/λi

]
, (23.3)

where gi is a positive, nonzero parameter associated with vehicle i. Equa-
tion (23.3) is a dynamic car-followingmodel which describes the acceleration
performance of vehicle i, whereas Equation (23.2) is a steady-state version of
the dynamic model since the former describes the speed choice of driver i
in the steady state—that is, when acceleration is not considered (ẍi = 0).

Steady-state and dynamic car-following models are both widely applied
and successful in microscopic traffic flow simulation. However, dynamic
models appear to be more desirable in modeling driver operational control
(e.g., car following) if the following two issues are concerned. The first
pertains to human factors. Though a driver may have a speed choice in
mind (e.g., “I wish to travel at 113 km/h (or 70miles per hour)”), such a goal
is achieved over time, during which time the driver’s operational control at
each instant is based on acceleration (e.g., “I need to speed up or slow down
in order to get to the target speed”), which naturally results from the driver’s
operation on the gas and brake pedals. The second pertains to physics. The
acceleration of an object can change abruptly, whereas its speed profile has to
be smooth. For example, when a driver steps on the brake pedal and keeps
the foot there to bring the vehicle to a stop, a deceleration is constantly
applied until the vehicle stops, at which moment the deceleration suddenly
disappears. In contrast, the speed profile of the vehicle has to be smooth—
that is, starting from its initial speed and continuously decreasing to zero.
As another example, when a subject vehicle is being cut off from its leader
(because of a third vehicle squeezing in between), the sudden change of
spacing may result in a steady-state model model to suggest an unattainable
speed in response (at which point, an extra, dynamic constraint on limiting
acceleration has to be introduced which exceeds the scope of steady-state
modeling). In contrast, a dynamic model works directly on acceleration,
and even though limiting acceleration may be involved, it is still within the
scope of dynamic modeling.

We can further rearrange Equation (23.3) as follows by multiplying both
sides by vehicle mass mi:

miẍi(t + τi) = migi − migi
ẋi(t)
vi

− migie
li−sij(t)
vi/λi . (23.4)
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One immediately recognizes that the above equation takes the form of
Newton’s second law of motion:∑

Fi = Gi − Ri − F ji , (23.5)

where
∑
Fi = miẍi(t + τi), Gi = migi, Ri = Gi

ẋi(t)
vi

, and F ji = Gie
li−sij(t)
vi/λi .

Therefore, Equation (23.4) can be interpreted as an application of Newton’s
second law of motion in driver operational control. The acceleration of
a driver-vehicle unit i is the result of “forces” acting on the unit, and
these forces can be further interpreted as follows. The term Gi functions
as the driving force, which is analogous to the gravity and is determined
as the product of vehicle mass mi and the acceleration of roadway gravity gi.
The term Ri is like a resistance: the faster the vehicle travels, the greater the
resistance is. In addition, the resistance balances the gravity when the driver’s
desired speed is achieved. The term F ji can be interpreted as a repelling
(vehicle interaction) force from leading vehicle j depending on the spacing
sij between the two vehicles. Since this is a noncontact force, it is an action
at a distance as if it were mediated by a “field.”

23.2 A BROADER PERSPECTIVE

Extending the above discussion, we find it appropriate to interpret the
driver’s operational control using the concept of a field. More specifically,
the driving environment perceived by a driver can be represented as a field,
in which objects (such as roadways and other vehicles) are each represented
as a component field and their superposition represents the overall hazard
that the subject driver tries to avoid. Hence, the aim of modeling of vehicle
motion is to seek the least hazardous route by navigating through the field
along its valley. A field theory of such a nature was introduced in Chapter
21. Only major results of the field theory are reproduced below for easy
reference.

23.2.1 Overview of the Field Theory
The generic form of the field theory is{

miẍi(t + τi) = γ 0
i [Gi(t)− Ri(t)] + γ (α

j
i )
∂Ui,x
∂x ,

miÿi(t + τi) = −γ (αki )∂Ui,y∂y .
(23.6)

Readers are referred to Chapter 21 for the derivation of the results and
the notation presented in this subsection. A special case of the theory, which
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is referred to as the longitudinal control model, can take the following form
after some simplifications:

ẍi(t + τi) = gi

[
1 −

(
ẋi(t)
vi

)δ
− e

sij(t)
∗−sij(t)
Z

]
(23.7)

or

ẍi(t + τi) = gi

[
1 −

(
ẋi(t)
vi

)
− e

sij(t)
∗−sij(t)
sij(t)∗

]
(23.8)

if one chooses δ = 1 and Z = sij(t)∗. The desired spacing sij(t)∗ is
motivated by safety rules and can take many forms, of which two examples
are provided:

s∗ij(t) = ẋi(t)τi + lj, (23.9)

s∗ij(t) = ẋ2i (t)

2bi
+ ẋi(t)τi −

ẋ2j (t)

2Bj
+ lj. (23.10)

Aggregating Equation 23.8 over vehicles by assuming steady-state con-
ditions yields the following equilibrium speed-density relationship:

v = vf [1 − e1−
k∗
k ]. (23.11)

A more specific form is

v = vf

[
1 − e

1− 1
k(γ v2+τ v+l)

]
(23.12)

or

k = 1

(γ v2 + τ v+ l)
[
1 − ln

(
1 − v

vf

)] . (23.13)

23.2.2 RelatingMicroscopic Car-Following Models
Following the rationale in Section 23.1, it turns out that the field theory
can be used as a framework to relate traffic flow models to each other at
both the microscopic level and the macroscopic level.

NewellModel
We return to the Newell nonlinear car-following model. Comparison of
Equations 23.1 and 23.7 reveals that the former results if one chooses to (1)
apply the steady-state condition—that is, ẍi(t + τi) = 0; (2) set Z = vi/λi;
(3) let s∗ij(t) = li; and (4) use ẋi(t) as the response variable and apply a time
delay τi.
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Further, the physical meaning of parameter λi in Equation 23.1 is the
tangent of the speed-spacing curve (Figure 1 in Newell’s original paper)
evaluated when the speed is zero. This parameter can be interpreted as the
reciprocal of the perception-reaction time (i.e., λi = 1/τi) as implied by
Newell’s Figure 1 and the numerical values in his Figure 2). In contrast,
this tangent is evaluated as 1/(τ + l/vf ) in the longitudinal control model.

With this understanding, the vehicle interaction force F ji suggested by the
Newell model can be interpreted as the negative exponential of the gap
(sij(t) − li) between the subject vehicle i and its leader j scaled down by
the distance (viτi) traversed by vehicle i at the desired speed vi during one
perception-reaction time τi.

The field theory is related to other microscopic car-following models as
follows.

ForbesModel
The Forbes model [53, 54, 66] is based on the following safety rule: the time
gap between a vehicle and its leader should always be equal to or greater
than the reaction time τi. This model can be admitted into the longitudinal
control model (Equation 21.15) as a means to determine the desired spacing
s∗ij(t), which is formulated in Equation 23.9.

General MotorsModels
The family of General Motors models (GM models) [55, 56] is generically
formulated in its fifth model (GM5):

ẍi(t + τi) = α
ẋmi (t + τi)[ẋj(t)− ẋi(t)]

[xj(t)− xi(t)]l . (23.14)

If one chooses m = l = 1, Equation 23.14 reduces to the fourth-
generation GM model (GM4):

ẍi(t + τi) = α
ẋi(t + τi)[ẋj(t)− ẋi(t)]

[xj(t)− xi(t)] , (23.15)

where xi, ẋi, ẍi, and τi are the displacement, speed, acceleration, and
perception-reaction time of the subject vehicle i, respectively; similar
notation applies to its leader j; α is a dimensionless coefficient. In relation
to the field theory, GM4 considers only the vehicle interaction force F ji
and ignores the unsatisfied desire for mobility (Gi − Ri) (see Chapter
21 for details). Rather than translating intrusion exponentially to vehicle
interaction force as in the longitudinal control model (Equation 21.15), F ji
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in GM4 mimics Coulomb’s law in electrostatics. More specifically, GM4
views vehicle i as a particle which carries a moving coordinate with electric
charge equivalent to its speed ẋi and vehicle j as another particle which
moves relative to vehicle i with charge equivalent to their relative speed
[ẋj(t) − ẋi(t)]. The magnitude of the interaction force is proportional to
the product of the two charges and inversely proportional to their distance.
According to Equation 23.15, vehicle i is attracted to (or repelled by) vehicle
j if the latter travels faster (or slower) than the former.

GippsModel
The Gipps model [57] consists of a system of two inequalities with one
governing the free-flow regime and the other governing the car-following
regime.

The free-flow inequality reproduced below is a result of fitting empirical
observations, and its function is to accelerate a vehicle from its initial speed
asymptotically toward its desired speed without oscillation:

ẋi(t + τi) = ẋi(t)+ 2.5giτi

(
1 − ẋi(t)

vi

)√
0.025 + ẋi(t)

vi
. (23.16)

We can rewrite the above equation in the following differential form
after considering the time difference τ :

ẍi(t + τi) ≈ ẋi(t + τi)− ẋi(t)
τi

= g′i
(
1 − ẋi(t)

vi

)
, (23.17)

where g′i = 2.5gi
√
0.025 + ẋi(t)

vi
. Note that Equation 23.17 is actually

the unsatisfied desire for mobility term in Equation 21.15 when the vehicle
interaction term disappears.

The Gipps car-following model is derived from the following safety rule:
at any moment, a driver i should leave sufficient distance behind the leader
j such that driver i has enough room to respond and decelerate at a rate
of bi > 0 to a safe stop behind j should the leader apply an emergency
brake (Bj > 0). The scenario is illustrated in Figure 23.1 and the model
reproduced below:

s∗ij(t) ≥ ẋi(t + τi)
2

2bi
+ τi

2
[ẋi(t)+ ẋi(t+τi)]+ ẋi(t+τi)θ− ẋ2j

2Bj
+L. (23.18)

The astute reader has recognized that the above model describes the
desired spacing, which follows exactly the same safety rule used to derive
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Figure 23.1 The Gipps model.

Equation 23.10, which is slightly modified from and simpler than the above
model. Of course, one could opt to use this model in place of Equation
23.10 to apply the longitudinal control model.

Note that the Gipps model has been identified as “overly safe” because
of the rather conservative safety rule and the additional safety margin ẋi(t+
τi)θ . Consequently, excessive car-following distances result, and the model
significantly underestimates highway capacity. In reality, though these safety
measures make sense, drivers tend to use them as a good rule of thumb but
frequently follow other vehicles closer than the desired spacing.

Intelligent Driver Model
The intelligent driver model (IDM) [60, 61] is expressed as a superposition
of the follower i’s acceleration term and a deceleration term which depends
on the desired spacing s∗ij :

ẍi(t + τi) = gi

[
1 −

(
ẋi
vi

)δ
− (

s∗ij
sij
)2

]
, (23.19)

where δ is the acceleration exponent, sij = xj − xi is the spacing between
vehicle i and its leader j, and the desired spacing s∗ij is a function of speed ẋi
and relative speed (ẋi− ẋj): s∗ij = s0+ s1

√
ẋi/vi+Tiẋi+ ẋi[ẋi− ẋj]/[2

√
gibi],

where s0, s1, bi, and Ti are parameters. Compared with Equation 21.15,
the IDM strikingly resembles the longitudinal control model. From the
perspective of the field theory, the IDM relates the interaction F ji between
vehicle i and its leader j to the squared ratio of the desired spacing s∗ij to the
actual spacing sij. In addition, the IDM has its own safety rule to determine
s∗ij which is conveniently admittable to the longitudinal control model.
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Van AerdeModel
The Van Aerde car-following model [62, 63] combines the Pipes model
[52] and the Greenshields model [9] into a single equation:

sij = c1 + c3ẋi + c2/(vf − ẋi), (23.20)

where c1 = vf (2vm − vf )/(kjv2m), c2 = vf (vf − vm)2/(kjv2m), c3 = 1/qm −
vf /(kjv2m), where vf is the free-flow speed of the roadway facility, kj is the
jam density, and vm is the optimal speed occurring at capacity qm.

The Van Aerde model constitutes yet another safety rule which can be
related to the longitudinal control model as the desired spacing s∗ij.

CARSIMModel
The CARSIM model [65] consists of a set of acceleration algorithms
(reproduced below to be consistent in notation):
A1: Vehicle i is moving but has not yet reached its desired speed vi.

Depending on vehicle i’s initial speed and the urgency of the task,
the acceleration rate is found by entering the data in Tables 1 and 2 in
Ref. [65].

A2: Vehicle i has reached its desired speed vi. No specific algorithm is
provided except that the driver will try to reach vi as fast as possible
while satisfying all safety and operational constraints.

A3: Vehicle i was stopped and has to start from standstill. A maximum
acceleration rate is applied constrained by a noncollision requirement
after a response delay τi.

A4: Vehicle i is in car-following mode with its leader j.A4 is determined by
satisfying the following safety rule: vehicle i should leave a nonnegative
gap (sij − lj ≥ 0) from leader j should vehicle i be advanced one time
increment 	t: sij(t) = xj(t) − xi(t + 	t) ≥ lj, where xi(t + 	t) =
xi(t)+ ẋi	t− 0.5A4	t2 and the other variables are as defined before.

A5: Vehicle i in car-following mode is subject to a noncollision constraint
which is reinforced by considering the desired spacing: s∗ij(t) = xj(t)−
xi(t+	t) ≥ max{ẋi(t+	t)τi+ljorẋi(t+	t)τi+[ẋi(t+	t)]2/(2Bi)−
[ẋj(t)]2/(2Bj)+ lj}, where ẋi(t +	t) = ẋi(t) + A5	t, and Bi and Bj
are the maximum deceleration rate of i and j, respectively. The astute
reader immediately recognizes that the first choice of the right-hand
side follows the rationale of the Forbes model [53, 54, 66] and the
second choice is similar to that of the Gipps model [57] if driver i is
willing to apply an emergency brake (i.e., bi = Bi) as well.
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The CARSIMmodel is compatible with the longitudinal control model.
A3 results when ẋi is set to zero in Equation 21.15. A1 is obtained when
the vehicle interaction term (i.e., F ji ) becomes zero. As vehicle i speeds
up, Equation 21.15 predicts that the actual acceleration decreases, which is
reflected in lookup Tables 1 and 2 in Refs. [65]. A3 is found when ẋi is equal
to vi in Equation 21.15. A4 and A5 are related to the longitudinal control
model through safety rules which are the same in both models except for a
slight implementation difference.

Psychophysical Model
The model developed byWiedemann [64] is a typical psychophysical model
whose principle is depicted in Figure 23.2. The rough curve ABCDEF is a
trajectory of the vehicle operation condition in the	x-	ẋ plane. 	x is the
spacing between the subject vehicle i and its leader j—that is, 	x = sij—
and 	ẋ is their speed difference ẋi − ẋj. Starting with point A, vehicle i
moves freely if it is not impeded by leader j, which is slower but far ahead.
Hence, 	ẋ remains approximately constant and 	x keeps decreasing. The
free-flow state continues up to point B, where the trajectory intersects the
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Figure 23.2 The Wiedmann model.
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perception threshold. After point B, vehicle i begins to approach vehicle j.
In response, driver i reduces his or her speed while 	x keeps decreasing.
The approaching regime continues up to point C, where the two vehicles
become sufficiently close and their speed difference is small. After point C,
the two vehicles are in the car-following regime. As driver i tries to adapt
to vehicle j’s speed, the gap closes. Driver i stops decelerating when the two
vehicles are moving at the same speed and their distance remains constant. If
driver i temporarily loses attention (e.g., talking on a cell phone) and slows
down, the gap begins to open until the driver realizes that he or she is falling
behind. Consequently, the driver tries to catch up, and hence the gap closes
again. If driver i overshoots, he or she may be reminded to back up again.
Therefore, the trajectory of driver i oscillates within a unconscious reaction
region (the white region) in the 	x-	ẋ plane.

Though the psychophysical model is not directly contained in or derived
from the field theory as the above-mentioned models are, the effect of the
former can be reproduced by the latter. For example, the follower i is in the
free-flow regime when the leader j is far ahead. As i moves close to j,
the former will ride up onto j’s potential field, and hence perceive a repelling
force F ji . This signifies the beginning of the approaching regime. As F ji
increases, ẋi adapts to ẋj. Sooner or later, i will find an equilibrium position
around the desired spacing s∗ij where the unsatisfied desire for mobility
balances the vehicle interaction force. At this point, vehicle i enters the car-
following regime. As i’s directional responsiveness (i.e., γi) drifts over time,
the vehicle may oscillate around the equilibrium position unconsciously, as
predicted by Equation 23.6.

Rule-BasedModel
The model developed by Kosonen [67] is a representative of rule-based
models, and it is reproduced below to be consistent in notation:

1. NO SPEED CHANGE

Keep the present speed (default case).

2. ACCELERATE IF [ẋi < vi] and [t − tlast > Tacc(ẋi)]

The current speed ẋi is less than the desired speed vi
and the time elapsed since the last acceleration tlast is more

than Tacc.

3. NO ACCELERATION IF [sij < smin(ẋi, ẋj)+ wstab(ẋi, ẋj)]

The distance from obstacle sij is less than the minimum safe

distance smin plus the width of the stable area wstab.
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4. SLOW DOWN IF [sij < smin(ẋi, ẋj)]

The distance from the obstacle Dobs is less than the minimum

safe distance smin.

5. DO NOT SLOW DOWN IF [ẋi < ẋj] or [t − tlast < Tmaxdec]

Own speed is less than obstacle speed or maximum deceleration

rate is exceeded.

6. GOTO ZERO IF [sij < 0] and (Obstacle = physical)

Distance to physical obstacle is below zero (i.e., collision).

At each time step, the motion of vehicle i is checked against the above
rules one by one. A later rule always supersedes any earlier rules should
there be a conflict. Similarly to the situation in the psychophysical model,
the above rule-based model is not directly contained in or derived from the
field theory. However, the effect of the rule-based model can be reproduced
as well if one is willing to fuzzify the field theory. For example, after
fuzzification and discretization, the desired spacing s∗ij can be decomposed
into two portions smin and wstab (see Figure 23.3) to mimic the original setup
in Ref. [67]. Therefore, vehicle i does nothing by default if it has reached its
desired speed and the road is free (i.e., rule 1 above). If vehicle i’s desire for
mobility has not been fully satisfied (i.e., ẋi < vi), it will accelerate (rule 2).
If i approaches j and is within wstab, i will not accelerate (rule 3). Vehicle i
needs to decelerate if it intrudes into smin (rule 4). There is no need for i to
decelerate if it becomes slower than j (rule 5). Vehicle i will stop if it collides
with j, which is ensured by the steep potential field when the vehicles touch
(rule 6).

23.2.3 Relating Macroscopic EquilibriumModels
Under equilibrium condition, vehicles move in a uniform manner and
hence lose their identifies: τi → τ , ẋi = ẋj → v, vi = vj → vf , ẍi = ẍj = 0,
sij → s = 1

k , s
∗
ij → s∗ = 1

k∗ , bi = bj → b, Bi = Bj → B, and li = lj → 1
kj
,

where the right arrow means “aggregate to” and items before the arrow are

xi ,xi
. ..

xi–1,xi–1
. ..

sixi

li–1li

xi–1

Figure 23.3 The Kosonen model.
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microscopic variables and those after the arrow are macroscopic variables.
With this notation, the microscopic longitudinal control model (Equation
21.15) translates to its macroscopic counterpart (Equation 23.11 or more
specifically Equations 23.12 and 23.13), which depicts the equilibrium
speed-density relationship. The field theory and the longitudinal control
model are related to existing equilibrium models as follows.

NewellModel (Macroscopic)
If we apply the above notation, the Newell car-following model translates
to its macroscopic counterpart of the following form:

v = vf[1 − e
λ
vf

1
kj
(1− kj

k )]. (23.21)

Notice the close resemblance between Equations 23.21 and 23.11. In
addition, through its microscopic counterpart, the above model’s connec-
tion to the longitudinal control model was discussed in Section 23.2.2.

Van AerdeModel (Macroscopic)
The equilibrium counterpart of the Van Aerde model can be written as

k = 1
c1 + c3v+ c2/(vf − v)

m (23.22)

where all variables are as defined before. Through its microscopic coun-
terpart, the above model is connected to the longitudinal control model as
discussed in Section 23.2.2.

IDM (Macroscopic)
Under equilibrium conditions, a special macroscopic case was derived from
the IDM [60, 61]:

v = (s− L)2

2vfT2

⎡
⎣−1 +

√
1 + 4T2v2f

(s− L)2

⎤
⎦ , (23.23)

where T is average safe time headway and s = 1/k is average spacing, where
k is traffic density.

Pipes-Munjal Model
The Pipes-Munjal model [15] takes the following form:

v = vf

[
1 −

(
k
kj

)n]
, (23.24)
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where n is a coefficient and the other variables are as defined before. In the
reverse direction (i.e., from macroscopic to microscopic1), the above model
seems to suggest a microscopic basis of roughly the following form:

ẍi = gi

[
1 − ẋi

vi
−

(
l
sij

)n]
. (23.25)

Note that the microscopic basis may take many other forms and the
above form is only one of the possibilities. With the above equation, it
becomes clear that the Pipes-Munjal model can be derived from the field
theory if one chooses the vehicle interaction force F ji of the form ( Lsij

)n.
A similar technique can be applied to other equilibrium models in an
effort to restore their microscopic basis from the perspective of the field
theory.

DrewModel
The Drew model [13] takes the following form:

v = vf

[
1 −

(
k

kj

)n+ 1
2
]
, (23.26)

where all variables are as defined before. If we repeat the above technique
and replace n with n+ 1

2 , the suggested microscopic basis is

ẍi = gi

[
1 − ẋi

vi
−

(
l
sij

)n+ 1
2
]
, (23.27)

which we can derive from the field theory by choosing F ji = gi( lsij )
n+ 1

2 .

Model ofWang et al.
Wang et al. [130] recently proposed a stochastic equilibrium model whose
three-parameter deterministic version takes the form

v = vf

1 + e
k−kc
θ

, (23.28)

where kc is the critical density (i.e., the density after which speed drop
becomes noticeable as density increases from 0 to kj) and θ is a coefficient.
The microscopic basis of the model could be

1 The same technique was used to derive the Van Aerde car-following model (microscopic) from the
Greenshields model (macroscopic).
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ẍi = gi

⎡
⎢⎣1 − ẋi

vi
−

⎛
⎜⎝1 − 1

1 + e
1
θ

(
1
sij

− 1
sc

)
⎞
⎟⎠

⎤
⎥⎦ (23.29)

where sc = 1/kc is the critical spacing (i.e., average spacing at critical
density). According to the field theory, one need only choose F ji = gi[1 −
1/(1 + e

1
θ (

1
sij

− 1
sc ))] to obtain the model of Wang et al.

Model of del Castillo and Benítez
Del Castillo and Benítez [118, 131] proposed a family of exponential
generating functions which can be represented as

f (λ) = e1−(1+
λ
n )
n
, (23.30)

where λ is called the “equivalent spacing,” which is a function of density k,
and n is a parameter. Setting n = 1 and n → ∞ results in the following two
special cases, respectively:

v = vf

[
1 − e

|Cj|
vf
(1− kj

k )
]

(23.31)

and

v = vf

⎡
⎣1 − e1−e

|Cj|
vf

(
kj
k −1

)⎤
⎦ , (23.32)

where Cj is the kinematic wave speed at the jam density and the other
variables are as defined before. Equation 23.32 is referred to as the “maxi-
mum sensitivity curve.” Equation 23.31 takes a form similar to the Newell
model and the longitudinal control model. If one chooses |Cj| = λ/kj,
Equation 23.31 becomes the Newell model, and hence is connected to
the longitudinal control model. If the conjecture that λ = 1/τ is true,
|Cj| = λ/kj = l/τ , which is the speed required to traverse a nominal
vehicle length L (i.e., a vehicle length plus some buffer space) during one
perception-reaction time τ . l typically ranges from 5 to 10m and τ is around
1 s. This yields |Cj| around 5-10m/s or 11-22 miles per hour, which agrees
well with the numbers provided in Ref. [118].

Note that the above two special cases are derived from the exponential
family of speed-density curves, which represent a much broader set of
models than the Newell model. In addition, the family of speed-density
curves can be represented generically as



The Unified Diagram 355

v = vf[1 − eψ(k)], (23.33)

where ψ(k) is a generic function and admits the corresponding terms in
Equations 23.31 and 23.32. From the perspective of the field theory, the
model of del Castillo and Benítez seems to suggest a vehicle interaction
force F ji proportional to eψ(1/sij).

GM-associatedModels
In addition, the family of equilibrium models, including the models of
Greenshields [9], Greenberg [10], Underwood [11], and Drake et al. [12],
which are associated with GM models, was discussed in Chapter 14.

23.3 THE UNIFIED DIAGRAM

To summarize the discussion above, a unified perspective can be cast on
these traffic flow models. Such a perspective is presented as a diagram in
Figure 23.4.

23.3.1 Description of the Unified Diagram
The diagram consists of three panes. The left pane contains picoscopicmodels,
which are able to represent vehicle motion in longitudinal x, lateral y,
and vertical z directions on a three-dimensional surface. The field theory
formulated in Equation 23.6 belongs to this category. The middle pane
has microscopic car-following models, which describe only vehicle motion
in the longitudinal x direction. In this category, models which describe
vehicle motion based on acceleration are grouped as “dynamic” models,
such as GM models, while those describing vehicle motion based on speed
choices are grouped as “steady-state” models, such as the Newell model.
The right pane includes macroscopic models, which describe equilibrium
speed-density relationships. The connecting lines show which models are
related. The numbers on these lines, which are explained below, indicate
where the bridges between models are discussed in the text. For example,
connection 10 indicates the relation between the microscopic longitudinal
control model (Equation 21.15) and the Newell nonlinear car-following
model (Equation 23.1).

23.3.2 Connections in the Unified Diagram
This subsection refers the connection numbers in Figure 23.4 to the proper
locations in the text where the nature of these connections is discussed.
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• 1: See Section 23.2.1 for the longitudinal control model as a special case
of the field theory.

• 2: See Section 23.2.1 for safety rules being admitted into the longitudinal
control model.

• 3: See Section 23.2.2 for GMmodels as a special case of the field theory.
• 4: See Sections 23.2.1 and 23.2.2 for the Forbes model as a safety rule.
• 5: See Chapter 14 for the equivalence between the Pipes model and the

Forbes model.
• 6: See Section 23.2.2 for the Pipes model being admitted into the Van

Aerde model.
• 7: See Sections 23.2.2 and § 23.2.1 for the Gipps model as a safety rule.
• 8: See Section 23.2.2 for the relation between the CARSIM model and

the longitudinal control model as well as the safety rule in the CARSIM
model.

• 9: See Section 23.2.2 for the Van Aerde model as a safety rule.
• 10: See Sections 23.1 and 23.2.2 for the Newell model as a special case

of the longitudinal control model.
• 11: See Section 23.2.2 for the relation between the IDM and the

longitudinal control model.
• 12: See Section 23.2.1 for the derivation of the macroscopic counterpart

of the longitudinal control model.
• 13: See Section 23.2.2 for the relation between the psychophysical

model and the longitudinal control model.
• 14: See Section 23.2.2 for the relation between the rule-based model

and the longitudinal control model.
• 15: See Chapter 14 for the Greenshields model being derived from

GM5.
• 16: See Chapter 14 for the Greenberg model being derived from GM5.
• 17: See Chapter 14 for the Underwoodmodel being derived fromGM5.
• 18: See Chapter 14 for the model of Drake et al. being derived from

GM5.
• 19: See Section 23.2.3 for the relation between the model of Drew et

al. and the longitudinal control model.
• 20: See Section 23.2.3 for the relation between the Pipes-Munjal model

and the longitudinal control model.
• 21: See Section 23.2.3 for the relation between the model of Wang et

al. and the longitudinal control model.
• 22: See Section 23.2.3 for the close resemblance between the Newell

model (macroscopic) and the longitudinal control model.
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• 23: See Section 23.2.3 for the equivalence between the Newell model
(macroscopic) and one of the special cases derived from del Castillo and
Benítez’s family of exponential generating functions.

• 24: See [62, 63] for microscopic and macroscopic versions of the Van
Aerde model.

• 25: See Section 23.2.2 for the Greenshields model being admitted into
the Van Aerde model.

• 26: See Section 23.2.3 for the derivation of the macroscopic counterpart
of the Newell car-following model.

• 27: See Chapter 14 for the Pipes model being derived from GM5.
• 28: See Section 23.2.3 for the macroscopic IDM being derived from its

microscopic counterpart.
• #29: See § 23.2.3 for how the Field Theory is related to Del Castillo

model.
• #30: See Chapter 14 for how May’s original unifying effort fits into the

larger Unified Diagram.

23.4 SUMMARY

Motivated by Newell’s untold secret in his nonlinear car-following model
and May’s original unifying effort depicted in Figure 6.6 in Ref. [17], a
broader unified perspective was cast on traffic flow modeling and a larger
unified diagram was constructed.

The Newell model [58], after being rearranged slightly, gives rise to a
mechanics model which involves noncontact forces, which, in turn, can be
explained conveniently using the concept of a field. The field theory of
this nature was presented in Chapter 21, and was concisely reproduced here
for easy reference. With use of the field theory as a framework, existing
traffic flow models can be related to each other, thereby providing a unified
perspective to examine the coherence among these models.

Microscopic car-following models are related to the field theory by
varation of its components, such as vehicle interaction force, desired spacing
(via safety rules), and directional responsiveness. Even though some models
are not directly contained in or derived from the field theory, their effects
can be reproduced from the latter. When aggregated, many of these
car-following models reduce to their macroscopic counterparts—that is,
equilibrium speed-density relationships. Those macroscopic equilibrium
models, which do not come with a proposed microscopic basis, fortunately
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contain information to deduce their microscopic nature, though which the
connection to the field theory might be established.

To summarize the above analysis, a unified diagram was constructed
which gathers together traffic flow models at the picoscopic, microscopic,
and macroscopic levels with lines connecting related models. Each con-
nection is denoted by a number which points to the discussion of the
connection in this book.

PROBLEMS

1. Microscopic car-following models come in different flavors. One type
of car-following model uses acceleration as the driver’s control variable,
and this sounds like instructing the driver to “speed up or slow down
by xm/s2 next.” We call them dynamic models. Another type of car-
following model employs speed as the control variable, which suggests
that the driver ought to “bring the speed to y km/h next.” We call them
steady-state models. A third type of car-following model works on the
position of the vehicle, which translates to asking the driver to “move
your vehicle to position zm next.” We call them static models. Search
the car-following models and provide at least one example for each type.

2. When proposing his nonlinear car-following model, Newell acknowl-
edged that “no motivation for this choice is proposed other than the
claim that it has approximately the correct shape and is reasonably
simple.” Give your opinion on this modeling philosophy and discuss
whether or not it is a good one to follow.

3. Many macroscopic equilibrium models have been proposed, and their
flexibility to fit field observations varies depending partially on the
number of parameters they employ. Provide at least three example
equilibrium models that employ
a. two parameters,
b. three parameters, and
c. four parameters.



CHAPTER 24

Multiscale Traffic FlowModeling

Thus far, this book has presented traffic flow theory progressively from
macroscopic to microscopic to picoscopic and from the “obvious” field
observations to simple equilibrium models to involved dynamic models to
complicated driver-vehicle-environment closed-loop systems. It is natural
to extend the line of thinking to multiscale modeling, where high-level
models provide system-wide overview, while low-level models describe
local operation details. In addition, it is critical to adopt a consistent
modeling approach to ensure the coupling between different levels.1

24.1 INTRODUCTION

Anyone who used maps has probably had the following experience. Fifteen
years ago, a 1:10,000 paper map was needed to view a city (e.g., Amherst,
MA, USA), while a 1:1,000,000 paper map was needed to view a state
(e.g., Massachusetts). If the scale was changed, a new map was needed.
Today, using digital maps (e.g., Google Maps), one is able to view the entire
country, and then progressively zoom in to view Massachusetts, Amherst,
and even the University of Massachusetts Amherst campus, all seamlessly
and within a single system.

Similarly, it is desirable that traffic simulation allows an analyst to
zoom in to examine low-level details and zoom out to view system-wide
performance within the same simulation process. Figure 24.1 illustrates such
a paradigm. The background represents amacroscopic view of traffic operation
in an entire region. This is analogous to viewing traffic from 10,000m
above the ground and the traffic appears to be a compressible fluid whose
states (speed, flow, density, etc.) propagate like waves. As one zooms in to a
local area of the region, a mesoscopic view is obtained. This is like viewing
traffic from 3000m above the ground, where the sense of waves recedes
and a scene of particles emerges. As one further zooms in to a segment
of the roadway, a microscopic view results. Similarly to watching traffic from
1000m above the ground, the scene is dominated by moving particles that

1 This chapter is reproduced from [114].

Traffic Flow Theory Copyright © 2016 Elsevier Inc.
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Figure 24.1 Multiscale traffic flowmodeling.

interact with each other so as to maintain safe positions in a traffic stream.
Finally, if one focuses on a few neighboring vehicles, a picoscopic view is
achieved as if one were operating one of the vehicles. As such, one has to
interact with the driving environment (e.g., roadway, signs, signals), make
control decisions, and manage vehicle dynamic responses to travel safely.
If such a “zoomable” simulation becomes available, one would be able to
translate a traffic flow representation at multiple scales—for example, to trace
a low-level event all the way to a high-level representation and, conversely,
to decompose a global problem into one or more local deficiencies. As
such, the “zoomable” simulation will transform the way that traffic flow is
analyzed and transportation problems are addressed.

The objective of this chapter is to address multiscale traffic flow mod-
eling with inherent consistency. The term “consistency” here concerns
the coupling among models at different scales—that is, how less detailed
models are derived from more detailed models and, conversely, how more
detailed models are aggregated to less detailed models. Only consistent
multiscale models are able to provide the theoretical foundation for the
above “zoomable” traffic simulation. The chapter is organized as follows.
Section 24.2 takes a broad perspective on a spectrum of fourmodeling scales.
Modeling objectives and model properties at each scale are discussed, and
existing efforts are reviewed. Section 24.3 presents the multiscale approach
based on the field theory. The modeling strategy at each scale is discussed,
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and some special cases are formulated at both the microscopic scale and the
macroscopic scale. The emphasis of this multiscale approach is to ensure
coupling among different modeling scales. Concluding remarks and future
directions are presented in Section 24.4.

24.2 THE SPECTRUM OFMODELING SCALES

The modeling of traffic flow can be performed at, but is not limited to,
four scales—namely, picoscopic, microscopic, mesoscopic, andmacroscopic,
from the most to the least detailed. Considering that the definitions of these
modeling scales are rather vague, implicit, or absent in the literature, this
section attempts to provide an explicit definition so that existing and future
models are easily classified and related. Such a definition is tabulated in
Figure 24.2 for each of the four modeling scales on the basis their properties
(i.e., rows in the table), and literature related to each modeling scale is
reviewed in subsequent subsections. The first three rows (“state variable,”
“variable description,” and “state diagram”) are discussed in this section, and

Figure 24.2 The spectrum of modeling scales.



364 Traffic Flow Theory

the remaining three rows (“underlying principle,” “modeling approach,”
and “model coupling”) will be described in the next section.

24.2.1 The Picoscopic Scale
Picoscopic modeling should be able to represent traffic flow so that the tra-
jectory of each vehicle, (xi(t), yi(t)), where i ∈ {1, 2, 3, . . . , I} denotes the
vehicle ID, can be tracked in both the longitudinal x direction and the lateral
y direction over time t ≥ 0. Knowing these vehicle trajectories, one can
completely determine the state and dynamics of the traffic system. There-
fore, (xi(t), yi(t)) is the state variable (one or a set of variables that charac-
terizes the state of a system). The corresponding state diagram (a graphical
representation that illustrates the dynamics or evolution of system state)
consists of these vehicle trajectories in a three-dimensional domain (x, y, t).

Picoscopic models are mainly of interest in automotive engineering.
Dynamic vehicle models with varying degrees of freedom have been
proposed [132, 133]. A myriad of driver models have been reported to assist
various aspects of automotive engineering, including vehicle handling and
stability. Control theory was widely applied in modeling vehicle control
[134, 135]. Models in this category typically incorporate one or more
feedback loops. These loops are used by the controller to adjust its output
to minimize control error. Human drivers can better perform reasoning
using vague terms than can controllers. This observation allows the use
of fuzzy logic [136, 137], which controls vehicles on the basis of some
predefined rules. To allow implicit driving rules, artificial neural networks
[138, 139] learn “driving experiences” from training processes and then
apply the learned experiences in future driving. Several literature surveys of
driver models are available [140–142].

24.2.2 The Microscopic Scale
Microscopic modeling should be able to represent traffic flow so that the
trajectory of each vehicle can be tracked in the longitudinal direction xi(t),
with the lateral direction being discretized by lanes LNi(t) where LN ∈
{1, 2, . . . , n}. Hence, (xi(t), LNi(t)) is a state variable that describes the sate
and dynamics of traffic flow at this scale, and the corresponding state diagram
consists of vehicle trajectories in a two-dimensional domain (x, t).

Within the traffic flow community, microscopic models treat driver-
vehicle units as massless particles with personalities. The behavior of these
particles is governed by car-following models in the longitudinal direction
and discrete-choice (e.g., lane-changing and gap-acceptance) models in
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the lateral direction. Car-following models describe how a vehicle (the
follower) responds to the vehicle in front of it (the leader). For example,
stimulus-response models [55, 56] assume that the follower’s response (e.g.,
desired acceleration) is the result of stimuli (e.g., spacing and relative
speed) from the leader, desired measure models [52, 57] assume that the
follower always attempts to achieve his desired gains (e.g., speed and
safety), psychophysical models [64, 111] introduce perception thresholds
that trigger driver reactions, and rule-based models [67] apply “IF-THEN”
rules to mimic driver decision making. Lane-changing and gap-acceptance
models describe how a driver arrives at a lane change decision and how the
driver executes such a decision, respectively. Approaches to lane changing
include mandatory and discretionary lane changing [143, 144], adaptive
acceleration mandatory and discretionary lane changing [145, 146], and
autonomous vehicle control [147]. The following have been attempted
to model gap acceptance: deterministic models [148–150], probabilistic
models [151–153], and neuro-fuzzy hybrid models [154]. More surveys on
microscopic models can be found in the literature [3, 155].

24.2.3 The Mesoscopic Scale
Mesoscopic modeling should be able to represent traffic flow so that the
probability of the presence of a vehicle at a longitudinal location x with
speed v at time t is tracked. The lateral direction is of interest only if it
provides passing opportunities. The state diagram typically involves a two-
dimensional domain (x, v) at an instant t, and the domain is partitioned
into cells with space increment dx and speed increment dv. The state
variable is a distribution function f (x, v, t) such that f (x, v, t)dxdv denotes
the probability of having a vehicle within space range (x, x+ dx) and speed
range (v, v+dv) at time t. Knowing the distribution function f (x, v, t), one
can determine the dynamics of the system statistically.

Conventional mesoscopic traffic flowmodels come in three flavors. First,
models such as the one in TRANSIMS [156] take a cellular automata
approach, where the space domain (representing the longitudinal direction
of a highway) is partitioned into short segments typically 7.5m long. If it is
occupied, a segment is able to store only one vehicle. Vehicles are then mod-
eled as hopping from one segment to another, so their movement and speed
are discretized and can take onlyö some predetermined values. Second,
models such as those implemented in DynaMIT [157] and DYNASMART
[158] keep track of the motion of individual vehicles, but their speeds
are determined with use of macroscopic models (such as an equilibrium
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speed-density relationship) instead of microscopic car-following models.
Third, truly mesoscopic models such as the one postulated by Prigogine
and his coworkers [159] are based on nonequilibrium statistical mechanics
or kinetic theory, which draws an analogy between classical particles and
highway vehicles. However, Prigogine’s model was criticized [160] for
(1) lacking a theoretical basis, (2) lacking realism (e.g., car following, driver
preferences, and vehicle lengths), and (3) lacking satisfactory agreement
with empirical data. Many efforts have been made to improve Prigogine’s
model by addressing criticisms 2 and 3. For example, Paveri-Fontana [161]
considered a driver’s desired speeds, Helbing [162] adapted the desired
speeds to speed limits and road conditions, Phillips [39, 163] incorporated
vehicle lengths, Nelson [164] accounted for vehicle acceleration behavior,
and Klar and Wegener [165, 166] included a stochastic microscopic model.
Surveys of existing approaches are available in Ref. [167].

24.2.4 The Macroscopic Scale
Macroscopic modeling should be able to represent traffic flow so that only
local aggregation of traffic flow (e.g., density k, speed u, and flow q) over
space (longitudinal) x and time t is tracked. Traffic density k(x, t) is a
good candidate of state variable because, unlike flow and speed, density
is an unambiguous indicator of the traffic condition. The state diagram
typically involves a two-dimensional domain (x, t). Knowing k(x, t), one
can determine the dynamics of the system macroscopically.

Conventional macroscopic traffic flow models describe the propagation
of traffic disturbances as waves. A fundamental basis for formulating wave
propagation is the law of conservation. The first-order form of the law is
mass/vehicle conservation, which is used to create first-order models [24,
25]. In addition, momentum and energy are other forms of conservation. A
model is of a higher order if it incorporates the latter forms of conservation
[37, 38]. Since the limited benefit offered by higher-order models often
does not justify their added complexity [47], numerical approximation
and macroscopic simulation have been centered on first-order models—
for example, KRONOS [27], the kinematic waves model [31], the cell
transmission model [28, 29], FREQ [26], and CORQ [168]. More surveys
of macroscopic models can be found in the literature [3].

24.2.5 Issues of Multiscale Modeling
Remarkably, existing models at the same scale typically follow different
modeling approaches, and hence it is difficult to relate these models to each
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other. In addition, models at different modeling scales are rarely coupled.
For example, a macroscopic model typically lacks a microscopic basis, and
a microscopic model does not have its macroscopic counterpart.

Therefore, an ideal multiscale modeling approach should emphasize not
only model quality at each individual scale but also the coupling between
different scales. Only models formulated with such an approach are able
to support the “zoomzble” traffic simulation discussed in Section 24.1.
As such, the resulting state diagram at a more detailed scale contains the
necessary information to reproduce a less detailed diagram, as illustrated in
Figure 24.2. For example, the microscopic diagram is simply a projection
of the picoscopic diagram onto the x-t plane, and the macroscopic state
diagram can be completely reconstructed from the microscopic diagram
with use of Edie’s definition of traffic flow characteristics [4, 6].

24.3 THEMULTISCALE APPROACH

The objective of this section is to pursue the above multiscale model-
ing approach and develop strategies to formulate a spectrum of models
with inherent consistency. The approach starts at the picoscopic scale by
formulating a model that is mathematically amenable to representing the
natural way of human thinking while complying with physical principles;
the microscopic model can be simplified from the picoscopic model yet
still captures the essential mechanisms of vehicle motion and interaction;
the mesoscopic model can be derived from the microscopic model on the
basis of principles of nonequilibrium statistical mechanics; the macroscopic
model can be derived from the mesoscopic model by application of
the principles of fluid dynamics. See Figure 24.2 for a summary of the
underlying principles, the modeling approaches, and modeling coupling.

24.3.1 Picoscopic Modeling
This section consolidates and highlights the presentation in Chapters 18
and 21 as follows. To conform to real-world driving experiences, the pico-
scopic model should mimic the way that a driver operates his/her vehicle
and responds to the driving environment. On the basis of the principles
of control theory, a driver-vehicle-environment closed-loop control system
has been developed. Figure 24.3 illustrates the components of the system
and its control flow, including feedback loops.

This system consists of a driver model and a vehicle model which
interact with each other as well as with the driving environment. The
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Figure 24.3 The closed-loop system.

driver receives information from the environment, such as roadways, traffic
control devices, and the presence of other vehicles. The driver also receives
information from his/her own vehicle, such as speed, acceleration, and
yaw rate. These sources of information, together with driver properties
and goals, are used to determine driving strategies (such as steering and
accelerating/braking). The driving strategies are fed forward to the vehicle,
which also receives input from roadways. These sources of information,
together with vehicle properties, determine the vehicle’s dynamic responses
based on vehicle dynamic equations. Moving longitudinally and laterally,
the vehicle constitutes part of the environment. Other vehicle dynamic
responses such as speed, acceleration, and yaw rate are fed back to the driver
to determine driving strategies in the next step. Thus, traffic operation is
composed of movement and interaction of all vehicles in the environment.

The driver model can be formulated by applying the principles of the
field theory. Basically, objects in a traffic system (e.g., roadways, vehicles,
and traffic control devices) are perceived by a driver as component fields.
The driver interacts with an object at a distance, and the interaction is
mediated by the field associated with the object. The superposition of these
component fields represents the overall hazard encountered by the driver.
Hence, the driving strategy is to seek the least hazardous route by navigating
through the field along its valley, and traffic flow consists of the motion and
interaction of all vehicles. With this understanding, the driver model at the
picoscopic scale is formulated as follows.

The driver’s strategy of moving on roadways is to achieve gains (mobility
and safety) and avoid losses (collisions and violation of traffic rules). Such
a strategy can be represented as navigating through the valley of an overall
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field Ui which consists of component fields such as those due to moving
units UB

i , roadways U
R
i , and traffic control devices UC

i —that is,

Ui = UB
i + UR

i +UC
i .

For example, Figure 24.4 illustrates two sections of the overall field, Ui,x
and Ui,y. The subject vehicle i is represented as a ball which rides on the tail
of curve Ui,x since the vehicle is within vehicle j’s field. Therefore, vehicle
i is subject to a repelling force F ji which is derived from Ui,x as

F ji = −∂Ui,x
∂x

.

The effect of F ji is to push vehicle i back to keep a safe distance. By
incorporating the driver’s unsatisfied desire for mobility (Gi − Ri), we can
determine the net force in the x direction as

miẍi =
∑

Fi,x = Gi − Ri − F ji = (Gi − Ri) + ∂Ui,x
∂x

.
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The section of U in the lateral y direction, Ui,y (the bold curve), is the
sum of two components: the cross section of the field due to vehicle k (the
dashed curve) and that due to the roadway field (the dotted curve). The
former results in a repelling force Fki which makes driver i shy away from
k and the latter generates a correction force Ni if i deviates from its lane
center. Therefore, the net effect can be expressed as:

miÿi =
∑

Fi,y = Fki −Ni = −∂Ui,y
∂y

.

By incorporating time t, driver i’s perception-reaction time τi, and driver
i’s directional response γ , we can express the above equations as

miẍi(t + τi) =
∑

F̃i,x(t) = γ 0
i [Gi(t) − Ri(t)] + γ (α

j
i )

∂Ui,x
∂x

,

miÿi(t + τi) =
∑

F̃i,y(t) = −γ (αki )
∂Ui,y
∂y

,

where γ 0
i ∈ [0, 1] represents the driver’s attention to unsatisfied desire for

mobility (typically γ 0
i = 1), and α

j
i , α

k
i , and αNi are viewing angles, which

are also functions of time.

24.3.2 Microscopic Modeling
We can formulate the microscopic model by simplifying the above pico-
scopic model as follows: (a) ignoring interactions inside a driver-vehicle
unit, allowing it to be modeled as an active particle, (b) representing a
driver’s longitudinal and lateral control using separate but simpler models,
(c) reducing the vehicle dynamic system to a particle, and (d) simplifying
road surface and lanes to a collection of parallel lines.

Modeling Longitudinal Control
With the above simplifications, the three-dimensional potential field U in
Figure 24.4 reduces to a two-dimensional potential function. The upper
part of Figure 24.5 illustrates an example where driver i (the middle one) is
traveling behind a leading vehicle j and is followed by a third vehicle p in
the adjacent lane. The potential field Ui perceived by the driver is shaded in
the lower part Figure 24.5 and is represented by a curve in the upper part.
Since the trailing vehicle in the adjacent lane does not affect the subject
driver’s longitudinal motion, the “stress” on the subject driver to keep a
safe distance comes only from the leading vehicle and can be represented as
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F ji = −∂U j
i

∂x
.

By incorporating roadway gravity Gi, roadway resistance Ri, and in-
teraction between vehicles F ji , we can express the net force on i more
specifically as

miẍi = Gi − Ri − F ji .

If one chooses proper functional forms for the above terms, special cases
of the model can be obtained—for example, the longitudinal control model
presented in Chapter 22:

ẍi(t + τi) = gi

[
1 −

(
ẋi(t)
vi

)
− e

sij(t)
∗−sij(t)
sij(t)∗

]
, (24.1)

s∗ij(t) = xi−1(t) − xi(t) ≥ ẋ2i (t)

2bi
+ ẋiτi − ẋ2i−1(t)

2Bi−1
+ lj,

where it is assumed that Gi = mi × gi, Ri = mi × (
ẋi(t)
vi

), and F ji = mi ×
f (sij, sij(t)∗), where gi is the maximum acceleration that driver i is willing to
apply when starting from standstill, ẋi(t) is the actual speed of vehicle i, vi
is the desired speed of driver i, sij = xj − xi is the actual spacing between
vehicles i and j, xi is the position of vehicle i, xj is the position of vehicle
j, and s∗ij is the desired spacing between vehicles i and j. lj is the nominal
length of vehicle j and is conveniently used as the spacing between two
vehicles in jammed traffic. The difference (s∗ij−sij) represents how far vehicle

i intrudes beyond s∗ij. The rationale for representing the interaction force F ji
between vehicles i and j with an exponential function is to set the desired
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spacing s∗ij as a baseline, beyond which the intrusion by vehicle i is translated
exponentially to the repelling force acting on the vehicle.

The desired spacing s∗ij is derived according to the Gipps model [57].
More specifically, s∗ij should allow vehicle i to stop behind its leading
vehicle j after a perception-reaction time τi and a deceleration process at
a comfortable level bi > 0 should vehicle j apply an emergency brake at rate
Bj > 0. Of course, the desired spacing can be derived on the basis of other
safety rules if appropriate.

Modeling Lateral Control
The driver’s lateral control concerns changing lanes to seek a speed gain or
to use an exit. The shaded areas in the bottom part of Figure 24.5 can be
interpreted as driver j and p’s personal spaces after the lane barrier has been
accounted for. A lane change decision is reached whenever driver i intrudes
into another driver’s personal space. With such a decision, driver i begins to
search for open spaces in adjacent lanes. In this particular case, an open space
happens to be available in the left lane, barely allowing the center of vehicle
i to move in. Consequently, the result of the gap-acceptance decision is to
abruptly switch vehicle i to the left lane.

24.3.3 Mesoscopic Modeling
Mesoscopic modeling applies the principles of nonequilibrium statistical
mechanics or kinetic theory to model traffic flow. Essential to the mod-
eling is the determination of a distribution function f (x, v, t) such that
f (x, v, t)dxdv denotes the probability of having a vehicle within space range
(x, x+dx) and speed range (v, v+dv) at time t (see Figure 24.6). The time
evolution of traffic flow is described by an evolution equation,

df
dt

= ∂ f
∂t

+ ∂ f
∂x

dx
dt

,

whose right-hand side is to be determined. Therefore, the central question is
how to rigorously derive the evolution equation. This can be done by use of
a procedure similar to that used to derive the Boltzmann equation [169, 170]
from basic principles. The classical Boltzmann equation describes particles
moving in a three-dimensional domain, so the first step is to reduce the
three-dimensional case to a one-dimensional case which represents traffic
moving on a unidirectional highway.

Existing models, in particular those based on Prigogine’s work, are
postulated. To derive the one-dimensional Boltzmann equation from basic
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principles, a sound understanding of the mechanism of traffic evolution is
required. Existing models, including a derived model [165, 166], assumed
that the mechanism is vehicle “collision.” For example, the fast follower i
in the left panel in Figure 24.7 keeps its speed up to the collision point and
then abruptly changes its speed. To be realistic, the speed change of vehicle
i needs to be smooth as it approaches its leader j as illustrated in the right
panel in Figure 24.7. This is possible only if car following is incorporated
as the mechanism of particle interaction. As such, the longitudinal control
model can be used to derive the one-dimensional Boltzmann equation and,
thus, ensures micro-meso coupling.

The derivation of the one-dimensional Boltzmann equation starts from
the application of the conservation law (e.g., vehicles entering and exiting
the highlighted cell in Figure 24.6 should be conserved). Existing models
considered only one direction (i.e., direction 1 below), in which vehicles
exit the cell, and a similar treatment applies to vehicles entering the cell.
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This approach causes modeling errors. Actually, vehicles may exit the
cell in four directions: (1) vehicles slowed down (and hence exited the
cell) because of a sluggish leader, (2) vehicles physically moved out of
the cell, (3) vehicles accelerated because of an aggressive follower, and
(4) vehicles reversed, which is unlikely. The opposite applies to vehicles
entering the cell. Therefore, application of the law to include all directions
is the correct approach. Since it is mathematically complicated to derive the
one-dimensional Boltzmann equation, this chapter presents only potential
directions of exploration, leaving the actual derivation to be addressed in
future research.

Once the one-dimensional Boltzmann equation has been formulated,
one may solve it using initial and boundary conditions to study how
traffic evolves over time and space. However, solving the equation can
be quite involved, as is the case for any classical Boltzmann equation.
Fortunately, some important results can be inferredwithout our fully solving
the equation. For example, a hydrodynamical formulation, which is essential
to macroscopic modeling, can be derived from the equation. In addition,
the equation contains an equilibrium relationship between vehicle speed
and traffic density which is also essential to macroscopic modeling. Such
a relationship is analogous to the Maxwell-Boltzmann distribution (the
distribution of molecular speed at different temperatures) which is the
stationary (i.e., ∂ f

∂ t = 0) solution to a classical Boltzmann equation.

24.3.4 Macroscopic Modeling
Macroscopic modeling applies the principles of fluid dynamics to model
traffic flow as a one-dimensional compressible continuum fluid. While
the above mesoscopic modeling describes the distribution of vehicles in a
highway segment, macroscopic modeling represents only the average state.
Therefore, traffic density k(x, t) can be related to the distribution f (x, v, t)
as its zeroth moment k(x, t) = ∫

f (x, v, t)dv and traffic speed as the first
moment u(x, t) = 1

k

∫
vf (x, v, t)dv. From this understanding, it becomes

clear that it is feasible to derive a hydrodynamical formulation from the
mesoscopic model. The one-dimensional Boltzmann equation discussed
above can be expressed in a general form as

∂ f
∂t

+ v
∂ f
∂x

= C,
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where C denotes the rate of change of f (x, v, t). Multiplying both sides
of this equation by 1, v, and 1

2v
2 and integrating it over v, we obtain

hydrodynamical equations of mass, momentum, and energy conservation.
The mass conservation equation

∂k

∂t
+ ∂(ku)

∂x
=

∫
Cdv

is of particular interest because it describes the time evolution of traffic
density k(x, t). To solve the equation, a speed-density relationship must be
introduced into the macroscopic model. This relationship can be derived
from themesoscopic model under stationary conditions or, alternatively, can
be obtained directly from the microscopic model if equilibrium conditions
are assumed. For example, the macroscopic version of the longitudinal
control model is

v = vf[1 − e1−
k∗
k ], (24.2)

where k∗ = 1
γ v2+τv+l , vf is the free-flow speed, kj = 1/l, l is the bumper-

to-bumper distance between vehicles when traffic is jammed, and τ is the
average perception-reaction time of drivers.

Therefore, the macroscopic model consists of a system of equations
including the hydrodynamical formulation and one of the above speed-
density relationships:

∂k
∂t

+ ∂ku
∂x

=
∫
Cdv,

v = V (k).

We can solve the system of equations graphically using the method of
characteristics or numerically using a finite difference approach. A typical
finite difference method is illustrated in Figure 24.8, where one partitions
the time-space domain into cells and keeps track of traffic flowing into and
out of each cell [21, 27, 171].

24.4 SUMMARY

This chapter has presented a broad perspective on traffic flow modeling at
four scales: picoscopic, microscopic, mesoscopic, and macroscopic, from the
most to the least detailed level. Modeling objectives and model properties
at each scale were discussed and existing efforts were reviewed.

To ensure modeling consistency and provide a microscopic basis for
macroscopic models, it is critical to address the coupling among models
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at different scales—that is, how less detailed models are derived from more
detailed models and, conversely, how more detailed models are aggregated
to less detailed models. With this understanding, a consistent modeling
approach was proposed based on the field theory. Basically, in this approach,
objects (e.g., roadways, vehicles, and traffic control devices) are perceived by
the subject driver as component fields. The driver interacts with an object
at a distance, and the interaction is mediated by the field associated with the
object. In addition, the field may vary when perceived by different drivers
depending on their characteristics, such as responsiveness and perception-
reaction time. The superposition of these component fields represents the
overall hazard encountered by the subject driver. Hence, the objective of
the driver is to seek the least hazardous route by navigating through the
field along its valley. Consequently, traffic flow is modeled as the motion
and interaction of all vehicles.

Modeling strategies at each of the four scales were discussed. More
specifically, the field theory serves as the basis of picoscopicmodeling, which
represents a driver-vehicle unit as a driver-vehicle-environment closed-loop
control system. The system is able to capture vehicle motion in longitu-
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dinal and lateral directions. The microscopic model is obtained from the
picoscopic model by simplification of its driver-vehicle interactions, vehicle
dynamics, and vehicle lateral motion. The mesoscopic model is derived
from basic principles with use of the microscopic model as the mechanism
of traffic evolution. The macroscopic model includes an evolution equation
(which is derived by taking moments of the mesoscopic model) and an
equilibrium speed-density relationship (which is the stationary solution to
the mesoscopic model or is derived from the microscopic model directly).
Therefore, the proposed approach ensures model coupling and modeling
consistency. As such, consistent models derived from this approach are able
to provide the theoretical foundation to develop the “zoomable” traffic
simulation tool discussed in Section 24.1.

PROBLEMS

1. This chapter discussed a spectrum of four modeling scales—namely,
macroscopic, mesoscopic, microscopic, and picoscopic, from the least
to the most detailed. Provide at least one example model at each scale.

2. Define each of the four modeling scales with their properties, such as
state variables.

3. Discuss the issues that multiscale traffic flow modeling is currently facing
in relation to existing models.
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intelligent driver model, 331-332
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steady-state model, 331-332
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polynomial model, 264
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notation, 175-177
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Momentum conservation, 164
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lateral control model, 368-369
longitudinal control, 366-368
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Navier-Stokes equation of motion, 163-164
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back-propagation neural network, 242
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Newell model, 316-320, 332
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Greenshields model, 139
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Partial differential equation (PDE), 83, 102
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applications
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closed-loop system, 253, 254f
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255f
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field theory, 255
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speed, acceleration and yaw velocity,
256-257

traffic operation, 256-257
transportation system, 253-254, 254f
vehicle dynamic responses and lateral
movement, 255-256
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Pipes model

applications of
automatic driving, 184-185
computer simulation, 185-186
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fundamental diagram, 192f
macroscopic benchmarking, 191-193
microscopic benchmarking, 188-191,

190f , 191t
properties of, 186-187
steady-state model, 331-332

Pipes-Munjal model, 203, 205
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data collection, 7, 8
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Psychophysical model
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driving regimes, 239
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illustration of, 238f
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psychological activities and physical
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data collection, 12
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electronic toll collection system, 12, 12f
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Route-choice models, 173-175, 245
Rule-based model. see HUTSIM
car-following models, 240-241
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illustration of, 241f
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computational algorithm
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comparison of, 61f
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Georgia NaviGAtor, 51
Greenshields model, 55-58
one-equation models, 59
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