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P REFACE

O ne of the most enticing aspects of mathematics, we have found, is the interplay of
ideas from seemingly disparate disciplines of the subject. Linear algebra provides
a beautiful illustration of this, in that it is by nature both algebraic and geometric.

Our intuition concerning lines and planes in space acquires an algebraic interpretation that
then makes sense more generally in higher dimensions. What’s more, in our discussion of
the vector space concept, we will see that questions from analysis and differential equations
can be approached through linear algebra. Indeed, it is fair to say that linear algebra lies
at the foundation of modern mathematics, physics, statistics, and many other disciplines.
Linear problems appear in geometry, analysis, and many applied areas. It is this multifaceted
aspect of linear algebra that we hope both the instructor and the students will find appealing
as they work through this book.

From a pedagogical point of view, linear algebra is an ideal subject for students to learn
to think about mathematical concepts and to write rigorous mathematical arguments. One
of our goals in writing this text—aside from presenting the standard computational aspects
and some interesting applications—is to guide the student in this endeavor. We hope this
book will be a thought-provoking introduction to the subject and its myriad applications,
one that will be interesting to the science or engineering student but will also help the
mathematics student make the transition to more abstract advanced courses.

We have tried to keep the prerequisites for this book to a minimum. Although many
of our students will have had a course in multivariable calculus, we do not presuppose any
exposure to vectors or vector algebra. We assume only a passing acquaintance with the
derivative and integral in Section 6 of Chapter 3 and Section 4 of Chapter 4. Of course,
in the discussion of differential equations in Section 3 of Chapter 7, we expect a bit more,
including some familiarity with power series, in order for students to understand the matrix
exponential.

In the second edition, we have added approximately 20% more examples (a number of
which are sample proofs) and exercises—most computational, so that there are now over
210 examples and 545 exercises (many with multiple parts). We have also added solutions
to many more exercises at the back of the book, hoping that this will help some of the
students; in the case of exercises requiring proofs, these will provide additional worked
examples that many students have requested. We continue to believe that good exercises
are ultimately what makes a superior mathematics text.

In brief, here are some of the distinctive features of our approach:

• We introduce geometry from the start, using vector algebra to do a bit of analytic
geometry in the first section and the dot product in the second.
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• We emphasize concepts and understanding why, doing proofs in the text and asking
the student to do plenty in the exercises. To help the student adjust to a higher level
of mathematical rigor, throughout the early portion of the text we provide “blue
boxes” discussing matters of logic and proof technique or advice on formulating
problem-solving strategies. A complete list of the blue boxes is included at the end
of the book for the instructor’s and the students’ reference.

• We use rotations, reflections, and projections in R2 as a first brush with the notion of
a linear transformation when we introduce matrix multiplication; we then treat linear
transformations generally in concert with the discussion of projections. Thus, we
motivate the change-of-basis formula by starting with a coordinate system in which
a geometrically defined linear transformation is clearly understood and asking for
its standard matrix.

• We emphasize orthogonal complements and their role in finding a homogeneous
system of linear equations that defines a given subspace of Rn.

• In the last chapter we include topics for the advanced student, such as Jordan
canonical form, a classification of the motions of R2 and R3, and a discussion of
how Mathematica draws two-dimensional images of three-dimensional shapes.

The historical notes at the end of each chapter, prepared with the generous assistance of
Paul Lorczak for the first edition, have been left as is. We hope that they give readers an
idea how the subject developed and who the key players were.

A few words on miscellaneous symbols that appear in the text: We have marked with
an asterisk (∗) the problems for which there are answers or solutions at the back of the text.
As a guide for the new teacher, we have also marked with a sharp (�) those “theoretical”
exercises that are important and to which reference is made later. We indicate the end of a
proof by the symbol .

Significant Changes in the Second Edition
• We have added some examples (particularly of proof reasoning) to Chapter 1 and

streamlined the discussion in Sections 4 and 5. In particular, we have included a
fairly simple proof that the rank of a matrix is well defined and have outlined in
an exercise how this simple proof can be extended to show that reduced echelon
form is unique. We have also introduced the Leslie matrix and an application to
population dynamics in Section 6.

• We have reorganized Chapter 2, adding two new sections: one on linear transfor-
mations and one on elementary matrices. This makes our introduction of linear
transformations more detailed and more accessible than in the first edition, paving
the way for continued exploration in Chapter 4.

• We have combined the sections on linear independence and basis and noticeably
streamlined the treatment of the four fundamental subspaces throughout Chapter
3. In particular, we now obtain all the orthogonality relations among these four
subspaces in Section 2.

• We have altered Section 1 of Chapter 4 somewhat and have completely reorga-
nized the treatment of the change-of-basis theorem. Now we treat first linear maps
T : Rn → Rn in Section 3, and we delay to Section 4 the general case and linear
maps on abstract vector spaces.

• We have completely reorganized Chapter 5, moving the geometric interpretation of
the determinant from Section 1 to Section 3. Until the end of Section 1, we have
tied the computation of determinants to row operations only, proving at the end that
this implies multilinearity.
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• To reiterate, we have added approximately 20% more exercises, most elementary
and computational in nature. We have included more solved problems at the back
of the book and, in many cases, have added similar new exercises. We have added
some additional blue boxes, as well as a table giving the locations of them all.
And we have added more examples early in the text, including more sample proof
arguments.

Comments on Individual Chapters
We begin in Chapter 1 with a treatment of vectors, first in R2 and then in higher dimensions,
emphasizing the interplay between algebra and geometry. Parametric equations of lines and
planes and the notion of linear combination are introduced in the first section, dot products
in the second. We next treat systems of linear equations, starting with a discussion of
hyperplanes in Rn, then introducing matrices and Gaussian elimination to arrive at reduced
echelon form and the parametric representation of the general solution. We then discuss
consistency and the relation between solutions of the homogeneous and inhomogeneous
systems. We conclude with a selection of applications.

In Chapter 2 we treat the mechanics of matrix algebra, including a first brush with
2 × 2 matrices as geometrically defined linear transformations. Multiplication of matrices is
viewed as a generalization of multiplication of matrices by vectors, introduced in Chapter 1,
but then we come to understand that it represents composition of linear transformations.
We now have separate sections for inverse matrices and elementary matrices (where the
LU decomposition is introduced) and introduce the notion of transpose. We expect that
most instructors will treat elementary matrices lightly.

The heart of the traditional linear algebra course enters in Chapter 3, where we deal
with subspaces, linear independence, bases, and dimension. Orthogonality is a major
theme throughout our discussion, as is the importance of going back and forth between
the parametric representation of a subspace of Rn and its definition as the solution set
of a homogeneous system of linear equations. In the fourth section, we officially give the
algorithms for constructing bases for the four fundamental subspaces associated to a matrix.
In the optional fifth section, we give the interpretation of these fundamental subspaces in
the context of graph theory. In the sixth and last section, we discuss various examples of
“abstract” vector spaces, concentrating on matrices, polynomials, and function spaces. The
Lagrange interpolation formula is derived by defining an appropriate inner product on the
vector space of polynomials.

In Chapter 4 we continue with the geometric flavor of the course by discussing pro-
jections, least squares solutions of inconsistent systems, and orthogonal bases and the
Gram-Schmidt process. We continue our study of linear transformations in the context of
the change-of-basis formula. Here we adopt the viewpoint that the matrix of a geometrically
defined transformation is often easy to calculate in a coordinate system adapted to the ge-
ometry of the situation; then we can calculate its standard matrix by changing coordinates.
The diagonalization problem emerges as natural, and we will return to it fully in Chapter 6.

We give a more thorough treatment of determinants in Chapter 5 than is typical for
introductory texts. We have, however, moved the geometric interpretation of signed area
and signed volume to the last section of the chapter. We characterize the determinant by
its behavior under row operations and then give the usual multilinearity properties. In the
second section we give the formula for expanding a determinant in cofactors and conclude
with Cramer’s Rule.

Chapter 6 is devoted to a thorough treatment of eigenvalues, eigenvectors, diago-
nalizability, and various applications. In the first section we introduce the characteristic
polynomial, and in the second we introduce the notions of algebraic and geometric multi-
plicity and give a sufficient criterion for a matrix with real eigenvalues to be diagonalizable.
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In the third section, we solve some difference equations, emphasizing how eigenvalues and
eigenvectors give a “normal mode” decomposition of the solution. We conclude the sec-
tion with an optional discussion of Markov processes and stochastic matrices. In the last
section, we prove the Spectral Theorem, which we believe to be—at least in this most basic
setting—one of the important theorems all mathematics majors should know; we include a
brief discussion of its application to conics and quadric surfaces.

Chapter 7 consists of three independent special topics. In the first section, we discuss
the two obstructions that have arisen in Chapter 6 to diagonalizing a matrix—complex
eigenvalues and repeated eigenvalues. Although Jordan canonical form does not ordinarily
appear in introductory texts, it is conceptually important and widely used in the study
of systems of differential equations and dynamical systems. In the second section, we
give a brief introduction to the subject of affine transformations and projective geometry,
including discussions of the isometries (motions) of R2 and R3. We discuss the notion
of perspective projection, which is how computer graphics programs draw images on the
screen. An amusing theoretical consequence of this discussion is the fact that circles,
ellipses, parabolas, and hyperbolas are all “projectively equivalent” (i.e., can all be seen by
projecting any one on different viewing screens). The third, and last, section is perhaps the
most standard, presenting the matrix exponential and applications to systems of constant-
coefficient ordinary differential equations. Once again, eigenvalues and eigenvectors play
a central role in “uncoupling” the system and giving rise, physically, to normal modes.
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xiii

FOREWORD TO THE INSTRUCTOR

W e have provided more material than most (dare we say all?) instructors can
comfortably cover in a one-semester course. We believe it is essential to plan the
course so as to have time to come to grips with diagonalization and applications

of eigenvalues, including at least one day devoted to the Spectral Theorem. Thus, every
instructor will have to make choices and elect to treat certain topics lightly, and others not
at all. At the end of this Foreword we present a time frame that we tend to follow, but in
a standard-length semester with only three hours a week, one must obviously make some
choices and some sacrifices. We cannot overemphasize the caveat that one must be careful
to move through Chapter 1 in a timely fashion: Even though it is tempting to plumb the
depths of every idea in Chapter 1, we believe that spending one-third of the course on
Chapters 1 and 2 is sufficient. Don’t worry: As you progress, you will revisit and reinforce
the basic concepts in the later chapters.

It is also possible to use this text as a second course in linear algebra for students
who’ve had a computational matrix algebra course. For such a course, there should be
ample material to cover, treading lightly on the mechanics and spending more time on the
theory and various applications, especially Chapter 7.

If you’re using this book as your text, we assume that you have a predisposition to
teaching proofs and an interest in the geometric emphasis we have tried to provide. We
believe strongly that presenting proofs in class is only one ingredient; the students must
play an active role by wrestling with proofs in homework as well. To this end, we have
provided numerous exercises of varying levels of difficulty that require the students to
write proofs. Generally speaking, exercises are arranged in order of increasing difficulty,
starting with the computational and ending with the more challenging. To offer a bit more
guidance, we have marked with an asterisk (*) those problems for which answers, hints, or
detailed proofs are given at the back of the book, and we have marked with a sharp (�) the
more theoretical problems that are particularly important (and to which reference is made
later). We have added a good number of “asterisked” problems in the second edition. An
Instructor’s Solutions Manual is available from the publisher.

Although we have parted ways with most modern-day authors of linear algebra text-
books by avoiding technology, we have included a few problems for which a good calculator
or computer software will be more than helpful. In addition, when teaching the course, we
encourage our students to take advantage of their calculators or available software (e.g.,
Maple, Mathematica, or MATLAB) to do routine calculations (e.g., reduction to reduced
echelon form) once they have mastered the mechanics. Those instructors who are strong
believers in the use of technology will no doubt have a preferred supplementary manual to
use.
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We would like to comment on a few issues that arise when we teach this course.

1. Distinguishing among points in Rn, vectors starting at the origin, and vectors
starting elsewhere is always a confusing point at the beginning of any introductory
linear algebra text. The rigorous way to deal with this is to define vectors as
equivalence classes of ordered pairs of points, but we believe that such an abstract
discussion at the outset would be disastrous. Instead, we choose to define vectors
to be the “bound” vectors, i.e., the points in the vector space. On the other hand,
we use the notion of “free” vector intuitively when discussing geometric notions
of vector addition, lines, planes, and the like, because we feel it is essential for
our students to develop the geometric intuition that is ubiquitous in physics and
geometry.

2. Another mathematical and pedagogical issue is that of using only column vec-
tors to represent elements of Rn. We have chosen to start with the notation

x = (x1, . . . , xn) and switch to the column vector

⎡
⎢⎢⎣
x1

...

xn

⎤
⎥⎥⎦ when we introduce ma-

trices in Section 1.4. But for reasons having to do merely with typographical ease,
we have not hesitated to use the previous notation from time to time in the text or
in exercises when it should cause no confusion.

3. We would encourage instructors using our book for the first time to treat certain
topics gently: The material of Section 2.3 is used most prominently in the treatment
of determinants. We generally find that it is best to skip the proof of the fundamental
Theorem 4.5 in Chapter 3, because we believe that demonstrating it carefully in
the case of a well-chosen example is more beneficial to the students. Similarly, we
tread lightly in Chapter 5, skipping the proof of Proposition 2.2 in an introductory
course. Indeed, when we’re pressed for time, we merely remind students of the
cofactor expansion in the 3 × 3 case, prove Cramer’s Rule, and move on to Chapter
6. We have moved the discussion of the geometry of determinants to Section 3;
instructors who have the extra day or so should certainly include it.

4. To us, one of the big stories in this course is going back and forth between the two
ways of describing a subspace V ⊂ Rn:

implicit description
Ax = 0

Gaussian
elimination �

�
constraint
equations

parametric description

x = t1v1 + · · · + tkvk

Gaussian elimination gives a basis for the solution space. On the other hand,
finding constraint equations that b must satisfy in order to be a linear combination of
v1, . . . , vk gives a system of equations whose solutions are precisely the subspace
spanned by v1, . . . , vk .

5. Because we try to emphasize geometry and orthogonality more than most texts,
we introduce the orthogonal complement of a subspace early in Chapter 3. In
rewriting, we have devoted all of Section 2 to the four fundamental subspaces.
We continue to emphasize the significance of the equalities N(A) = R(A)⊥ and
N(AT) = C(A)⊥ and the interpretation of the latter in terms of constraint equations.
Moreover, we have taken advantage of this interpretation to deduce the companion
equalities C(A) = N(AT)⊥ and R(A) = N(A)⊥ immediately, rather than delaying
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these as in the first edition. It was confusing enough for the instructor—let alone
the poor students—to try to keep track of which we knew and which we didn’t. (To
deduce (V ⊥)⊥ = V for the general subspace V ⊂ Rn, we need either dimension
or the (more basic) fact that every such V has a basis and hence can be expressed
as a row or column space.) We hope that our new treatment is both more efficient
and less stressful for the students.

6. We always end the course with a proof of the Spectral Theorem and a few days
of applications, usually including difference equations and Markov processes (but
skipping the optional Section 6.3.1), conics and quadrics, and, if we’re lucky, a
few days on either differential equations or computer graphics. We do not cover
Section 7.1 at all in an introductory course.

7. Instructors who choose to cover abstract vector spaces (Section 3.6) and linear
transformations on them (Section 4.4) will discover that most students find this
material quite challenging. Afew of the exercises will require some calculus skills.

We include the schedule we follow for a one-semester introductory course consisting
of forty-five 50-minute class periods, allowing for two or three in-class hour exams. With
careful planning, we are able to cover all of the mandatory topics and all of the recommended
supplementary topics, but we consider ourselves lucky to have any time at all left for
Chapter 7.

Topic
Recommended
Supplementary Topics Sections Days

Vectors, dot product 1.1–1.2 4
Systems, Gaussian elimination 1.3–1.4 3
Theory of linear systems 1.5 2

Applications 1.6 2
Matrix algebra, linear maps 2.1–2.5 6
(treat elementary matrices lightly)
Vector spaces 3.1–3.4 7

Abstract vector spaces 3.6 2
Least squares, orthogonal bases 4.1–4.2 3
Change-of-basis formula 4.3 2

Linear maps on abstract
vector spaces 4.4 1

Determinants 5.1–5.2 2.5
Geometric interpretations 5.3 1

Eigenvalues and eigenvectors 6.1–6.2 3
Applications 6.3 1.5

Spectral Theorem 6.4 2

Total: 42
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FOREWORD TO THE STUDENT

W e have tried to write a book that you can read—not like a novel, but with pencil
in hand. We hope that you will find it interesting, challenging, and rewarding
to learn linear algebra. Moreover, by the time you have completed this course,

you should find yourself thinking more clearly, analyzing problems with greater maturity,
and writing more cogent arguments—both mathematical and otherwise. Above all else, we
sincerely hope you will have fun.

To learn mathematics effectively, you must read as an active participant, working
through the examples in the text for yourself, learning all the definitions, and then attacking
lots of exercises—both concrete and theoretical. To this end, there are approximately 550
exercises, a large portion of them having multiple parts. These include computations,
applied problems, and problems that ask you to come up with examples. There are proofs
varying from the routine to open-ended problems (“Prove or give a counterexample …”)
to some fairly challenging conceptual posers. It is our intent to help you in your quest to
become a better mathematics student. In some cases, studying the examples will provide
a direct line of approach to a problem, or perhaps a clue. But in others, you will need
to do some independent thinking. Many of the exercises ask you to “prove” or “show”
something. To help you learn to think through mathematical problems and write proofs,
we’ve provided 29 “blue boxes” to help you learn basics about the language of mathematics,
points of logic, and some pointers on how to approach problem solving and proof writing.

We have provided many examples that demonstrate the ideas and computational tools
necessary to do most of the exercises. Nevertheless, you may sometimes believe you have
no idea how to get started on a particular problem. Make sure you start by learning the
relevant definitions. Most of the time in linear algebra, if you know the definition, write
down clearly what you are given, and note what it is you are to show, you are more than
halfway there. In a computational problem, before you mechanically write down a matrix
and start reducing it to echelon form, be sure you know what it is about that matrix that
you are trying to find: its row space, its nullspace, its column space, its left nullspace, its
eigenvalues, and so on. In more conceptual problems, it may help to make up an example
illustrating what you are trying to show; you might try to understand the problem in two or
three dimensions—often a picture will give you insight. In other words, learn to play a bit
with the problem and feel more comfortable with it. But mathematics can be hard work,
and sometimes you should leave a tough problem to “brew” in your brain while you go on
to another problem—or perhaps a good night’s sleep—to return to it tomorrow.

Remember that in multi-part problems, the hypotheses given at the outset hold through-
out the problem. Moreover, usually (but not always) we have arranged such problems in
such a way that you should use the results of part a in trying to do part b, and so on. For the
problems marked with an asterisk (∗) we have provided either numerical answers or, in the
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case of proof exercises, solutions (some more detailed than others) at the back of the book.
Resist as long as possible the temptation to refer to the solutions! Try to be sure you’ve
worked the problem correctly before you glance at the answer. Be careful: Some solutions
in the book are not complete, so it is your responsiblity to fill in the details. The problems
that are marked with a sharp (�) are not necessarily particularly difficult, but they generally
involve concepts and results to which we shall refer later in the text. Thus, if your instructor
assigns them, you should make sure you understand how to do them. Occasional exercises
are quite challenging, and we hope you will work hard on a few; we firmly believe that only
by struggling with a real puzzler do we all progress as mathematicians.

Once again, we hope you will have fun as you embark on your voyage to learn linear
algebra. Please let us know if there are parts of the book you find particularly enjoyable or
troublesome.
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C H A P T E R 1
VECTORS AND MATRICES

L inear algebra provides a beautiful example of the interplay between two branches of
mathematics: geometry and algebra. We begin this chapter with the geometric concepts

and algebraic representations of points, lines, and planes in the more familiar setting of two
and three dimensions (R2 and R3, respectively) and then generalize to the “n-dimensional”
space Rn. We come across two ways of describing (hyper)planes—either parametrically or
as solutions of a Cartesian equation. Going back and forth between these two formulations
will be a major theme of this text. The fundamental tool that is used in bridging these
descriptions is Gaussian elimination, a standard algorithm used to solve systems of linear
equations. As we shall see, it also has significant consequences in the theory of systems
of equations. We close the chapter with a variety of applications, some not of a geometric
nature.

1 Vectors
1.1 Vectors in R2

Throughout our work the symbol R denotes the set of real numbers. We define a vector1 in
R2 to be an ordered pair of real numbers, x = (x1, x2). This is the algebraic representation
of the vector x. Thanks to Descartes, we can identify the ordered pair (x1, x2) with a point
in the Cartesian plane, R2. The relationship of this point to the origin (0, 0) gives rise to the
geometric interpretation of the vector x—namely, the arrow pointing from (0, 0) to (x1, x2),
as illustrated in Figure 1.1.

The vector x has length and direction. The length of x is denoted ‖x‖ and is given by

‖x‖ =
√
x2

1 + x2
2 ,

whereas its direction can be specified, say, by the angle the arrow makes with the positive
x1-axis. We denote the zero vector (0, 0) by 0 and agree that it has no direction. We say
two vectors are equal if they have the same coordinates, or, equivalently, if they have the
same length and direction.

More generally, any two pointsA and B in the plane determine a directed line segment
from A to B, denoted

−→
AB. This can be visualized as an arrow with A as its “tail” and B

as its “head.” If A = (a1, a2) and B = (b1, b2), then the arrow
−→
AB has the same length

1The word derives from the Latin vector, “carrier,” from vectus, the past participle of vehere, “to carry.”
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x = (x1, x2)

O x1

x2

FIGURE 1.1

A

B

C

D

v

O

(b1, b2)

(a1, a2) b1 – a1

b2 – a2

FIGURE 1.2

and direction as the vector v = (b1 − a1, b2 − a2). For algebraic purposes, a vector should
always have its tail at the origin, but for geometric and physical applications, it is important
to be able to “translate” it—to move it parallel to itself so that its tail is elsewhere. Thus, at
least geometrically, we think of the arrow

−→
AB as the same thing as the vector v. In the same

vein, if C = (c1, c2) andD = (d1, d2), then, as indicated in Figure 1.2, the vectors
−→
AB and−→

CD are equal if (b1 − a1, b2 − a2) = (d1 − c1, d2 − c2).2 This is often a bit confusing at
first, so for a while we shall use dotted lines in our diagrams to denote the vectors whose
tails are not at the origin.

Scalar multiplication
If c is a real number and x = (x1, x2) is a vector, then we define cx to be the vector with
coordinates (cx1, cx2). Now the length of cx is

‖cx‖ =
√
(cx1)2 + (cx2)2 =

√
c2(x2

1 + x2
2) = |c|

√
x2

1 + x2
2 = |c|‖x‖.

When c �= 0, the direction of cx is either exactly the same as or exactly opposite that of x,
depending on the sign of c. Thus multiplication by the real number c simply stretches (or
shrinks) the vector by a factor of |c| and reverses its direction when c is negative, as shown
in Figure 1.3. Because this is a geometric “change of scale,” we refer to the real number c
as a scalar and to the multiplication cx as scalar multiplication.

FIGURE 1.3

x

−x

2x

Definition.A vector x is called a unit vector if it has length 1, i.e., if ‖x‖ = 1.

2The sophisticated reader may recognize that we have defined an equivalence relation on the collection of directed
line segments. A vector can then officially be interpreted as an equivalence class of directed line segments.
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Note that whenever x �= 0, we can find a unit vector with the same direction by taking

x
‖x‖ = 1

‖x‖x,

as shown in Figure 1.4.

FIGURE 1.4

x

||x||
x

The unit circle

EXAMPLE 1

The vector x = (1,−2) has length ‖x‖ = √12 + (−2)2 = √
5. Thus, the vector

u = x
‖x‖ = 1√

5
(1,−2)

is a unit vector in the same direction as x. As a check, ‖u‖2 = ( 1√
5

)2+ (−2√
5

)2 = 1
5 + 4

5 = 1.

Given a nonzero vector x, any scalar multiple cx lies on the line that passes through
the origin and the head of the vector x. For this reason, we make the following definition.

Definition. We say two nonzero vectors x and y are parallel if one vector is a scalar
multiple of the other, i.e., if there is a scalar c such that y = cx. We say two nonzero
vectors are nonparallel if they are not parallel. (Notice that when one of the vectors is
0, they are not considered to be either parallel or nonparallel.)

Vector addition
If x = (x1, x2) and y = (y1, y2), then we define

x + y = (x1 + y1, x2 + y2).

Because addition of real numbers is commutative, it follows immediately that vector addi-
tion is commutative:

x + y = y + x.
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(See Exercise 28 for an exhaustive list of the properties of vector addition and scalar
multiplication.) To understand this geometrically, we move the vector y so that its tail is
at the head of x and draw the arrow from the origin to the head of the shifted vector y, as
shown in Figure 1.5. This is called the parallelogram law for vector addition, for, as we
see in Figure 1.5, x + y is the “long” diagonal of the parallelogram spanned by x and y.
The symmetry of the parallelogram illustrates the commutative law x + y = y + x.

FIGURE 1.5

x

x

y y
x + y

x1y1

x2

y2

x1 + y1

x2 + y2

This would be a good place for the diligent student to grab paper and pencil and
make up some numerical examples. Pick a few vectors x and y, calculate their sums
algebraically, and then verify your answers by making sketches to scale.

Remark. We emphasize here that the notions of vector addition and scalar multiplication
make sense geometrically for vectors that do not necessarily have their tails at the origin. If
we wish to add

−→
CD to

−→
AB, we simply recall that

−→
CD is equal to any vector with the same

length and direction, so we just translate
−→
CD so that C and B coincide; then the arrow from

A to the point D in its new position is the sum
−→
AB + −→

CD.

Vector subtraction
Subtraction of one vector from another is also easy to define algebraically. If x = (x1, x2)

and y = (y1, y2), then we set

x − y = (x1 − y1, x2 − y2).

As is the case with real numbers, we have the following important interpretation of the
difference: x − y is the vector we must add to y in order to obtain x; that is,

(x − y)+ y = x.

From this interpretation we can understand x − y geometrically. The arrow representing
it has its tail at (the head of) y and its head at (the head of) x; when we add the resulting
vector to y, we do in fact get x. As shown in Figure 1.6, this results in the other diagonal
of the parallelogram determined by x and y. Of course, we can also think of x − y as the
sum x + (−y) = x + (−1)y, as pictured in Figure 1.7. Note that if A and B are points in
the plane and O denotes the origin, then setting x = −→

OB and y = −→
OA gives x − y = −→

AB.
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x

y
x − y

x − y

FIGURE 1.6

x

y

x – y

x + (–y)

–y

–y

FIGURE 1.7

EXAMPLE 2

Let A and B be points in the plane. The midpoint M of the line segment AB is the unique
point in the plane with the property that

−−→
AM = −−→

MB. Since
−→
AB = −−→

AM + −−→
MB = 2

−−→
AM ,

we infer that
−−→
AM = 1

2

−→
AB. (See Figure 1.8.) What’s more, we can find the vector v = −−→

OM ,

whose tail is at the origin and whose head is at M , as follows. As above, we set x = −→
OB

and y = −→
OA, so

−→
AB = x − y and

−−→
AM = 1

2

−→
AB = 1

2 (x − y). Then we have

−−→
OM = −→

OA+ −−→
AM

= y + 1
2 (x − y)

= y + 1
2 x − 1

2 y

= 1
2 x + 1

2 y = 1
2 (x + y).

In particular, the vector
−−→
OM is the average of the vectors

−→
OA and

−→
OB.

FIGURE 1.8

A = (a1, a2)

B = (b1, b2)

y

x

1
2

1
2

1
2

(x + y)

M = ( (a1 + b1), (a2 + b2))

In coordinates, if A = (a1, a2) and B = (b1, b2), then the coordinates of M are the
average of the respective coordinates of A and B:

M = 1
2

(
(a1, a2)+ (b1, b2)

) = ( 1
2 (a1 + b1),

1
2 (a2 + b2)

)
.

See Exercise 18 for a generalization to three vectors.
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We now use the result of Example 2 to derive one of the classic results from high school
geometry.

Proposition 1.1. The diagonals of a parallelogram bisect one another.

FIGURE 1.9
O

A

B

C

x

y
M

Proof. The strategy is this: We will find vector expressions for the midpoint of each diagonal
and deduce from these expressions that these two midpoints coincide. We may assume one
vertex of the parallelogram is at the origin, O, and we label the remaining vertices A, B,
and C, as shown in Figure 1.9. Let x = −→

OA and y = −→
OC, and let M be the midpoint of

diagonal AC. (In the picture, we do not placeM on diagonal OB, even though ultimately
we will show that it is on OB.) We have shown in Example 2 that

−−→
OM = 1

2 (x + y).

Next, note that
−→
OB = x + y by our earlier discussion of vector addition, and so

−−→
ON = 1

2

−→
OB = 1

2 (x + y) = −−→
OM.

This implies that M = N , and so the point M is the midpoint of both diagonals. That is,
the two diagonals bisect one another.

Here is some basic advice in using vectors to prove a geometric statement in R2. Set up
an appropriate diagram and pick two convenient nonparallel vectors that arise naturally
in the diagram; call these x and y, and then express all other relevant quantities in terms
of only x and y.

It should now be evident that vector methods provide a great tool for translating theo-
rems from Euclidean geometry into simple algebraic statements. Here is another example.
Recall that a median of a triangle is a line segment from a vertex to the midpoint of the
opposite side.

Proposition 1.2. The medians of a triangle intersect at a point that is two-thirds of the way
from each vertex to the opposite side.

Proof. We may put one of the vertices of the triangle at the origin, O, so that the picture
is as shown at the left in Figure 1.10: Let x = −→

OA, y = −→
OB, and let L, M , and N be the

midpoints of OA, AB, and OB, respectively. The battle plan is the following: We let P
denote the point two-thirds of the way from B to L,Q the point two-thirds of the way from
O toM , and R the point two-thirds of the way from A to N . Although we’ve indicated P ,
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FIGURE 1.10 O

A

B

x

y

L

M

N
P

QR

O

A

B

x

y

Q, andR as distinct points at the right in Figure 1.10, our goal is to prove that P = Q = R;
we do this by expressing all the vectors

−→
OP ,

−−→
OQ, and

−→
OR in terms of x and y. For instance,

since
−→
OB = y and

−→
OL = 1

2

−→
OA = 1

2 x, we get
−→
BL = 1

2 x − y, and so

−→
OP = −→

OB + −→
BP = −→

OB + 2
3

−→
BL = y + 2

3

(
1
2 x − y

)

= 1
3 x + 1

3 y.

Similarly,

−−→
OQ = 2

3

−−→
OM = 2

3

(
1
2 (x + y)

) = 1
3 (x + y); and

−→
OR = −→

OA+ −→
AR = −→

OA+ 2
3

−→
AN = x + 2

3

(
1
2 y − x

) = 1
3 x + 1

3 y.

We conclude that, as desired,
−→
OP = −−→

OQ = −→
OR, and so P = Q = R. That is, if we go

two-thirds of the way down any of the medians, we end up at the same point; this is, of
course, the point of intersection of the three medians.

The astute reader might notice that we could have been more economical in the last
proof. Suppose we merely check that the points two-thirds of the way down two of the
medians (say, P andQ) agree. It would then follow (say, by relabeling the triangle slightly)
that the same is true of a different pair of medians (say, P and R). But since any two pairs
must have this point in common, we may now conclude that all three points are equal.

1.2 Lines
With these algebraic tools in hand, we now study lines3 in R2. A line �0 through the origin
with a given nonzero direction vector v consists of all points of the form x = tv for some
scalar t . The line � parallel to �0 and passing through the point P is obtained by translating
�0 by the vector x0 = −→

OP ; that is, the line � through P with direction v consists of all points
of the form

x = x0 + tv
as t varies over the real numbers. (It is important to remember that, geometrically, points
of the line are the heads of the vectors x.) It is compelling to think of t as a time parameter;
initially (i.e., at time t = 0), the point starts at x0 and moves in the direction of v as time
increases. For this reason, this is often called the parametric equation of the line.

To describe the line determined by two distinct points P and Q, we pick x0 = −→
OP as

before and set y0 = −−→
OQ; we obtain a direction vector by taking

v = −→
PQ = −−→

OQ− −→
OP = y0 − x0.

3Note: In mathematics, the word line is reserved for “straight” lines, and the curvy ones are usually called curves.



8 Chapter 1 Vectors and Matrices

Thus, as indicated in Figure 1.11, any point on the line through P andQ can be expressed
in the form

x = x0 + tv = x0 + t (y0 − x0) = (1 − t)x0 + ty0.

As a check, when t = 0 and t = 1, we recover the points P andQ, respectively.

FIGURE 1.11

Q

P

x

vx0

tv

EXAMPLE 3

Consider the line
x2 = 3x1 + 1

(the usual Cartesian equation from high school algebra). We wish to write it in parametric
form. Well, any point (x1, x2) lying on the line is of the form

x = (x1, x2) = (x1, 3x1 + 1) = (0, 1)+ (x1, 3x1) = (0, 1)+ x1(1, 3).

Since x1 can have any real value, we may rename it t , and then, rewriting the equation as

x = (0, 1)+ t (1, 3),
we recognize this as the equation of the line through the point P = (0, 1) with direction
vector v = (1, 3).

Notice that we might have given alternative parametric equations for this line. The
equations

x = (0, 1)+ s(2, 6) and x = (1, 4)+ u(1, 3)
also describe this same line. Why?

The “Why?” is a sign that, once again, the reader should take pencil in hand and check
that our assertion is correct.

EXAMPLE 4

Consider the line � given in parametric form by

x = (−1, 1)+ t (2, 3)
and pictured in Figure 1.12. We wish to find a Cartesian equation of the line. Note that
� passes through the point (−1, 1) and has direction vector (2, 3). The direction vector
determines the slope of the line:

rise

run
= 3

2
,

so, using the point-slope form of the equation of a line, we find

x2 − 1

x1 + 1
= 3

2
; i.e., x2 = 3

2
x1 + 5

2
.

Of course, we can rewrite this as 3x1 − 2x2 = −5.
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FIGURE 1.12

t(2, 3)

(2, 3)

x = (−1, 1) + t(2, 3)

(−1, 1)

Mathematics is built around sets and relations among them. Although the precise
definition of a set is surprisingly subtle, we will adopt the naïve approach that sets
are just collections of objects (mathematical or not). The sets with which we shall be
concerned in this text consist of vectors. In general, the objects belonging to a set are
called its elements or members. IfX is a set and x is an element ofX, we write this as

x ∈ X.
We might also read the phrase “x, y ∈ Rn” as “x and y are vectors in Rn” or “x and y
belong to Rn.”

We think of a line in R2 as the set of points (or vectors) with a certain property.
The official notation for the parametric representation is

� = {x ∈ R2 : x = (3, 0)+ t (−2, 1) for some scalar t}.
Or we might describe � by its Cartesian equation:

� = {x ∈ R2 : x1 + 2x2 = 3}.
In words, this says that “� is the set of points x in R2 such that x1 + 2x2 = 3.”

Often in the text we are sloppy and speak of the line

(∗) x1 + 2x2 = 3

rather than using the set notation or saying, more properly, the line whose equation
is (∗).

1.3 On to Rn

The generalizations to R3 and Rn are now quite straightforward. A vector x ∈ R3 is defined
to be an ordered triple of numbers (x1, x2, x3), which in turn has a geometric interpretation
as an arrow from the origin to the point in three-dimensional space with those Cartesian
coordinates. Although our geometric intuition becomes hazy when we move to Rn with
n > 3, we may still use the algebraic description of a point inn-space as an orderedn-tuple of
real numbers (x1, x2, . . . , xn). Thus, we write x = (x1, x2, . . . , xn) for a vector in n-space.
We define Rn to be the collection of all vectors (x1, x2, . . . , xn) as x1, x2, . . . , xn vary over
R. As we did in R2, given two points A = (a1, . . . , an) and B = (b1, . . . , bn) ∈ Rn, we
associate to the directed line segment fromA toB the vector

−→
AB = (b1 − a1, . . . , bn − an).
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Remark. The beginning linear algebra student may wonder why anyone would care about Rn

with n > 3. We hope that the rich structure we’re going to study in this text will eventually
be satisfying in and of itself. But some will be happier to know that “real-world applications”
force the issue, because many applied problems require understanding the interactions of
a large number of variables. For instance, to model the motion of a single particle in R3,
we must know the three variables describing its position and the three variables describing
its velocity, for a total of six variables. Other examples arise in economic models of a
large number of industries, each of which has a supply-demand equation involving large
numbers of variables, and in population models describing the interaction of large numbers
of different species. In these multivariable problems, each variable accounts for one copy
of R, and so an n-variable problem naturally leads to linear (and nonlinear) problems in Rn.

Length, scalar multiplication, and vector addition are defined algebraically in an anal-
ogous fashion: If x, y ∈ Rn and c ∈ R, we define

1. ‖x‖ =
√
x2

1 + x2
2 + · · · + x2

n;

2. cx = (cx1, cx2, . . . , cxn);

3. x + y = (x1 + y1, x2 + y2, . . . , xn + yn).
As before, scalar multiplication stretches (or shrinks or reverses) vectors, and vector addition
is given by the parallelogram law. Our notion of length in Rn is consistent with applying
the Pythagorean Theorem (or distance formula); for example, as Figure 1.13 shows, we
find the length of x = (x1, x2, x3) ∈ R3 by first finding the length of the hypotenuse in the
x1x2-plane and then using that hypotenuse as one leg of the right triangle with hypotenuse x:

‖x‖2 =
(√
x2

1 + x2
2

)2 + x2
3 = x2

1 + x2
2 + x2

3 .

FIGURE 1.13

x2 x1

x3

x = (x1, x2, x3)

√x2
1 + x2

2

The parametric description of a line � in Rn is exactly the same as in R2: If x0 ∈ Rn

is a point on the line and the nonzero vector v ∈ Rn is the direction vector of the line, then
points on the line are given by

x = x0 + tv, t ∈ R.

More formally, we write this as

� = {x ∈ Rn : x = x0 + tv for some t ∈ R}.
As we’ve already seen, two points determine a line; three or more points in Rn are called
collinear if they lie on some line; they are called noncollinear if they do not lie on any line.
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EXAMPLE 5

Consider the line determined by the points P = (1, 2, 3) and Q = (2, 1, 5) in R3. The
direction vector of the line is v = −→

PQ = (2, 1, 5)− (1, 2, 3) = (1,−1, 2), and we get an
initial point x0 = −→

OP , just as we did in R2. We now visualize Figure 1.11 as being in R3

and see that the general point on this line is x = x0 + tv = (1, 2, 3)+ t (1,−1, 2).

The definition of parallel and nonparallel vectors in Rn is identical to that in R2. Two
nonparallel vectors u and v in R3 determine a plane, P0, through the origin, as follows. P0

consists of all points of the form
x = su + tv

as s and t vary over R. Note that for fixed s, as t varies, the point moves along a line with
direction vector v; changing s gives a family of parallel lines. On the other hand, a general
plane is determined by one point x0 and two nonparallel direction vectors u and v. The
plane P spanned by u and v and passing through the point x0 consists of all points x ∈ R3

of the form
x = x0 + su + tv

as s and t vary over R, as pictured in Figure 1.14. We can obtain the plane P by translating
P0, the plane parallel to P and passing through the origin, by the vector x0. (Note that this
parametric description of a plane in R3 makes perfect sense in n-space for any n ≥ 3.)

FIGURE 1.14
u

v

x0

x0 + su + tv

su + tv

Before doing some examples, we define two terms that will play a crucial role through-
out our study of linear algebra.

Definition. Let v1, . . . , vk ∈ Rn. If c1, . . . , ck ∈ R, the vector

v = c1v1 + c2v2 + · · · + ckvk
is called a linear combination of v1, . . . , vk . (See Figure 1.15.)

FIGURE 1.15

v1

v2

c1v1

c1v1 + c2v2

c2v2
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Definition. Let v1, . . . , vk ∈ Rn. The set of all linear combinations of v1, . . . , vk is
called their span, denoted Span (v1, . . . , vk). That is,

Span (v1, . . . , vk) =
{v ∈ Rn : v = c1v1 + c2v2 + · · · + ckvk for some scalars c1, . . . , ck}.

In terms of our new language, then, the span of two nonparallel vectors u, v ∈ Rn is a plane
through the origin. (What happens if u and v are parallel? We will return to such questions
in greater generality later in the text.)

EXAMPLE 6

Consider the points x ∈ R3 that satisfy the Cartesian equation

(†) x1 − 2x2 = 5.

The set of points (x1, x2) ∈ R2 satisfying this equation forms a line � in R2; since x3 is
allowed to vary arbitrarily, we obtain a vertical plane—a fence standing upon the line �.
Let’s write it in parametric form: Any x satisfying this equation is of the form

x = (x1, x2, x3) = (5 + 2x2, x2, x3) = (5, 0, 0)+ x2(2, 1, 0)+ x3(0, 0, 1).

Since x2 and x3 can be arbitrary, we rename them s and t , respectively, obtaining the
equation

(∗) x = (5, 0, 0)+ s(2, 1, 0)+ t (0, 0, 1),
which we recognize as a parametric equation of the plane spanned by (2, 1, 0) and (0, 0, 1)
and passing through (5, 0, 0). Moreover, note that any x of this form can be written as
x = (5 + 2s, s, t), and sox1 − 2x2 = (5 + 2s)− 2s = 5, from which we see that x is indeed
a solution of the equation (†).

This may be an appropriate time to emphasize a basic technique in mathematics: How
do we decide when two sets are equal? First of all, we say that X is a subset of Y ,
written

X ⊂ Y,

if every element ofX is an element of Y . That is,X ⊂ Y means that whenever x ∈ X,
it must also be the case that x ∈ Y . (Some authors write X ⊆ Y to remind us that the
sets X and Y may be equal.)

To prove that two sets X and Y are equal (i.e., that every element of X is an
element of Y and every element of Y is an element of X), it is often easiest to show
that X ⊂ Y and Y ⊂ X. We ask the diligent reader to check how we’ve done this
explicitly in Example 6: Identify the two sets X and Y , and decide what justifies each
of the statements X ⊂ Y and Y ⊂ X.
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EXAMPLE 7

As was the case for lines, a given plane has many different parametric representations. For
example,

(∗∗) x = (7, 1,−5)+ u(2, 1, 2)+ v(2, 1, 3)
is another description of the plane given in Example 6, as we now proceed to check. First,
we ask whether every point of (∗∗) can be expressed in the form of (∗) for some values of
s and t ; that is, fixing u and v, we must find s and t so that

(5, 0, 0)+ s(2, 1, 0)+ t (0, 0, 1) = (7, 1,−5)+ u(2, 1, 2)+ v(2, 1, 3).
This gives us the system of equations

2s = 2u+ 2v + 2

s = u+ v + 1

t = 2u+ 3v − 5,

whose solution is obviously s = u+ v + 1 and t = 2u+ 3v − 5. Indeed, we check the
algebra:

(5, 0, 0)+ s(2, 1, 0)+ t (0, 0, 1) = (5, 0, 0)+ (u+ v + 1)(2, 1, 0)

+ (2u+ 3v − 5)(0, 0, 1)

= ((5, 0, 0)+ (2, 1, 0)− 5(0, 0, 1)
)

+ u((2, 1, 0)+ 2(0, 0, 1)
)+ v((2, 1, 0)+ 3(0, 0, 1)

)

= (7, 1,−5)+ u(2, 1, 2)+ v(2, 1, 3).
In conclusion, every point of (∗∗) does in fact lie in the plane (∗).

Reversing the process is a bit trickier. Given a point of the form (∗) for some fixed
values of s and t , we need to solve the equations for u and v. We will address this sort
of problem in Section 4, but for now, we’ll just notice that if we take u = 3s − t − 8 and
v = −2s + t + 7 in the equation (∗∗), we get the point (∗). Thus, every point of the plane
(∗) lies in the plane (∗∗). This means the two planes are, in fact, identical.

EXAMPLE 8

Consider the points x ∈ R3 that satisfy the equation

x1 − 2x2 + x3 = 5.

Any x satisfying this equation is of the form

x = (x1, x2, x3) = (5 + 2x2 − x3, x2, x3) = (5, 0, 0)+ x2(2, 1, 0)+ x3(−1, 0, 1).

So this equation describes a plane P spanned by (2, 1, 0) and (−1, 0, 1) and passing through
(5, 0, 0). We leave it to the reader to check the converse—that every point in the plane P

satisfies the original Cartesian equation.

In the preceding examples, we started with a Cartesian equation of a plane in R3 and
derived a parametric formulation. Of course, planes can be described in different ways.
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EXAMPLE 9

We wish to find a parametric equation of the plane that contains the points P = (1, 2, 1)
andQ = (2, 4, 0) and is parallel to the vector (1, 1, 3). We take x0 = (1, 2, 1), u = −→

PQ =
(1, 2,−1), and v = (1, 1, 3), so the plane consists of all points of the form

x = (1, 2, 1)+ s(1, 2,−1)+ t (1, 1, 3), s, t ∈ R.

Finally, note that three noncollinear points P,Q,R ∈ R3 determine a plane. To get a
parametric equation of this plane, we simply take x0 = −→

OP , u = −→
PQ, and v = −→

PR. We
should observe that if P ,Q, and R are noncollinear, then u and v are nonparallel (why?).

It is also a reasonable question to ask whether a specific point lies on a given plane.

EXAMPLE 10

Let u = (1, 1, 0,−1) and v = (2, 0, 1, 1). We ask whether the vector x = (1, 3,−1,−2)
is a linear combination of u and v. That is, are there scalars s and t so that su + tv = x,
i.e.,

s(1, 1, 0,−1)+ t (2, 0, 1, 1) = (1, 3,−1,−2)?

Expanding, we have

(s + 2t, s, t,−s + t) = (1, 3,−1,−2),

which leads to the system of equations

s + 2t = 1

s = 3

t = −1

−s + t = −2 .

From the second and third equations we infer that s = 3 and t = −1. These values also
satisfy the first equation, but not the fourth, and so the system of equations has no solution;
that is, there are no values of s and t for which all the equations hold. Thus, x is not a
linear combination of u and v. Geometrically, this means that the vector x does not lie in
the plane spanned by u and v and passing through the origin. We will learn a systematic
way of solving such systems of linear equations in Section 4.

EXAMPLE 11

Suppose that the nonzero vectors u, v, and w are given in R3 and, moreover, that v and w
are nonparallel. Consider the line � given parametrically by x = x0 + ru (r ∈ R) and the
plane P given parametrically by x = x1 + sv + tw (s, t,∈ R). Under what conditions do
� and P intersect?

It is a good habit to begin by drawing a sketch to develop some intuition for what
the problem is about (see Figure 1.16). We must start by translating the hypothesis
that the line and plane have (at least) one point in common into a precise statement
involving the parametric equations of the line and plane; our sentence should begin
with something like “For some particular values of the real numbers r , s, and t , we
have the equation . . . .”
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FIGURE 1.16
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For � and P to have (at least) one point x∗ in common, that point must be represented in
the form x∗ = x0 + ru for some value of r and, likewise, in the form x∗ = x1 + sv + tw
for some values of s and t . Setting these two expressions for x∗ equal, we have

x0 + ru = x1 + sv + tw for some values of r , s, and t ,

which holds if and only if

x0 − x1 = −ru + sv + tw for some values of r , s, and t .

The latter condition can be rephrased by saying that x0 − x1 lies in Span (u, v,w).
Now, there are two ways this can happen. If Span (u, v,w) = Span (v,w), then x0 − x1

lies in Span (u, v,w) if and only if x0 − x1 = sv + tw for some values of s and t , and this
occurs if and only if x0 = x1 + sv + tw, i.e., x0 ∈ P. (Geometrically speaking, in this case
the line is parallel to the plane, and they intersect if and only if the line is a subset of the
plane.) On the other hand, if Span (u, v,w) = R3, then � is not parallel to P, and they
always intersect.

Exercises 1.1

1. Given x = (2, 3) and y = (−1, 1), calculate the following algebraically and sketch a
picture to show the geometric interpretation.
a. x + y
b. x − y

c. x + 2y
d. 1

2 x + 1
2 y

e. y − x
f. 2x − y

g. ‖x‖
h. x

‖x‖
2. For each of the following pairs of vectors x and y, compute x + y, x − y, and y − x.

Also, provide sketches.
a. x = (1, 1), y = (2, 3)

b. x = (2,−2), y = (0, 2)

c. x = (1, 2,−1), y = (2, 2, 2)

3.∗ Three vertices of a parallelogram are (1, 2, 1), (2, 4, 3), and (3, 1, 5). What are all the
possible positions of the fourth vertex? Give your reasoning.4

4. Let A = (1,−1,−1), B = (−1, 1,−1), C = (−1,−1, 1), and D = (1, 1, 1). Check
that the four triangles formed by these points are all equilateral.

5.∗ Let � be the line given parametrically by x = (1, 3)+ t (−2, 1), t ∈ R. Which of the
following points lie on �? Give your reasoning.
a. x = (−1, 4) b. x = (7, 0) c. x = (6, 2)

4For exercises marked with an asterisk (*) we have provided either numerical answers or solutions at the back of
the book.
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6. Find a parametric equation of each of the following lines:
a. 3x1 + 4x2 = 6

b.∗ the line with slope 1/3 that passes through A = (−1, 2)

c. the line with slope 2/5 that passes through A = (3, 1)

d. the line through A = (−2, 1) parallel to x = (1, 4)+ t (3, 5)
e. the line through A = (−2, 1) perpendicular to x = (1, 4)+ t (3, 5)
f.∗ the line through A = (1, 2, 1) and B = (2, 1, 0)

g. the line through A = (1,−2, 1) and B = (2, 1,−1)

h.∗ the line through (1, 1, 0,−1) parallel to x = (2 + t, 1 − 2t, 3t, 4 − t)
7. Suppose x = x0 + tv and y = y0 + sw are two parametric representations of the same

line � in Rn.
a. Show that there is a scalar t0 so that y0 = x0 + t0v.

b. Show that v and w are parallel.

8.∗ Decide whether each of the following vectors is a linear combination of u = (1, 0, 1)
and v = (−2, 1, 0).
a. x = (1, 0, 0) b. x = (3,−1, 1) c. x = (0, 1, 2)

9.∗ Let P be the plane in R3 spanned by u = (1, 1, 0) and v = (1,−1, 1) and passing
through the point (3, 0,−2). Which of the following points lie on P?
a. x = (4,−1,−1)

b. x = (1,−1, 1)

c. x = (7,−2, 1)

d. x = (5, 2, 0)

10. Find a parametric equation of each of the following planes:
a. the plane containing the point (−1, 0, 1) and the line x = (1, 1, 1)+ t (1, 7,−1)

b.∗ the plane parallel to the vector (1, 3, 1) and containing the points (1, 1, 1) and
(−2, 1, 2)

c. the plane containing the points (1, 1, 2), (2, 3, 4), and (0,−1, 2)

d. the plane in R4 containing the points (1, 1,−1, 2), (2, 3, 0, 1), and (1, 2, 2, 3)

11. The origin is at the center of a regular m-sided polygon.
a. What is the sum of the vectors from the origin to each of the vertices of the polygon?

(The case m = 7 is illustrated in Figure 1.17.) Give your reasoning. (Hint: What
happens if you rotate the vectors by 2π/m?)

FIGURE 1.17

b. What is the sum of the vectors from one fixed vertex to each of the remaining
vertices? (Hint: You should use an algebraic approach along with your answer to
part a.)

12.∗ Which of the following are parametric equations of the same plane?
a. P1: (1, 1, 0)+ s(1, 0, 1)+ t (−2, 1, 0)

b. P2: (1, 1, 1)+ s(0, 1, 2)+ t (2,−1, 0)

c. P3: (2, 0, 0)+ s(4,−1, 2)+ t (0, 1, 2)
d. P4: (0, 2, 1)+ s(1,−1,−1)+ t (3,−1, 1)
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13. Given �ABC, letM and N be the midpoints of AB and AC, respectively. Prove that−−→
MN = 1

2

−→
BC.

14. Let ABCD be an arbitrary quadrilateral. Let P , Q, R, and S be the midpoints of
AB, BC, CD, and DA, respectively. Use Exercise 13 to prove that PQRS is a
parallelogram.

15.∗ In �ABC, shown in Figure 1.18, ‖−→AD‖ = 2
3‖−→AB‖ and ‖−→CE‖ = 2

5‖−→CB‖. Let Q

denote the midpoint of CD. Show that
−→
AQ = c

−→
AE for some scalar c, and determine

the ratio c = ‖−→AQ‖/‖−→AE‖.

A
B

C

D

E

Q

FIGURE 1.18

A B

CD

E

P

FIGURE 1.19

16. Consider parallelogram ABCD. Suppose
−→
AE = 1

3

−→
AB and

−→
DP = 3

4

−→
DE. Show that

P lies on the diagonal AC. (See Figure 1.19.)

17. Given �ABC, suppose that the point D is 3/4 of the way from A to B and that E is
the midpoint of BC. Use vector methods to show that the point P that is 4/7 of the
way from C to D is the intersection point of CD and AE.

18. Let A, B, and C be vertices of a triangle in R3. Let x = −→
OA, y = −→

OB, and z = −→
OC.

Show that the head of the vector v = 1
3 (x + y + z) lies on each median of �ABC (and

thus is the point of intersection of the three medians). This point is called the centroid
of the triangle ABC.

19. a. Let u, v ∈ R2. Describe the vectors x = su + tv, where s + t = 1. What particular
subset of such x’s is described by s ≥ 0? By t ≥ 0? By s, t > 0?

b. Let u, v,w ∈ R3. Describe the vectors x = ru + sv + tw, where r + s + t = 1.
What subsets of such x’s are described by the conditions r ≥ 0? s ≥ 0? t ≥ 0?
r, s, t > 0?

20. Assume that u and v are parallel vectors in Rn. Prove that Span (u, v) is a line.

21. Suppose v,w ∈ Rn and c is a scalar. Prove that Span (v + cw,w) = Span (v,w). (See
the blue box on p. 12.)

22. Suppose the vectors v and w are both linear combinations of v1, . . . , vk .
a. Prove that for any scalar c, cv is a linear combination of v1, . . . , vk .
b. Prove that v + w is a linear combination of v1, . . . , vk .

When you are asked to “show” or “prove” something, you should make it a point to
write down clearly the information you are given and what it is you are to show. One
word of warning regarding part b: To say that v is a linear combination of v1, . . . , vk
is to say that v = c1v1 + c2v2 + · · · + ckvk for some scalars c1, . . . , ck . These scalars
will surely be different when you express a different vector w as a linear combination
of v1, . . . , vk , so be sure you give the scalars for w different names.

23.∗ Consider the line �: x = x0 + rv (r ∈ R) and the plane P: x = su + tv (s, t ∈ R).
Show that if � and P intersect, then x0 ∈ P.



18 Chapter 1 Vectors and Matrices

24. Consider the lines �: x = x0 + tv and m: x = x1 + su. Show that � and m intersect
if and only if x0 − x1 lies in Span (u, v).

25. Suppose x, y ∈ Rn are nonparallel vectors. (Recall the definition on p. 3.)
a. Prove that if sx + ty = 0, then s = t = 0. (Hint: Show that neither s �= 0 nor t �= 0

is possible.)

b. Prove that if ax + by = cx + dy, then a = c and b = d.

Two important points emerge in this exercise. First is the appearance of proof by
contradiction. Although it seems impossible to prove the result of part a directly, it is
equivalent to prove that if we assume the hypotheses and the failure of the conclusion,
then we arrive at a contradiction. In this case, if you assume sx + ty = 0 and s �= 0
(or t �= 0), you should be able to see rather easily that x and y are parallel. In sum,
the desired result must be true because it cannot be false.

Next, it is a common (and powerful) technique to prove a result (for example,
part b of Exercise 25) by first proving a special case (part a) and then using it to derive
the general case. (Another instance you may have seen in a calculus course is the
proof of the Mean Value Theorem by reducing to Rolle’s Theorem.)

26. “Discover” the fraction 2/3 that appears in Proposition 1.2 by finding the intersection
of two medians. (Parametrize the line throughO andM and the line throughA andN ,
and solve for their point of intersection. You will need to use the result of Exercise 25.)

27. Given �ABC, which triangles with vertices on the edges of the original triangle have
the same centroid? (See Exercises 18 and 19. At some point, the result of Exercise 25
may be needed, as well.)

28. Verify algebraically that the following properties of vector arithmetic hold. (Do so for
n = 2 if the general case is too intimidating.) Give the geometric interpretation of each
property.
a. For all x, y ∈ Rn, x + y = y + x.

b. For all x, y, z ∈ Rn, (x + y)+ z = x + (y + z).
c. 0 + x = x for all x ∈ Rn.

d. For each x ∈ Rn, there is a vector −x so that x + (−x) = 0.

e. For all c, d ∈ R and x ∈ Rn, c(dx) = (cd)x.

f. For all c ∈ R and x, y ∈ Rn, c(x + y) = cx + cy.

g. For all c, d ∈ R and x ∈ Rn, (c + d)x = cx + dx.

h. For all x ∈ Rn, 1x = x.

29. a. Using only the properties listed in Exercise 28, prove that for any x ∈ Rn, we have
0x = 0. (It often surprises students that this is a consequence of the properties in
Exercise 28.)

b. Using the result of part a, prove that (−1)x = −x. (Be sure that you didn’t use this
fact in your proof of part a!)

2 Dot Product
We discuss next one of the crucial constructions in linear algebra, the dot product x · y of
two vectors x, y ∈ Rn. By way of motivation, let’s recall some basic results from plane
geometry. Let P = (x1, x2) and Q = (y1, y2) be points in the plane, as shown in Figure
2.1. We observe that when � POQ is a right angle, �OAP is similar to �OBQ, and so
x2/x1 = −y1/y2, whence x1y1 + x2y2 = 0.



2 Dot Product 19

FIGURE 2.1
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This leads us to make the following definition.

Definition. Given vectors x, y ∈ R2, define their dot product

x · y = x1y1 + x2y2.

More generally, given vectors x, y ∈ Rn, define their dot product

x · y = x1y1 + x2y2 + · · · + xnyn.

Remark. The dot product of two vectors is a scalar. For this reason, the dot product is also
called the scalar product, but it should not be confused with the multiplication of a vector
by a scalar, the result of which is a vector. The dot product is also an example of an inner
product, which we will study in Section 6 of Chapter 3.

We know that when the vectors x and y ∈ R2 are perpendicular, their dot product is 0.
By starting with the algebraic properties of the dot product, we are able to get a great deal
of geometry out of it.

Proposition 2.1. The dot product has the following properties:

1. x · y = y · x for all x, y ∈ Rn (the commutative property);

2. x · x = ‖x‖2 ≥ 0 and x · x = 0 if and only if x = 0;

3. (cx) · y = c(x · y) for all x, y ∈ Rn and c ∈ R;

4. x · (y + z) = x · y + x · z for all x, y, z ∈ Rn (the distributive property).

Proof. In order to simplify the notation, we give the proof with n = 2; the general argument
would include all n terms with the obligatory . . . . Because multiplication of real numbers
is commutative, we have

x · y = x1y1 + x2y2 = y1x1 + y2x2 = y · x.

The square of a real number is nonnegative and the sum of nonnegative numbers is non-
negative, so x · x = x2

1 + x2
2 ≥ 0 and is equal to 0 only when x1 = x2 = 0.

The next property follows from the associative and distributive properties of real num-
bers:

(cx) · y = (cx1)y1 + (cx2)y2 = c(x1y1)+ c(x2y2)

= c(x1y1 + x2y2) = c(x · y).

The last result follows from the commutative, associative, and distributive properties of
real numbers:

x · (y + z) = x1(y1 + z1)+ x2(y2 + z2) = x1y1 + x1z1 + x2y2 + x2z2

= (x1y1 + x2y2)+ (x1z1 + x2z2) = x · y + x · z.
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Corollary 2.2. ‖x + y‖2 = ‖x‖2 + 2x · y + ‖y‖2.

Proof. Using the properties of Proposition 2.1 repeatedly, we have

‖x + y‖2 = (x + y) · (x + y)

= x · x + x · y + y · x + y · y

= ‖x‖2 + 2x · y + ‖y‖2,

as desired.

Although we use coordinates to define the dot product and to derive its algebraic
properties in Proposition 2.1, from this point on we should try to use the properties
themselves to prove results (e.g., Corollary 2.2). This will tend to avoid an algebraic
mess and emphasize the geometry.

The geometric meaning of this result comes from the Pythagorean Theorem: When
x and y are perpendicular vectors in R2, as shown in Figure 2.2, we have ‖x + y‖2 =
‖x‖2 + ‖y‖2, and so, by Corollary 2.2, it must be the case that x · y = 0. (And the converse
follows, too, from the converse of the Pythagorean Theorem, which follows from the Law
of Cosines. See Exercise 14.) That is, two vectors in R2 are perpendicular if and only if
their dot product is 0.

FIGURE 2.2

x

x + y

y

Motivated by this, we use the algebraic definition of the dot product of vectors in Rn

to bring in the geometry.

Definition. We say vectors x and y ∈ Rn are orthogonal5 if x · y = 0.

Orthogonal and perpendicular are synonyms, but we shall stick to the former, because that
is the common terminology in linear algebra texts.

EXAMPLE 1

To illustrate the power of the algebraic properties of the dot product, we prove that the
diagonals of a parallelogram are orthogonal if and only if the parallelogram is a rhombus (that
is, all sides have equal length). As usual, we place one vertex at the origin (see Figure 2.3),

5This word derives from the Greek orthos, meaning “straight,” “right,” or “true,” and gonia, meaning “angle.”
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FIGURE 2.3
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and we let x = −→
OA and y = −→

OC be vectors representing adjacent sides emanating from
the origin. We have the diagonals

−→
OB = x + y and

−→
CA = x − y, so the diagonals are

orthogonal if and only if
(x + y) · (x − y) = 0.

Using the properties of dot product to expand this expression, we obtain

(x + y) · (x − y) = x · x + y · x − x · y − y · y = ‖x‖2 − ‖y‖2,

so the diagonals are orthogonal if and only if ‖x‖2 = ‖y‖2. Since the length of a vector
is nonnegative, this occurs if and only if ‖x‖ = ‖y‖, which means that all the sides of the
parallelogram have equal length.

In general, when you are asked to prove a statement of the form P if and only if Q,
this means that you must prove two statements: If P is true, thenQ is also true (“only
if”); and if Q is true, then P is also true (“if”). In this example, we gave the two
arguments simultaneously, because they relied essentially only on algebraic identities.

Auseful shorthand for writing proofs is the implication symbol, �⇒. The sentence

P �⇒ Q

can be read in numerous ways:

• “if P , thenQ”

• “P impliesQ”

• “P only ifQ”

• “Q whenever P ”

• “P is sufficient forQ” (because when P is true, thenQ is true as well)

• “Q is necessary for P ” (because P can’t be true unlessQ is true)

The “reverse implication” symbol, ⇐�, occurs less frequently, because we ordinarily
write “P ⇐� Q” as “Q �⇒ P .” This is called the converse of the original impli-
cation. To convince yourself that a proposition and its converse are logically distinct,
consider the sentence “If students major in mathematics, then they take a linear algebra
course.” The converse is “If students take a linear algebra course, then they major in
mathematics.” How many of the students in this class are mathematics majors??

We often use the symbol ⇐⇒ to denote “if and only if”: P ⇐⇒ Q means
“P �⇒ Q and Q �⇒ P .” This is often read “P is necessary and sufficient
for Q”; here necessity corresponds to “Q �⇒ P ” and sufficiency corresponds to
“P �⇒ Q.”
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Armed with the definition of orthogonal vectors, we proceed to a construction that
will be important in much of our future work. Starting with two vectors x, y ∈ Rn, where
y �= 0, Figure 2.4 suggests that we should be able to write x as the sum of a vector, x‖
(read “x-parallel”), that is a scalar multiple of y and a vector, x⊥ (read “x-perp”), that is
orthogonal to y. Let’s suppose we have such an equation:

x = x‖ + x⊥, where

x‖ is a scalar multiple of y and x⊥ is orthogonal to y.

To say that x‖ is a scalar multiple of y means that we can write x‖ = cy for some scalar c.
Now, assuming such an expression exists, we can determine c by taking the dot product of
both sides of the equation with y:

x · y = (x‖ + x⊥) · y = (x‖ · y)+ (x⊥ · y) = x‖ · y = (cy) · y = c‖y‖2.

This means that

c = x · y
‖y‖2

, and so x‖ = x · y
‖y‖2

y.

The vector x‖ is called the projection of x onto y, written projyx.

FIGURE 2.4
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The fastidious reader may be puzzled by the logic here. We have apparently assumed
that we can write x = x‖ + x⊥ in order to prove that we can do so. Of course, as it stands,
this is no fair. Here’s how we fix it. We now define

x‖ = x · y
‖y‖2

y

x⊥ = x − x · y
‖y‖2

y.

Obviously, x‖ + x⊥ = x and x‖ is a scalar multiple of y. All we need to check is that x⊥ is
in fact orthogonal to y. Well,

x⊥ · y =
(

x − x · y
‖y‖2

y
)

· y

= x · y − x · y
‖y‖2

y · y

= x · y − x · y
‖y‖2

‖y‖2

= x · y − x · y = 0,

as required. Note that by finding a formula for c above, we have shown that x‖ is the unique
multiple of y that satisfies the equation (x − x‖) · y = 0.
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The pattern of reasoning we’ve just been through is really not that foreign. When we
“solve” the equation √

x + 2 = 2,

we assume x satisfies this equation and proceed to find candidates for x. At the end of
the process, we must check to see which of our answers work. In this case, of course,
we assume x satisfies the equation, square both sides, and conclude that x = 2. (That
is, if

√
x + 2 = 2, then x must equal 2.) But we check the converse: If x = 2, then√

x + 2 = √
4 = 2.

It is a bit more interesting if we try solving
√
x + 2 = x.

Now, squaring both sides leads to the equation

x2 − x − 2 = (x − 2)(x + 1) = 0,

and so we conclude that if x satisfies the given equation, then x = 2 or x = −1. As
before, x = 2 is a fine solution, but x = −1 is not.

EXAMPLE 2

Let x = (2, 3, 1) and y = (−1, 1, 1). Then

x‖ = x · y
‖y‖2

y = (2, 3, 1) · (−1, 1, 1)

‖(−1, 1, 1)‖2
(−1, 1, 1) = 2

3 (−1, 1, 1) and

x⊥ = (2, 3, 1)− 2
3 (−1, 1, 1) = ( 8

3 ,
7
3 ,

1
3

)
.

To double-check, we compute x⊥ · y = ( 8
3 ,

7
3 ,

1
3

) · (−1, 1, 1) = 0, as it should be.

Suppose x, y ∈ R2. We shall see next that the formula for the projection of x onto y
enables us to calculate the angle between the vectors x and y. Consider the right triangle
in Figure 2.5; let θ denote the angle between the vectors x and y. Remembering that the

FIGURE 2.5
y y

x
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x‖ x‖
θ

θ

cosine of an angle is the ratio of the signed length of the adjacent side to the length of the
hypotenuse, we see that

cos θ = signed length of x‖

length of x
= c‖y‖

‖x‖ =
x · y
‖y‖2

‖y‖
‖x‖ = x · y

‖x‖‖y‖ .
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This, then, is the geometric interpretation of the dot product:

x · y = ‖x‖‖y‖ cos θ.

Note that if the angle θ is obtuse, i.e., π/2 < |θ | < π , then c < 0 (the signed length of x‖
is negative) and x · y is negative.

Will this formula still make sense even when x, y ∈ Rn? Geometrically, we simply
restrict our attention to the plane spanned by x and y and measure the angle θ in that plane,
and so we blithely make the following definition.

Definition. Let x and y be nonzero vectors in Rn. We define the angle between them to
be the unique θ satisfying 0 ≤ θ ≤ π so that

cos θ = x · y
‖x‖‖y‖ .

EXAMPLE 3

SetA = (1,−1,−1), B = (−1, 1,−1), andC = (−1,−1, 1). Then
−→
AB = (−2, 2, 0) and−→

AC = (−2, 0, 2), so

cos � BAC =
−→
AB · −→

AC

‖−→AB‖‖−→AC‖
= 4

(2
√

2)2
= 1

2
.

We conclude that � BAC = π/3.

Since our geometric intuition may be misleading in Rn, we should check algebraically
that this definition makes sense. Since |cos θ | ≤ 1, the following result gives us what is
needed.

Proposition 2.3 (Cauchy-Schwarz Inequality). If x, y ∈ Rn, then

|x · y| ≤ ‖x‖‖y‖.
Moreover, equality holds if and only if one of the vectors is a scalar multiple of the other.

Proof. If one of the vectors is the zero vector, the result is immediate, so we assume both
vectors are nonzero. Suppose first that both x and y are unit vectors. Each of the vec-
tors x + y and x − y (which we can picture as the diagonals of the parallelogram spanned
by x and y when the vectors are nonparallel, as shown in Figure 2.6) has nonnegative length.

FIGURE 2.6
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Using Corollary 2.2, we have

‖x + y‖2 = ‖x‖2 + 2x · y + ‖y‖2 = 2(x · y + 1)

‖x − y‖2 = ‖x‖2 − 2x · y + ‖y‖2 = 2(−x · y + 1).

Since ‖x + y‖2 ≥ 0 and ‖x − y‖2 ≥ 0, we see that x · y + 1 ≥ 0 and −x · y + 1 ≥ 0. Thus,

−1 ≤ x · y ≤ 1, and so |x · y| ≤ 1.

Note that equality holds if and only if either x + y = 0 or x − y = 0, i.e., if and only if
x = ±y.

In general, since x/‖x‖ and y/‖y‖ are unit vectors, we have
∣∣∣∣

x
‖x‖ · y

‖y‖
∣∣∣∣ ≤ 1, and so |x · y| ≤ ‖x‖‖y‖,

as required. Equality holds if and only if
x

‖x‖ = ± y
‖y‖ ; that is, equality holds if and only

if x and y are parallel.

Remark. The dot product also arises in situations removed from geometry. The economist
introduces the commodity vector, whose entries are the quantities of various commodities
that happen to be of interest. For example, we might consider x = (x1, x2, x3, x4, x5) ∈ R5,
where x1 represents the number of pounds of flour, x2 the number of dozens of eggs, x3

the number of pounds of chocolate chips, x4 the number of pounds of walnuts, and x5 the
number of pounds of butter needed to produce a certain massive quantity of chocolate chip
cookies. The economist next introduces the price vector p = (p1, p2, p3, p4, p5) ∈ R5,
where pi is the price (in dollars) of a unit of the i th commodity (for example, p2 is the price
of a dozen eggs). Then it follows that

p · x = p1x1 + p2x2 + p3x3 + p4x4 + p5x5

is the total cost of producing the massive quantity of cookies. (To be realistic, we might
also want to include x6 as the number of hours of labor, with corresponding hourly wage
p6.) We will return to this interpretation in Section 5 of Chapter 2.

The gambler uses the dot product to compute the expected value of a lottery that has
multiple payoffs with various probabilities. If the possible payoffs for a given lottery
are given by w = (w1, . . . , wn) and the probabilities of winning the respective payoffs
are given by p = (p1, . . . , pn), with p1 + · · · + pn = 1, then the expected value of the
lottery is p · w = p1w1 + · · · + pnwn. For example, if the possible prizes, in dollars, for a
particular lottery are given by the payoff vector w = (0, 1, 5, 100) and the probability vector
is p = (0.5, 0.4, 0.09, 0.01), then the expected value is p · w = 0.4 + 0.45 + 1 = 1.85.
Thus, if the lottery ticket costs more than $1.85, the gambler should expect to lose money
in the long run.

Exercises 1.2

1. For each of the following pairs of vectors x and y, calculate x · y and the angle θ
between the vectors.

a. x = (2, 5), y = (−5, 2)

b. x = (2, 1), y = (−1, 1)

c.∗ x = (1, 8), y = (7,−4)

d. x = (1, 4,−3), y = (5, 1, 3)

e. x = (1,−1, 6), y = (5, 3, 2)

f.∗ x = (3,−4, 5), y = (−1, 0, 1)

g. x = (1, 1, 1, 1), y = (1,−3,−1, 5)
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2.∗ For each pair of vectors in Exercise 1, calculate projyx and projxy.

3. A methane molecule has four hydrogen (H) atoms at the points indicated in Figure 2.7
and a carbon (C) atom at the origin. Find the H − C − H bond angle. (Because of the
result of Exercise 1.1.4, this configuration is called a regular tetrahedron.)

FIGURE 2.7
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4.∗ Find the angle between the long diagonal of a cube and a face diagonal.

5. Find the angle that the long diagonal of a 3 × 4 × 5 rectangular box makes with the
longest edge.

6.∗ Suppose x, y ∈ Rn, ‖x‖ = 3, ‖y‖ = 2, and the angle θ between x and y is θ =
arccos(−1/6). Show that the vectors x + 2y and x − y are orthogonal.

7. Suppose x, y ∈ Rn, ‖x‖ = √
2, ‖y‖ = 1, and the angle between x and y is 3π/4. Show

that the vectors 2x + 3y and x − y are orthogonal.

8. Suppose x, y, z ∈ R2 are unit vectors satisfying x + y + z = 0. Determine the angles
between each pair of vectors.

9. Let e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1) be the so-called standard basis for
R3. Let x ∈ R3 be a nonzero vector. For i = 1, 2, 3, let θi denote the angle between x
and ei . Compute cos2 θ1 + cos2 θ2 + cos2 θ3.

10.∗ Let x = (1, 1, 1, . . . , 1) ∈ Rn and y = (1, 2, 3, . . . , n) ∈ Rn. Let θn be the angle be-
tween x and y in Rn. Find lim

n→∞ θn. (The formulas 1 + 2 + · · · + n = n(n+ 1)/2 and

12 + 22 + · · · + n2 = n(n+ 1)(2n+ 1)/6 may be useful.)

11.� Suppose x, v1, . . . , vk ∈ Rn and x is orthogonal to each of the vectors v1, . . . , vk . Show
that x is orthogonal to any linear combination c1v1 + c2v2 + · · · + ckvk .6

12. Use vector methods to prove that a parallelogram is a rectangle if and only if its
diagonals have the same length.

13. Use the algebraic properties of the dot product to show that

‖x + y‖2 + ‖x − y‖2 = 2
(‖x‖2 + ‖y‖2

)
.

Interpret the result geometrically.

14.∗ Use the dot product to prove the law of cosines: As shown in Figure 2.8,

c2 = a2 + b2 − 2ab cos θ.

15. Use vector methods to prove that a triangle that is inscribed in a circle and has a diameter
as one of its sides must be a right triangle. (Hint: See Figure 2.9. Express the vectors
u and v in terms of x and y.)

6The symbol � indicates that the result of this problem will be used later.
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FIGURE 2.9

16. a. Let y ∈ Rn. If x · y = 0 for all x ∈ Rn, then prove that y = 0.

When you know some equation holds for all values of x, you should often choose
some strategic, particular value(s) for x.

b. Suppose y, z ∈ Rn and x · y = x · z for all x ∈ Rn. What can you conclude? (Hint:
Apply the result of part a.)

17. If x = (x1, x2) ∈ R2, set ρ(x) = (−x2, x1).
a. Check that ρ(x) is orthogonal to x. (Indeed, ρ(x) is obtained by rotating x an angle
π/2 counterclockwise.)

b. Given x, y ∈ R2, show that x · ρ(y) = −ρ(x) · y. Interpret this statement geomet-
rically.

18. Prove the triangle inequality: For any vectors x, y ∈ Rn, ‖x + y‖ ≤ ‖x‖ + ‖y‖. (Hint:
Use the dot product to calculate ‖x + y‖2.)

19. a. Give an alternative proof of the Cauchy-Schwarz Inequality by minimizing the
quadratic functionQ(t) = ‖x − ty‖2. Note thatQ(t) ≥ 0 for all t .

b. IfQ(t0) ≤ Q(t) for all t , how is t0y related to x‖? What does this say about projyx?

20. Use the Cauchy-Schwarz inequality to solve the following max/min problem: If the
(long) diagonal of a rectangular box has length c, what is the greatest that the sum of
the length, width, and height of the box can be? For what shape box does the maximum
occur?

21. a. Let x and y be vectors with ‖x‖ = ‖y‖. Prove that the vector x + y bisects the angle
between x and y. (Hint: Because x + y lies in the plane spanned by x and y, one
has only to check that the angle between x and x + y equals the angle between y
and x + y.)

b. More generally, if x and y are arbitrary nonzero vectors, let a = ‖x‖ and b = ‖y‖.
Prove that the vector bx + ay bisects the angle between x and y.

22. Use vector methods to prove that the diagonals of a parallelogram bisect the vertex
angles if and only if the parallelogram is a rhombus. (Hint: Use Exercise 21.)

23. Given �ABC withD onBC, as shown in Figure 2.10, prove that ifAD bisects � BAC,
then ‖−→BD‖/‖−→CD‖ = ‖−→AB‖/‖−→AC‖. (Hint: Use part b of Exercise 21. Let x = −→

AB

FIGURE 2.10 A B

C

D
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and y = −→
AC; express

−→
AD in two ways as a linear combination of x and y and use

Exercise 1.1.25.)

24. Use vector methods to show that the angle bisectors of a triangle have a common point.
(Hint: Given �OAB, let x = −→

OA, y = −→
OB, a = ‖−→OA‖, b = ‖−→

OB‖, and c = ‖−→AB‖.
If we define the point P by

−→
OP = 1

a+b+c (bx + ay), use part b of Exercise 21 to show
that P lies on all three angle bisectors.)

25. Use vector methods to show that the altitudes of a triangle have a common point. Recall
that altitudes of a triangle are the lines passing through a vertex and perpendicular to
the line through the remaining vertices. (Hint: See Figure 2.11. Let C be the point of
intersection of the altitude fromB and the altitude fromA. Show that

−→
OC is orthogonal

to
−→
AB.)

FIGURE 2.11
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26. Use vector methods to show that the perpendicular bisectors of the sides of a triangle
intersect in a point, as follows. Assume the triangleOAB has one vertex at the origin,
and let x = −→

OA and y = −→
OB. Let z be the point of intersection of the perpendicular

bisectors ofOA andOB. Show that z lies on the perpendicular bisector ofAB. (Hint:
What is the dot product of z − 1

2 (x + y) with x − y?)

3 Hyperplanes in Rn

We emphasized earlier a parametric description of lines in R2 and planes in R3. Let’s begin
by revisiting the Cartesian equation of a line passing through the origin in R2, e.g.,

2x1 + x2 = 0.

We recognize that the left-hand side of this equation is the dot product of the vector a = (2, 1)
with x = (x1, x2). That is, the vector x satisfies this equation precisely when it is orthogonal
to the vector a, as indicated in Figure 3.1, and we have described the line as the set of vectors
in the plane orthogonal to the given vector a = (2, 1):

(∗) a · x = 0.

It is customary to say that a is a normal7 vector to the line. (Note that any nonzero scalar
multiple of a will do just as well, but we often abuse language by referring to “the” normal
vector.)

7This is the first of several occurrences of the word normal—evidence of mathematicians’ propensity to use a
word repeatedly with different meanings. Here the meaning derives from the Latin norma, “carpenter’s square.”
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a

a · x = 0

FIGURE 3.1

a

x1

x1 − x0

a · x = 0 a · (x − x0) = 0

x0

FIGURE 3.2

It is easy to see that specifying a normal vector to a line through the origin is equivalent
to specifying its slope. Specifically, if the normal vector is (a, b), then the line has slope
−a/b. What is the effect of varying the constant on the right-hand side of the equation
(∗)? We get different lines parallel to the one with which we started. In particular, consider
a parallel line passing through the point x0, as shown in Figure 3.2. If x is on the line,
then x − x0 will be orthogonal to a, and hence the Cartesian equation of the line is

a · (x − x0) = 0,

which we can rewrite in the form

a · x = a · x0

or

a · x = c,

where c is the fixed real number a · x0.8 (Why is this quantity the same for every point x0

on the line?)

EXAMPLE 1

Consider the line �0 through the origin in R2 with direction vector v = (1,−3). The points
on this line are all of the form

x = t (1,−3), t ∈ R.

Because (3, 1) · (1,−3) = 0, we may take a = (3, 1) to be the normal vector to the line,
and the Cartesian equation of �0 is

a · x = 3x1 + x2 = 0.

(As a check, suppose we start with 3x1 + x2 = 0. Then we can write x1 = − 1
3x2, and so

the solutions consist of vectors of the form

x = (x1, x2) = (− 1
3x2, x2

) = − 1
3x2(1,−3), x2 ∈ R.

Letting t = − 1
3x2, we recover the original parametric equation.)

8The sophisticated reader should compare this to the study of level curves of functions in multivariable calculus.
Here our function is f (x) = a · x.
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Now consider the line � passing through x0 = (2, 1)with direction vector v = (1,−3).
Then the points on � are all of the form

x = x0 + tv = (2, 1)+ t (1,−3), t ∈ R.

As promised, we take the same vector a = (3, 1) and compute that

3x1 + x2 = a · x = a · (x0 + tv) = a · x0 + t (a · v) = a · x0 = (3, 1) · (2, 1) = 7.

This is the Cartesian equation of �.

We can give a geometric interpretation of the constant c on the right-hand side of the
equation a · x = c. Recall that

projax = x · a
‖a‖2

a,

and so, as indicated in Figure 3.3, the line consists of all vectors whose projection onto the
normal vector a is the constant vector

c

‖a‖2
a.

In particular, since the hypotenuse of a right triangle is longer than either leg,
c

‖a‖2
a

is the point on the line closest to the origin, and we say that the distance from the origin to
the line is ∥∥∥∥

c

‖a‖2
a

∥∥∥∥ = |c|
‖a‖ = ‖projax0‖

for any point x0 on the line.

FIGURE 3.3
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We now move on to see that planes in R3 can also be described by using normal vectors.

EXAMPLE 2

Consider the plane P0 passing through the origin spanned by u = (1, 0, 1) and v = (2, 1, 1),
as indicated schematically in Figure 3.4. Our intuition suggests that there is a line orthogonal
to P0, so we look for a vector a = (a1, a2, a3) that is orthogonal to both u and v. It must
satisfy the equations

a1 + a3 = 0

2a1 + a2 + a3 = 0 .
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FIGURE 3.4
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Substituting a3 = −a1 into the second equation, we obtain a1 + a2 = 0, so a2 = −a1 as
well. Thus, any candidate for a must be a scalar multiple of the vector (1,−1,−1), and so
we take a = (1,−1,−1) and try the equation

a · x = (1,−1,−1) · x = x1 − x2 − x3 = 0

for P0. Now, we know that a · u = a · v = 0. Does it follow that a is orthogonal to every
linear combination of u and v? We just compute: If x = su + tv, then

a · x = a · (su + tv)
= s(a · u)+ t (a · v) = 0,

as desired.
As before, if we want the equation of the plane P parallel to P0 and passing through

x0 = (2, 3,−2), we take

x1 − x2 − x3 = a · x = a · (x0 + su + tv)
= a · x0 + s(a · u)+ t (a · v)

= a · x0 = (1,−1,−1) · (2, 3,−2) = 1.

As this example suggests, a point x0 and a normal vector a give rise to the Cartesian
equation of a plane in R3:

a · (x − x0) = 0, or, equivalently, a · x = a · x0.

Thus, every plane in R3 has an equation of the form

a1x1 + a2x2 + a3x3 = c,

where a = (a1, a2, a3) is the normal vector and c ∈ R.

EXAMPLE 3

Consider the set of points x = (x1, x2, x3) defined by the equation

x1 − 2x2 + 5x3 = 3.

Let’s verify that this is, in fact, a plane in R3 according to our original parametric definition.
If x satisfies this equation, then x1 = 3 + 2x2 − 5x3 and so we may write

x = (x1, x2, x3) = (3 + 2x2 − 5x3, x2, x3)

= (3, 0, 0)+ x2(2, 1, 0)+ x3(−5, 0, 1).

So, if we let x0 = (3, 0, 0), u = (2, 1, 0), and v = (−5, 0, 1), we see that x = x0 + x2u +
x3v, where x2 and x3 are arbitrary scalars. This is in accordance with our original definition
of a plane in R3.
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As in the case of lines in R2, the distance from the origin to the (closest point on the) plane
a · x = c is |c|

‖a‖ .
Again, note that the point on the plane closest to the origin is

c

‖a‖2
a,

which is the point where the line through the origin with direction vector a intersects the
plane, as shown in Figure 3.5. (Indeed, the origin, this point, and any other point b on the
plane form a right triangle, and the hypotenuse of that right triangle has length ‖b‖.)

FIGURE 3.5
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Finally, generalizing to n dimensions, if a ∈ Rn is a nonzero vector and c ∈ R, then
the equation

a · x = c

defines a hyperplane in Rn. As we shall see in Chapter 3, this means that the solution set
has “dimension” n− 1, i.e., 1 less than the dimension of the ambient space Rn. Let’s write
an explicit formula for the general vector x satisfying this equation: If a = (a1, a2, . . . , an)

and a1 �= 0, then we rewrite the equation

a1x1 + a2x2 + · · · + anxn = c

to solve for x1:

x1 = 1

a1
(c − a2x2 − · · · − anxn) ,

and so the general solution is of the form

x = (x1, . . . , xn) =
(

1

a1
(c − a2x2 − · · · − anxn) , x2, . . . , xn

)

=
(
c

a1
, 0, . . . , 0

)
+ x2

(
−a2

a1
, 1, 0, . . . , 0

)
+ x3

(
−a3

a1
, 0, 1, . . . , 0

)

+ · · · + xn
(

−an
a1
, 0, . . . , 0, 1

)
.

(We leave it to the reader to write down the formula in the event that a1 = 0.)

EXAMPLE 4

Consider the hyperplane
x1 + x2 − x3 + 2x4 + x5 = 2

in R5. Then a parametric description of the general solution of this equation can be written
as follows:

x = (−x2 + x3 − 2x4 − x5 + 2, x2, x3, x4, x5)

= (2, 0, 0, 0, 0)+ x2(−1, 1, 0, 0, 0)+ x3(1, 0, 1, 0, 0)

+ x4(−2, 0, 0, 1, 0)+ x5(−1, 0, 0, 0, 1).
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To close this section, let’s consider the set of simultaneous solutions of two linear
equations in R3, i.e., the intersection of two planes:

a · x = a1x1 + a2x2 + a3x3 = c
b · x = b1x1 + b2x2 + b3x3 = d.

If a vector x satisfies both equations, then the point (x1, x2, x3) must lie on both the
planes; i.e., it lies in the intersection of the planes. Geometrically, we see that there are
three possibilities, as illustrated in Figure 3.6:

1. A plane: In this case, both equations describe the same plane.

2. The empty set: In this case, the equations describe parallel planes.

3. A line: This is the expected situation.

FIGURE 3.6

Notice that if the two planes are identical or parallel, then the normal vectors will be the
same (up to a scalar multiple). That is, there will be a nonzero real number r so that ra = b;
if we multiply the equation

a · x = a1x1 + a2x2 + a3x3 = c

by r , we get
b · x = ra · x = b1x1 + b2x2 + b3x3 = rc.

If a point (x1, x2, x3) satisfying this equation is also to satisfy the equation

b · x = b1x1 + b2x2 + b3x3 = d,

then we must have d = rc; i.e., the two planes coincide. On the other hand, if d �= rc, then
there is no solution of the pair of equations, and the two planes are parallel.

More interestingly, if the normal vectors a and b are nonparallel, then the planes
intersect in a line, and that line is described as the set of solutions of the simultaneous
equations. Geometrically, the direction vector of the line must be orthogonal to both a
and b.

EXAMPLE 5

We give a parametric description of the line of intersection of the planes

x1 + 2x2 − x3 = 2

x1 − x2 + 2x3 = 5 .

Subtracting the first equation from the second yields

−3x2 + 3x3 = 3, or

−x2 + x3 = 1.

Adding twice the latter equation to the first equation in the original system yields

x1 + x3 = 4.
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Thus, we can determine both x1 and x2 in terms of x3:

x1 = 4 − x3

x2 = −1 + x3 .

Then the general solution is of the form

x = (x1, x2, x3) = (4 − x3,−1 + x3, x3) = (4,−1, 0)+ x3(−1, 1, 1).

Indeed, as we mentioned earlier, the direction vector (−1, 1, 1) is orthogonal to a =
(1, 2,−1) and b = (1,−1, 2).

Much of the remainder of this course will be devoted to understanding higher-dimen-
sional analogues of lines and planes in R3. In particular, we will be concerned with the
relation between their parametric description and their description as the set of solutions of
a system of linear equations (geometrically, the intersection of a collection of hyperplanes).
The first step toward this goal will be to develop techniques and notation for solving systems
of m linear equations in n variables (as in Example 5, where we solved a system of two
linear equations in three variables). This is the subject of the next section.

Exercises 1.3

1. Give Cartesian equations of the given hyperplanes:
a. x = (−1, 2)+ t (3, 2)
b.∗ The plane passing through (1, 2, 2) and orthogonal to the line x = (5, 1,−1)+
t (−1, 1,−1)

c. The plane passing through (2, 0, 1) and orthogonal to the line x = (2,−1, 3)+
t (1, 2,−2)

d.∗ The plane spanned by (1, 1, 1) and (2, 1, 0) and passing through (1, 1, 2)

e. The plane spanned by (1, 0, 1) and (1, 2, 2) and passing through (−1, 1, 1)

f.∗ The hyperplane in R4 through the origin spanned by (1,−1, 1,−1), (1, 1,−1,−1),
and (1,−1,−1, 1).

2.∗ Redo Exercise 1.1.12 by finding Cartesian equations of the respective planes.

3. Find the general solution of each of the following equations (presented, as in the text,
as a combination of an appropriate number of vectors).
a. x1 − 2x2 + 3x3 = 4 (in R3)

b. x1 + x2 − x3 + 2x4 = 0 (in R4)

c.∗ x1 + x2 − x3 + 2x4 = 5 (in R4)

d.∗ x1 − 2x2 + 3x3 = 4 (in R4)

e. x2 + x3 − 3x4 = 2 (in R4)

4. Find a normal vector to the given hyperplane and use it to find the distance from the
origin to the hyperplane.
a. x = (−1, 2)+ t (3, 2)
b. The plane in R3 given by the equation 2x1 + x2 − x3 = 5

c.∗ The plane passing through (1, 2, 2) and orthogonal to the line x = (3, 1,−1)+
t (−1, 1,−1)

d. The plane passing through (2,−1, 1) and orthogonal to the line x = (3, 1, 1)+
t (−1, 2, 1)

e.∗ The plane spanned by (1, 1, 4) and (2, 1, 0) and passing through (1, 1, 2)

f. The plane spanned by (1, 1, 1) and (2, 1, 0) and passing through (3, 0, 2)
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g. The hyperplane in R4 spanned by (1,−1, 1,−1), (1, 1,−1,−1), and (1,−1,−1, 1)
and passing through (2, 1, 0, 1)

5. Find parametric equations of the line of intersection of the given planes in R3.
a. x1 + x2 + x3 = 1, 2x1 + x2 + 2x3 = 1

b. x1 − x2 = 1, x1 + x2 + 2x3 = 5

6.∗ a. Give the general solution of the equation x1 + 5x2 − 2x3 = 0 in R3 (as a linear
combination of two vectors, as in the text).

b. Find a specific solution of the equation x1 + 5x2 − 2x3 = 3 in R3; give the general
solution.

c. Give the general solution of the equation x1 + 5x2 − 2x3 + x4 = 0 in R4. Now give
the general solution of the equation x1 + 5x2 − 2x3 + x4 = 3.

7.∗ The equation 2x1 − 3x2 = 5 defines a line in R2.
a. Give a normal vector a to the line.

b. Find the distance from the origin to the line by using projection.

c. Find the point on the line closest to the origin by using the parametric equation of
the line through 0 with direction vector a. Double-check your answer to part b.

d. Find the distance from the point w = (3, 1) to the line by using projection.

e. Find the point on the line closest to w by using the parametric equation of the line
through w with direction vector a. Double-check your answer to part d .

8. The equation 2x1 − 3x2 − 6x3 = −4 defines a plane in R3.
a. Give its normal vector a.

b. Find the distance from the origin to the plane by using projection.

c. Find the point on the plane closest to the origin by using the parametric equation of
the line through 0 with direction vector a. Double-check your answer to part b.

d. Find the distance from the point w = (3,−3,−5) to the plane by using projection.

e. Find the point on the plane closest to w by using the parametric equation of the line
through w with direction vector a. Double-check your answer to part d .

9. The equation 2x1 + 2x2 − 3x3 + 8x4 = 6 defines a hyperplane in R4.
a. Give a normal vector a to the hyperplane.

b. Find the distance from the origin to the hyperplane using projection.

c. Find the point on the hyperplane closest to the origin by using the parametric equation
of the line through 0 with direction vector a. Double-check your answer to part b.

d. Find the distance from the point w = (1, 1, 1, 1) to the hyperplane using dot prod-
ucts.

e. Find the point on the hyperplane closest to w by using the parametric equation of
the line through w with direction vector a. Double-check your answer to part d .

10. a.∗ The equations x1 = 0 and x2 = 0 describe planes in R3 that contain the x3-axis.
Write down the Cartesian equation of a general such plane.

b. The equations x1 − x2 = 0 and x1 − x3 = 0 describe planes in R3 that contain the
line through the origin with direction vector (1, 1, 1). Write down the Cartesian
equation of a general such plane.

11. a. Assume b and c are nonparallel vectors in R3. Generalizing the result of Exercise
10, show that the plane a · x = 0 contains the intersection of the planes b · x = 0
and c · x = 0 if and only if a = sb + tc for some s, t ∈ R, not both 0. Describe this
result geometrically.

b. Assume b and c are nonparallel vectors in Rn. Formulate a conjecture about which
hyperplanes a · x = 0 in Rn contain the intersection of the hyperplanes b · x = 0
and c · x = 0. Prove as much of your conjecture as you can.
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12. Suppose a �= 0 and P ⊂ R3 is the plane through the origin with normal vector a.
Suppose P is spanned by u and v.
a. Suppose u · v = 0. Show that for every x ∈ P, we have

x = projux + projvx.

b. Suppose u · v = 0. Show that for every x ∈ R3, we have

x = projax + projux + projvx.

(Hint: Apply part a to the vector x − projax.)

c. Give an example to show the result of part a is false when u and v are not orthogonal.

13. Consider the line � in R3 given parametrically by x = x0 + ta. Let P0 denote the plane
through the origin with normal vector a (so it is orthogonal to �).
a. Show that � and P0 intersect in the point x0 − projax0.

b. Conclude that the distance from the origin to � is ‖x0 − projax0‖.

4 Systems of Linear Equations and Gaussian
Elimination

In this section we give an explicit algorithm for solving a system ofm linear equations
in n variables. Unfortunately, this is a little bit like giving the technical description of tying
a shoe—it is much easier to do it than to read how to do it. For that reason, before embarking
on the technicalities of the process, we will present here a few examples and introduce the
notation of matrices. On the other hand, once the technique is mastered, it will be important
for us to understand why it yields all solutions of the system of equations. For this reason,
it is is essential to understand Theorem 4.1.

To begin with, a linear equation in the n variables x1, x2, . . . , xn is an equation of the
form

a1x1 + a2x2 + · · · + anxn = b,

where the coefficients ai , i = 1, . . . , n, are fixed real numbers and b is a fixed real number.
Notice that if we let a = (a1, . . . , an) and x = (x1, . . . , xn), then we can write this equation
in vector notation as

a · x = b.

We recognize this as the equation of a hyperplane in Rn, and a vector x solves the equation
precisely when the point x lies on that hyperplane.

A system of m linear equations in n variables consists of m such equations:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm.

The notation appears cumbersome, but we have to live with it. A pair of subscripts is needed
on the coefficient aij to indicate in which equation it appears (the first index, i) and to which
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variable it is associated (the second index, j ). A solution x = (x1, . . . , xn) is an n-tuple
of real numbers that satisfies all m of the equations. Thus, a solution gives a point in the
intersection of the m hyperplanes.

To solve a system of linear equations, we want to give a complete parametric description
of the solutions, as we did for hyperplanes and for the intersection of two planes in Example 5
in the preceding section. We will call this the general solution of the system. Some systems
are relatively simple to solve. For example, the system

x1 = 1

x2 = 2

x3 = −1

has exactly one solution, namely x = (1, 2,−1). This is the only point common to the three
planes described by the three equations. A slightly more complicated example is

x1 − x3 = 1

x2 + 2x3 = 2 .

These equations enable us to determine x1 and x2 in terms of x3; in particular, we can write
x1 = 1 + x3 and x2 = 2 − 2x3, where x3 is free to take on any real value. Thus, any solution
of this system is of the form

x = (1 + t, 2 − 2t, t) = (1, 2, 0)+ t (1,−2, 1) for some t ∈ R.

It is easily checked that every vector of this form is in fact a solution, as (1 + t)− t = 1
and (2 − 2t)+ 2t = 2 for every t ∈ R. Thus, we see that the intersection of the two given
planes is the line in R3 passing through (1, 2, 0) with direction vector (1,−2, 1).

One should note that in the preceding example, we chose to solve for x1 and x2 in terms
of x3. We could just as well have solved, say, for x2 and x3 in terms of x1 by first writing
x3 = x1 − 1 and then substituting to obtain x2 = 4 − 2x1. Then we would end up writing

x = (s, 4 − 2s,−1 + s) = (0, 4,−1)+ s(1,−2, 1) for some s ∈ R.

We will soon give an algorithm for solving systems of linear equations that will eliminate
the ambiguity in deciding which variables should be taken as parameters. The variables
that are allowed to vary freely (as parameters) are called free variables, and the remaining
variables, which can be expressed in terms of the free variables, are called pivot variables.
Broadly speaking, if there are m equations, whenever possible we will try to solve for the
first m variables (assuming there are that many) in terms of the remaining variables. This
is not always possible (for example, the first variable may not even appear in any of the
equations), so we will need to specify a general procedure to select which will be pivot
variables and which will be free.

When we are solving a system of equations, there are three basic algebraic operations
we can perform that will not affect the solution set. They are the following elementary
operations:

(i) Interchange any pair of equations.

(ii) Multiply any equation by a nonzero real number.

(iii) Replace any equation by its sum with a multiple of any other equation.

The first two are probably so obvious that it seems silly to write them down; however, soon
you will see their importance. It is not obvious that the third operation does not change
the solution set; we will address this in Theorem 4.1. First, let’s consider an example of
solving a system of linear equations using these operations.
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EXAMPLE 1

Consider the system of linear equations

3x1 − 2x2 + 2x3 + 9x4 = 4

2x1 + 2x2 − 2x3 − 4x4 = 6 .

We can use operation (i) to replace this system with

2x1 + 2x2 − 2x3 − 4x4 = 6

3x1 − 2x2 + 2x3 + 9x4 = 4;
then we use operation (ii), multiplying the first equation by 1/2, to get

x1 + x2 − x3 − 2x4 = 3

3x1 − 2x2 + 2x3 + 9x4 = 4;
now we use operation (iii), adding −3 times the first equation to the second:

x1 + x2 − x3 − 2x4 = 3

− 5x2 + 5x3 + 15x4 = −5 .

Next we use operation (ii) again, multiplying the second equation by −1/5, to obtain

x1 + x2 − x3 − 2x4 = 3

x2 − x3 − 3x4 = 1;
finally, we use operation (iii), adding −1 times the second equation to the first:

x1 + x4 = 2

x2 − x3 − 3x4 = 1 .

From this we see that x1 and x2 are determined by x3 and x4, both of which are free to take
on any values. Thus, we read off the general solution of the system of equations:

x1 = 2 − x4

x2 = 1 + x3 + 3x4

x3 = x3

x4 = x4

In vector form, the general solution is

x = (x1, x2, x3, x4) = (2, 1, 0, 0)+ x3(0, 1, 1, 0)+ x4(−1, 3, 0, 1),

which is the parametric representation of a plane in R4.

Before describing the algorithm for solving a general system of linear equations, we
want to introduce some notation to make the calculations less cumbersome to write out.
We begin with a system of m equations in n unknowns:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm.
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We can simplify our notation somewhat by writing the equations in vector notation:

A1 · x = b1

A2 · x = b2

...

Am · x = bm,

where Ai = (ai1, ai2, . . . , ain) ∈ Rn, i = 1, 2, . . . , m. To simplify the notation further, we
introduce the m× n (read “m by n”) matrix9

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 . . . a1n

a21 . . . a2n

...
. . .

...

am1 . . . amn

⎤
⎥⎥⎥⎥⎥⎦

and the column vectors10

x =

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎥⎥⎦

∈ Rn and b =

⎡
⎢⎢⎢⎢⎢⎣

b1

b2

...

bm

⎤
⎥⎥⎥⎥⎥⎦

∈ Rm,

and write our equations as
Ax = b,

where the multiplication on the left-hand side is defined to be

Ax =

⎡
⎢⎢⎢⎢⎢⎣

A1 · x

A2 · x
...

Am · x

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

a11x1 + · · · + a1nxn

a21x1 + · · · + a2nxn
...

am1x1 + · · · + amnxn

⎤
⎥⎥⎥⎥⎥⎦
.

We will discuss the algebraic and geometric properties of matrices a bit later, but for now we
simply use them as convenient shorthand notation for systems of equations. We emphasize
that an m× n matrix has m rows and n columns. The coefficient aij appearing in the i th

row and the j th column is called the ij -entry of A. We say that two matrices are equal if
they have the same shape (that is, if they have equal numbers of rows and equal numbers of
columns) and their corresponding entries are equal. As we did above, we will customarily
denote the row vectors of the matrix A by A1, . . . ,Am ∈ Rn.

We reiterate that a solution x of the system of equations Ax = b is a vector having the
requisite dot products with the row vectors Ai :

Ai · x = bi for all i = 1, 2, . . . , m.

That is, the system of equations describes the intersection of them hyperplanes with normal
vectors Ai and at (signed) distance bi/‖Ai‖ from the origin. To give the general solution,
we must find a parametric representation of this intersection.

9The word matrix derives from the Latin matrix, “womb” (originally, “pregnant animal”), from mater, “mother.”

10We shall henceforth try to write vectors as columns, unless doing so might cause undue typographical hardship.
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Notice that the first two types of elementary operations do not change this collection
of hyperplanes, so it is no surprise that these operations do not affect the solution set
of the system of equations. On the other hand, the third type actually changes one of the
hyperplanes without changing the intersection. To see why, suppose a and b are nonparallel
and consider the pairs of equations

a · x = 0 (a + cb) · x = 0
and

b · x = 0 b · x = 0.

Suppose x satisfies the first set of equations, so a · x = 0 and b · x = 0; then x satisfies
the second set as well, since (a + cb) · x = (a · x)+ c(b · x) = 0 + c0 = 0 and b · x = 0
remains true. Conversely, if x satisfies the second set of equations, we have b · x = 0
and a · x = (a + cb) · x − c(b · x) = 0 − c0 = 0, so x also satisfies the first set. Thus the
solution sets are identical. Geometrically, as shown in Figure 4.1, taking a bit of poetic
license, we can think of the hyperplanes a · x = 0 and b · x = 0 as the covers of a book,
and the solutions x will form the “spine” of the book. The typical equation (a + cb) · x = 0
describes one of the pages of the book, and that page intersects either of the covers precisely
in the same spine. This follows from the fact that the spine consists of all vectors orthogonal
to the plane spanned by a and b; this is identical to the plane spanned by a + cb and b
(or a).

FIGURE 4.1

a · x = 0

b · x = 0

(a + cb) · x = 0

a + cb

b a

The general result is the following:

Theorem 4.1. If a system of equations Ax = b is changed into the new system Cx = d by
elementary operations, then the systems have the same set of solutions.

Proof. We need to show that every solution of Ax = b is also a solution of Cx = d, and
vice versa. Start with a solution u of Ax = b. Denoting the rows of A by A1, . . . ,Am, we
have

A1 · u = b1

A2 · u = b2

...

Am · u = bm

If we apply an elementary operation of type (i), u still satisfies precisely the same list of
equations. If we apply an elementary operation of type (ii), say multiplying the kth equation
by r �= 0, we note that if u satisfies Ak · u = bk , then it must satisfy (rAk) · u = rbk . As
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for an elementary operation of type (iii), suppose we add r times the kth equation to the �th;
since Ak · u = bk and A� · u = b�, it follows that

(rAk + A�) · u = (rAk · u)+ (A� · u) = rbk + b�,
and so u satisfies the “new” �th equation.

To prove conversely that if u satisfiesCx = d, then it satisfiesAx = b, we merely note
that each argument we’ve given can be reversed; in particular, the inverse of an elementary
operation is again an elementary operation. Note that it is important here that r �= 0 for
an operation of type (ii).

We introduce one further piece of shorthand notation, the augmented matrix

[A | b ] =

⎡
⎢⎢⎢⎢⎢⎣

a11 . . . a1n b1

a21 . . . a2n b2

...
. . .

...
...

am1 . . . amn bm

⎤
⎥⎥⎥⎥⎥⎦
.

Notice that the augmented matrix contains all of the information of the original system of
equations, because we can recover the latter by filling in the xi’s, +’s, and =’s as needed.

The elementary operations on a system of equations become operations on the rows of
the augmented matrix; in this setting, we refer to them as elementary row operations of the
corresponding three types:

(i) Interchange any pair of rows.

(ii) Multiply all the entries of any row by a nonzero real number.

(iii) Replace any row by its sum with a multiple of any other row.

Since we have established that elementary operations do not affect the solution set of a
system of equations, we can freely perform elementary row operations on the augmented
matrix of a system of equations with the goal of finding an “equivalent” augmented matrix
from which we can easily read off the general solution.

EXAMPLE 2

We revisit Example 1 in the notation of augmented matrices. To solve

3x1 − 2x2 + 2x3 + 9x4 = 4

2x1 + 2x2 − 2x3 − 4x4 = 6 ,

we begin by forming the appropriate augmented matrix
[

3 −2 2 9 4

2 2 −2 −4 6

]
.

We denote the process of performing row operations by the symbol � and (in this example)
we indicate above it the type of operation we are performing:
[

3 −2 2 9 4

2 2 −2 −4 6

]
(i)�
[

2 2 −2 −4 6

3 −2 2 9 4

]
(ii)�
[

1 1 −1 −2 3

3 −2 2 9 4

]

(iii)�
[

1 1 −1 −2 3

0 −5 5 15 −5

]
(ii)�
[

1 1 −1 −2 3

0 1 −1 −3 1

]
(iii)�
[

1 0 0 1 2

0 1 −1 −3 1

]
.
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From the final augmented matrix we are able to recover the simpler form of the equations,

x1 + x4 = 2

x2 − x3 − 3x4 = 1 ,

and read off the general solution just as before.

Remark. It is important to distinguish between the symbols = and �; when we convert
one matrix to another by performing one or more row operations, we do not have equal
matrices.

To recap, we have discussed the elementary operations that can be performed on a
system of linear equations without changing the solution set, and we have introduced the
shorthand notation of augmented matrices. To proceed, we need to discuss the final form our
system should have in order for us to be able to read off the solutions easily. To understand
this goal, let’s consider a few more examples.

EXAMPLE 3

(a) Consider the system

x1 + 2x2 − x4 = 1

x3 + 2x4 = 2 .

We see that using the second equation, we can determine x3 in terms of x4 and that
using the first, we can determine x1 in terms of x2 and x4. In particular, the general
solution is

x =

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1−2x2+ x4

x2

2 −2x4

x4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1

0

2

0

⎤
⎥⎥⎥⎥⎦

+ x2

⎡
⎢⎢⎢⎢⎣

−2

1

0

0

⎤
⎥⎥⎥⎥⎦

+ x4

⎡
⎢⎢⎢⎢⎣

1

0

−2

1

⎤
⎥⎥⎥⎥⎦
.

(b) The system

x1 + 2x2 + x3 + x4 = 3

x3 + 2x4 = 2

requires some algebraic manipulation before we can read off the solution. Although
the second equation determines x3 in terms of x4, the first describes x1 in terms of x2,
x3, and x4; but x2, x3, and x4 are not all allowed to vary arbitrarily: We would like to
modify the first equation by removing x3. Indeed, if we subtract the second equation
from the first, we will recover the system in (a).

(c) The system

x1 + 2x2 = 3

x1 − x3 = 2

involves similar difficulties. The value of x1 seems to be determined, on the one hand,
by x2 and, on the other, by x3; this is problematic (try x2 = 1 and x3 = 3). Indeed, we
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recognize that this system of equations describes the intersection of two planes in R3

(that are distinct and not parallel); this should be a line, whose parametric expression
should depend on only one variable. The point is that we cannot choose both x2 and
x3 to be free variables. We first need to manipulate the system of equations so that we
can determine one of them in terms of the other (for example, we might subtract the
first equation from the second).

The point of this discussion is to use elementary row operations to manipulate systems of
linear equations like those in Examples 3(b) and (c) above into equivalent systems from
which the solutions can be easily recognized, as in Example 3(a). But what distinguishes
Example 3(a)?

Definition. We call the first nonzero entry of a row (reading left to right) its leading
entry. A matrix is in echelon11 form if

1. The leading entries move to the right in successive rows.

2. The entries of the column below each leading entry are all 0.12

3. All rows of 0’s are at the bottom of the matrix.

A matrix is in reduced echelon form if it is in echelon form and, in addition,

4. Every leading entry is 1.

5. All the entries of the column above each leading entry are 0 as well.

If a matrix is in echelon form, we call the leading entry of any (nonzero) row a
pivot. We refer to the columns in which a pivot appears as pivot columns and to the
corresponding variables (in the original system of equations) as pivot variables. The
remaining variables are called free variables.

What do we learn from the respective augmented matrices for our earlier examples?
[

1 2 0 −1 1

0 0 1 2 2

]
,

[
1 2 1 1 3

0 0 1 2 1

]
,

[
1 2 0 3

1 0 −1 2

]

Of the augmented matrices from Example 3, (a) is in reduced echelon form, (b) is in echelon
form, and (c) is in neither. The key point is this: When the matrix is in reduced echelon
form, we are able to determine the general solution by expressing each of the pivot variables
in terms of the free variables.

11The word echelon derives from the French échelle, “ladder.” Although we don’t usually draw the rungs of the

ladder, they are there:

⎡
⎢⎣

1 2 3 4

0 0 1 2

0 0 0 3

⎤
⎥⎦. OK, perhaps it looks more like a staircase.

12Condition 2 is actually a consequence of 1, but we state it anyway for clarity.
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Here are a few further examples.

EXAMPLE 4

The matrix ⎡
⎢⎢⎣

0 2 1 1 4

0 0 3 0 2

0 0 0 −1 1

⎤
⎥⎥⎦

is in echelon form. The pivot variables are x2, x3, and x4; the free variables are x1 and x5.
However, the matrix ⎡

⎢⎢⎣
1 2 −1

0 0 0

0 0 3

⎤
⎥⎥⎦

is not in echelon form, because the row of 0’s is not at the bottom; the matrix⎡
⎢⎢⎣

1 2 1 1 4

0 0 3 0 2

0 0 1 −1 1

⎤
⎥⎥⎦

is not in echelon form, since the entry below the leading entry of the second row is nonzero.
And the matrix [

0 1 1

1 2 3

]

in also not in echelon form, because the leading entries do not move to the right.

EXAMPLE 5

The augmented matrix ⎡
⎢⎢⎣

1 2 0 0 4 1

0 0 1 0 −2 2

0 0 0 1 1 1

⎤
⎥⎥⎦

is in reduced echelon form. The corresponding system of equations is

x1 + 2x2 + 4x5 = 1

x3 − 2x5 = 2

x4 + x5 = 1 .

Notice that the pivot variables, x1, x3, andx4, are completely determined by the free variables
x2 and x5. As usual, we can write the general solution in terms of the free variables only:

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1−2x2−4x5

x2

2 +2x5

1 − x5

x5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

2

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ x2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ x5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4

0

2

−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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We stop for a moment to formalize the manner in which we have expressed the para-
metric form of the general solution of a system of linear equations once it’s been put in
reduced echelon form.

Definition. We say that we’ve written the general solution in standard form when it is
expressed as the sum of a particular solution—obtained by setting all the free variables
equal to 0—and a linear combination of vectors, one for each free variable—obtained
by setting that free variable equal to 1 and the remaining free variables equal to 0 and
ignoring the particular solution.13

Our strategy now is to transform the augmented matrix of any system of linear equations
into echelon form by performing a sequence of elementary row operations. The algorithm
goes by the name of Gaussian elimination. The first step is to identify the first column
(starting at the left) that does not consist only of 0’s; usually this is the first column, but
it may not be. Pick a row whose entry in this column is nonzero—usually the uppermost
such row, but you may choose another if it helps with the arithmetic—and interchange this
with the first row; now the first entry of the first nonzero column is nonzero. This will be
our first pivot. Next, we add the appropriate multiple of the top row to all the remaining
rows to make all the entries below the pivot equal to 0. For example, if we begin with the
matrix

A =

⎡
⎢⎢⎣

3 −1 2 7

2 1 3 3

2 2 4 2

⎤
⎥⎥⎦ ,

then we can switch the first and third rows of A (to avoid fractions) and clear out the first
pivot column to obtain

A′ =

⎡
⎢⎢⎣

�2 2 4 2

0 −1 −1 1

0 −4 −4 4

⎤
⎥⎥⎦ .

We have circled the pivot for emphasis. (If we are headed for the reduced echelon form,
we might replace the first row of A′ by (1, 1, 2, 1), but this can wait.)

The next step is to find the first column (again, starting at the left) in the new matrix
having a nonzero entry below the first row. Pick a row below the first that has a nonzero
entry in this column, and, if necessary, interchange it with the second row. Now the second
entry of this column is nonzero; this is our second pivot. (Once again, if we’re calculating
the reduced echelon form, we multiply by the reciprocal of this entry to make the pivot 1.)
We then add appropriate multiples of the second row to the rows beneath it to make all the

13In other words, if xj is a free variable, the corresponding vector in the general solution has j th coordinate equal
to 1 and kth coordinate equal to 0 for all the other free variables xk . Concentrate on the circled entries in the
vectors from Example 5:

x2

⎡
⎢⎢⎢⎢⎢⎢⎣

−2
�1
0

0
�0

⎤
⎥⎥⎥⎥⎥⎥⎦

+ x5

⎡
⎢⎢⎢⎢⎢⎢⎣

−4
�0

2

−1
�1

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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entries beneath the pivot equal to 0. Continuing with our example, we obtain

A′′ =

⎡
⎢⎢⎣

�2 2 4 2

0 �−1 −1 1

0 0 0 0

⎤
⎥⎥⎦ .

At this point, A′′ is in echelon form; note that the zero row is at the bottom and that the
pivots move toward the right and down.

In general, the process continues until we can find no more pivots—either because we
have a pivot in each row or because we’re left with nothing but rows of zeroes. At this
stage, if we are interested in finding the reduced echelon form, we clear out the entries in
the pivot columns above the pivots and then make all the pivots equal to 1. (A few words
of advice here: If we start at the right and work our way up and to the left, we in general
minimize the amount of arithmetic that must be done. Also, we always do our best to avoid
fractions.) Continuing with our example, we find that the reduced echelon form of A is

A′′ =

⎡
⎢⎢⎣

�2 2 4 2

0 �−1 −1 1

0 0 0 0

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

�1 1 2 1

0 �1 1 −1

0 0 0 0

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

�1 0 1 2

0 �1 1 −1

0 0 0 0

⎤
⎥⎥⎦ = RA.

It should be evident that there are many choices involved in the process of Gaussian
elimination. For example, at the outset, we chose to interchange the first and third rows
of A. We might just as well have used either the first or the second row to obtain our first
pivot, but we chose the third because we noticed that it would simplify the arithmetic to
do so. This lack of specificity in our algorithm is perhaps disconcerting at first, because
we are afraid that we might make the “wrong” choice. But so long as we choose a row
with a nonzero entry in the appropriate column, we can proceed. It’s just a matter of
making the arithmetic more or less convenient, and—as in our experience with techniques
of integration—practice brings the ability to make more advantageous choices.

Given all the choices we make along the way, we might wonder whether we always
arrive at the same answer. Evidently, the echelon form may well depend on the choices.
But despite the fact that a matrix may have lots of different echelon forms, they all must
have the same number of nonzero rows; that number is called the rank of the matrix.

Proposition 4.2. All echelon forms of anm× nmatrixA have the same number of nonzero
rows.

Proof. Suppose B and C are two echelon forms of A, and suppose C has (at least) one
more row of zeroes than B. Because there is a pivot in each nonzero row, there is (at least)
one pivot variable for B that is a free variable for C, say xj . Since xj is a free variable for
C, there is a vector v = (a1, a2, a3, . . . , aj−1, 1, 0, . . . , 0) that satisfies Cv = 0. We obtain
this vector by setting xj = 1 and the other free variables (forC) equal to 0, and then solving
for the remaining (pivot) variables.14

On the other hand, xj is a pivot variable for B; assume that it is the pivot in the �th row.
That is, the first nonzero entry of the �th row of B occurs in the j th column. Then the �th

14To see why v has this form, we must understand why the kth entry of v is 0 whenever k > j . So suppose k > j .
If xk is a free variable, then by construction the kth entry of v is 0. On the other hand, if xk is a pivot variable,
then the value of xk is determined only by the values of the pivot variables x� with � > k; since, by construction,
these are all 0, once again, the kth entry of v is 0.
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entry of Bv is 1. This contradicts Theorem 4.1, for if Cv = 0, thenAv = 0, and so Bv = 0
as well.

In fact, it is not difficult to see that more is true, as we ask the ambitious reader to check in
Exercise 16:

Theorem 4.3. Each matrix has a unique reduced echelon form.

We conclude with a few examples illustrating Gaussian elimination and its applications.

EXAMPLE 6

Give the general solution of the following system of linear equations:

x1 + x2 + 3x3 − x4 = 0

−x1 + x2 + x3 + x4 + 2x5 = −4

x2 + 2x3 + 2x4 − x5 = 0

2x1 − x2 + x4 − 6x5 = 9 .

We begin with the augmented matrix of coefficients and put it in reduced echelon form:
⎡
⎢⎢⎢⎢⎣

1 1 3 −1 0 0

−1 1 1 1 2 −4

0 1 2 2 −1 0

2 −1 0 1 −6 9

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 1 3 −1 0 0

0 2 4 0 2 −4

0 1 2 2 −1 0

0 −3 −6 3 −6 9

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 1 3 −1 0 0

0 1 2 0 1 −2

0 0 0 2 −2 2

0 0 0 3 −3 3

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 1 3 −1 0 0

0 1 2 0 1 −2

0 0 0 1 −1 1

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 0 1 0 −2 3

0 1 2 0 1 −2

0 0 0 1 −1 1

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

Thus, the system of equations is given in reduced echelon form by

x1 + x3 − 2x5 = 3

x2 + 2x3 + x5 = −2

x4 − x5 = 1 ,

from which we read off

x1 = 3 − x3 + 2x5

x2 = −2 − 2x3 − x5

x3 = x3

x4 = 1 + x5

x5 = x5 ,
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and so the general solution is

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3

−2

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ x3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1

−2

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ x5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2

−1

0

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

EXAMPLE 7

We wish to find a normal vector to the hyperplane in R4 spanned by the vectors v1 =
(1, 0, 1, 0), v2 = (0, 1, 0, 1), and v3 = (1, 2, 3, 4). That is, we want a vector x ∈ R4 satis-
fying the system of equations v1 · x = v2 · x = v3 · x = 0. Such a vector x must satisfy the
system of equations

x1 + x3 = 0

x2 + x4 = 0

x1 + 2x2 + 3x3 + 4x4 = 0 .

Putting the augmented matrix in reduced echelon form, we find
⎡
⎢⎢⎣

1 0 1 0 0

0 1 0 1 0

1 2 3 4 0

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 0 1 0 0

0 1 0 1 0

0 0 2 2 0

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

1 0 0 −1 0

0 1 0 1 0

0 0 1 1 0

⎤
⎥⎥⎦ .

From this we read off
x1 = x4

x2 = −x4

x3 = −x4

x4 = x4,

and so the general solution is

x =

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎦

= x4

⎡
⎢⎢⎢⎢⎣

1

−1

−1

1

⎤
⎥⎥⎥⎥⎦

;

that is, a normal vector to the plane is (any nonzero scalar multiple of) (1,−1,−1, 1). The
reader should check that this vector actually is orthogonal to the three given vectors.

Recalling that solving the system of linear equations

A1 · x = b1, A2 · x = b2, . . . , Am · x = bm

amounts to finding a parametric representation of the intersection of these m hyperplanes,
we consider one last example.
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EXAMPLE 8

We seek a parametric description of the intersection of the three hyperplanes in R4 given
by

x1 − x2 + 2x3 + 3x4 = 2

2x1 + x2 + x3 = 1

x1 + 2x2 − x3 − 3x4 = 7 .

Again, we start with the augmented matrix and put it in echelon form:
⎡
⎢⎢⎣

1 −1 2 3 2

2 1 1 0 1

1 2 −1 −3 7

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 −1 2 3 2

0 3 −3 −6 −3

0 3 −3 −6 5

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

1 −1 2 3 2

0 3 −3 −6 −3

0 0 0 0 8

⎤
⎥⎥⎦ .

Without even continuing to reduced echelon form, we see that the new augmented matrix
gives the system of equations

x1 − x2 + 2x3 + 3x4 = 2

3x2 − 3x3 − 6x4 = −3

0 = 8 .

The last equation, 0 = 8, is, of course, absurd. What happened? There can be no values of
x1, x2, x3, and x4 that make this system of equations hold: The three hyperplanes described
by our equations have no point in common. A system of linear equations may not have any
solutions; in this case it is called inconsistent. We study this notion carefully in the next
section.

Exercises 1.4

1. Use elementary operations to find the general solution of each of the following systems
of equations. Use the method of Example 1 as a prototype.
a. x1 + x2 = 1

x1 + 2x2 + x3 = 1

x2 + 2x3 = 1

b.∗ x1 + 2x2 + 3x3 = 1

2x1 + 4x2 + 5x3 = 1

x1 + 2x2 + 2x3 = 0

c. 3x1 − 6x2 − x3 + x4 = 6

−x1 + 2x2 + 2x3 + 3x4 = 3

4x1 − 8x2 − 3x3 − 2x4 = 3

2.∗ Decide which of the following matrices are in echelon form, which are in reduced
echelon form, and which are neither. Justify your answers.

a.

[
0 1

2 3

]

b.

[
2 1 3

0 1 −1

]

c.

[
1 0 2

0 1 −1

]

d.

[
1 1 0

0 0 2

]

e.

⎡
⎢⎣

1 1 0

0 0 0

0 0 1

⎤
⎥⎦



50 Chapter 1 Vectors and Matrices

f.

⎡
⎢⎣

1 1 0 −1

0 2 1 0

0 0 0 1

⎤
⎥⎦ g.

⎡
⎢⎣

1 0 −2 0 1

0 1 1 0 1

0 0 0 1 4

⎤
⎥⎦

3. For each of the following matrices A, determine its reduced echelon form and give the
general solution of Ax = 0 in standard form.

a.∗ A =
⎡
⎢⎣

1 0 −1

−2 3 −1

3 −3 0

⎤
⎥⎦

b.∗ A =
⎡
⎢⎣

2 −2 4

−1 1 −2

3 −3 6

⎤
⎥⎦

c. A =

⎡
⎢⎢⎢⎣

1 2 −1

1 3 1

2 4 3

−1 1 6

⎤
⎥⎥⎥⎦

d. A =

⎡
⎢⎢⎢⎣

1 1 1 1

1 2 1 2

1 3 2 4

1 2 2 3

⎤
⎥⎥⎥⎦

e.∗ A =
[

1 −2 1 0

2 −4 3 −1

]

f. A =

⎡
⎢⎢⎢⎣

1 2 0 −1 −1

−1 −3 1 2 3

1 −1 3 1 1

2 −3 7 3 4

⎤
⎥⎥⎥⎦

g.∗ A =

⎡
⎢⎢⎢⎣

1 −1 1 1 0

1 0 2 1 1

0 2 2 2 0

−1 1 −1 0 −1

⎤
⎥⎥⎥⎦

h. A =

⎡
⎢⎢⎢⎣

1 1 0 5 0 −1

0 1 1 3 −2 0

−1 2 3 4 1 −6

0 4 4 12 −1 −7

⎤
⎥⎥⎥⎦

4. Give the general solution of the equation Ax = b in standard form.

a.∗ A =
⎡
⎢⎣

2 1 −1

1 2 1

−1 1 2

⎤
⎥⎦, b =

⎡
⎢⎣

3

0

−3

⎤
⎥⎦

b. A =
⎡
⎢⎣

2 −1

2 1

−1 1

⎤
⎥⎦, b =

⎡
⎢⎣

−4

0

3

⎤
⎥⎦

c.∗ A =
⎡
⎢⎣

2 −1 1

2 1 3

1 1 2

⎤
⎥⎦, b =

⎡
⎢⎣

−4

0

3

⎤
⎥⎦

d. A =
⎡
⎢⎣

2 −1 1

2 1 3

1 1 2

⎤
⎥⎦, b =

⎡
⎢⎣

1

−1

−1

⎤
⎥⎦

e. A =
[

1 1 1 1

3 3 2 0

]
, b =

[
6

17

]
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f. A =

⎡
⎢⎢⎢⎣

1 1 1 −1 0

2 0 4 1 −1

1 2 0 −2 2

0 1 −1 2 4

⎤
⎥⎥⎥⎦, b =

⎡
⎢⎢⎢⎣

−2

10

−3

7

⎤
⎥⎥⎥⎦

5. For the following matrices A, give the general solution of the equation Ax = x in
standard form. (Hint: Rewrite this as Bx = 0 for an appropriate matrix B.)

a. A =
[

10 −6

18 −11

]
b.∗ A =

⎡
⎢⎣

1 0 0

−2 1 2

−2 0 3

⎤
⎥⎦ c. A =

⎡
⎢⎣

0 −1 0

0 0 −1

1 0 0

⎤
⎥⎦

6. For the following matrices A, give the general solution of the equation Ax = 2x in
standard form.

a. A =
[

0 1

2 1

]
b. A =

⎡
⎢⎣

3 16 −15

1 12 −9

1 16 −13

⎤
⎥⎦

7. One might need to find solutions of Ax = b for several different b’s, say b1, . . . ,bk .
In this event, one can augment the matrix A with all the b’s simultaneously, forming
the “multi-augmented” matrix [A | b1 b2 · · · bk ]. One can then read off the various
solutions from the reduced echelon form of the multi-augmented matrix. Use this
method to solve Ax = bj for the given matrices A and vectors bj .

a. A =
⎡
⎢⎣

1 0 −1

2 1 −1

−1 2 2

⎤
⎥⎦, b1 =

⎡
⎢⎣

−1

1

5

⎤
⎥⎦, b2 =

⎡
⎢⎣

1

3

2

⎤
⎥⎦

b. A =
[

1 2 −1 0

2 3 2 1

]
, b1 =

[
1

0

]
, b2 =

[
0

1

]

c. A =
⎡
⎢⎣

1 1 1

0 1 1

1 2 1

⎤
⎥⎦, b1 =

⎡
⎢⎣

1

0

0

⎤
⎥⎦, b2 =

⎡
⎢⎣

0

1

0

⎤
⎥⎦, b3 =

⎡
⎢⎣

0

0

1

⎤
⎥⎦

8.∗ Find all the unit vectors x ∈ R3 that make an angle of π/3 with each of the vectors
(1, 0,−1) and (0, 1, 1).

9. Find all the unit vectors x ∈ R3 that make an angle of π/4 with (1, 0, 1) and an angle
of π/3 with (0, 1, 0).

10. Find a normal vector to the hyperplane in R4 spanned by
a.∗ (1, 1, 1, 1), (1, 2, 1, 2), and (1, 3, 2, 4);

b. (1, 1, 1, 1), (2, 2, 1, 2), and (1, 3, 2, 3).

11. Find all vectors x ∈ R4 that are orthogonal to both
a.∗ (1, 0, 1, 1) and (0, 1,−1, 2);

b. (1, 1, 1,−1) and (1, 2,−1, 1).

12. Find all the unit vectors in R4 that make an angle of π/3 with (1, 1, 1, 1) and an angle
of π/4 with both (1, 1, 0, 0) and (1, 0, 0, 1).

13.�∗ Let A be an m× n matrix, let x, y ∈ Rn, and let c be a scalar. Show that
a. A(cx) = c(Ax)
b. A(x + y) = Ax + Ay
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14. Let A be an m× n matrix, and let b ∈ Rm.
a. Show that if u and v ∈ Rn are both solutions of Ax = b, then u − v is a solution of
Ax = 0.

b. Suppose u is a solution of Ax = 0 and p is a solution of Ax = b. Show that u + p
is a solution of Ax = b.

Hint: Use Exercise 13.

15. a. Prove or give a counterexample: If A is an m× n matrix and x ∈ Rn satisfies
Ax = 0, then either every entry of A is 0 or x = 0.

b. Prove or give a counterexample: If A is an m× n matrix and Ax = 0 for every
vector x ∈ Rn, then every entry of A is 0.

Although an example does not constitute a proof, a counterexample is a fine disproof:
A counterexample is merely an explicit example illustrating that the statement is false.

Here, the evil authors are asking you first to decide whether the statement is true
or false. It is important to try examples to develop your intuition. In a problem like
this that contains arbitrary positive integersm and n, it is often good to start with small
values. Of course, if we take m = n = 1, we get the statement

If a is a real number and ax = 0 for every real number x, then a = 0.

Here you might say, “Well, if a �= 0, then I can divide both sides of the equation by a
and obtain x = 0. Since the equation must hold for all real numbers x, we must have
a = 0.” But this doesn’t give us any insight into the general case, as we can’t divide
by vectors or matrices.

What are some alternative approaches? You might try picking a particular value
of x that will shed light on the situation. For example, if we take x = 1, then we
immediately get a = 0. How might you use this idea to handle the general case? If
you wanted to show that a particular entry, say a25, of the matrix A was 0, could you
pick the vector x appropriately?

There’s another way to pick a particular value of x that leads to information.
Since the only given object in the problem is the real number a, we might try letting
x = a and see what happens. Here we get ax = a2 = 0, from which we conclude
immediately that a = 0. How does this idea help us with the general case? Remember
that the entries of the vector Ax are the dot products Ai · x. Looking back at part a of
Exercise 1.2.16, we learned there that if a · x = 0 for all x, then a = 0. How does our
current path of reasoning lead us to this?

16. Prove that the reduced echelon form of a matrix is unique, as follows. Suppose B and
C are reduced echelon forms of a given nonzero m× n matrix A.
a. Deduce from the proof of Proposition 4.2 thatB andC have the same pivot variables.

b. Explain why the pivots of B and C are in the identical positions. (This is true even
without the assumption that the matrices are in reduced echelon form.)

c. By considering the solutions in standard form of Bx = 0 and Cx = 0, deduce that
B = C.

17. In rating the efficiency of different computer algorithms for solving a system of equa-
tions, it is usually considered sufficient to compare the number of multiplications re-
quired to carry out the algorithm.
a. Show that

n(n− 1)+ (n− 1)(n− 2)+ · · · + (2)(1) =
n∑
k=1

(k2 − k)
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multiplications are required to bring a general n× n matrix to echelon form by
(forward) Gaussian elimination.

b. Show that
n∑
k=1
(k2 − k) = 1

3 (n
3 − n). (Hint: For some appropriate formulas, see

Exercise 1.2.10.)

c. Now show that it takes n+ (n− 1)+ (n− 2)+ · · · + 1 = n(n+ 1)/2 multipli-
cations to bring the matrix to reduced echelon form by clearing out the columns
above the pivots, working right to left. Show that it therefore takes a total of
1
3n

3 + 1
2n

2 + 1
6n multiplications to put A in reduced echelon form.

d. Gauss-Jordan elimination is a slightly different algorithm used to bring a matrix to
reduced echelon form: Here each column is cleared out, both below and above the
pivot, before moving on to the next column. Show that in general this procedure
requires n2(n− 1)/2 multiplications. For large n, which method is preferred?

5 The Theory of Linear Systems

We developed Gaussian elimination as a technique for finding a parametric description
of the solutions of a system of linear Cartesian equations. Now we shall see that this
same technique allows us to proceed in the opposite direction. That is, given vectors
v1, . . . , vk ∈ Rn, we would like to find a set of Cartesian equations whose solution is
precisely Span (v1, . . . , vk). In addition, we will rephrase in somewhat more general terms
the observations we have already made about solutions of systems of linear equations.

5.1 Existence,Constraint Equations, and Rank
SupposeA is anm× nmatrix. There are two equally important ways to interpret the system
of equations Ax = b. In the preceding section, we concentrated on the row vectors of A:
If A1, . . . ,Am denote the row vectors of A, then the vector c is a solution of Ax = b if and
only if

A1 · c = b1, A2 · c = b2, . . . , Am · c = bm.

Geometrically, c is a solution precisely when it lies in the intersection of all the hyperplanes
defined by the system of equations.

On the other hand, we can define the column vectors of them× nmatrixA as follows:

aj =

⎡
⎢⎢⎢⎢⎢⎣

a1j

a2j

...

amj

⎤
⎥⎥⎥⎥⎥⎦

∈ Rm, j = 1, 2, . . . , n.

We now make an observation that will be crucial in our future work: The matrix product
Ax can also be written as

Ax =

⎡
⎢⎢⎢⎢⎢⎣

a11x1 + · · · + a1nxn

a21x1 + · · · + a2nxn
...

am1x1 + · · · + amnxn

⎤
⎥⎥⎥⎥⎥⎦

= x1

⎡
⎢⎢⎢⎢⎢⎣

a11

a21

...

am1

⎤
⎥⎥⎥⎥⎥⎦

+ x2

⎡
⎢⎢⎢⎢⎢⎣

a12

a22

...

am2

⎤
⎥⎥⎥⎥⎥⎦

+ · · · + xn

⎡
⎢⎢⎢⎢⎢⎣

a1n

a2n

...

amn

⎤
⎥⎥⎥⎥⎥⎦

(∗)

= x1a1 + x2a2 + · · · + xnan.
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Thus, a solution c = (c1, . . . , cn) of the linear system Ax = b provides scalars c1, . . . , cn
so that

b = c1a1 + · · · + cnan.
This is our second geometric interpretation of the system of linear equations: A solution
c gives a representation of the vector b as a linear combination, c1a1 + · · · + cnan, of the
column vectors of A.

EXAMPLE 1

Consider the four vectors

b =

⎡
⎢⎢⎢⎢⎣

4

3

1

2

⎤
⎥⎥⎥⎥⎦
, v1 =

⎡
⎢⎢⎢⎢⎣

1

0

1

2

⎤
⎥⎥⎥⎥⎦
, v2 =

⎡
⎢⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎥⎦
, and v3 =

⎡
⎢⎢⎢⎢⎣

2

1

1

2

⎤
⎥⎥⎥⎥⎦
.

Suppose we want to express the vector b as a linear combination of the vectors v1, v2, and
v3. Writing out the expression

x1v1 + x2v2 + x3v3 = x1

⎡
⎢⎢⎢⎢⎣

1

0

1

2

⎤
⎥⎥⎥⎥⎦

+ x2

⎡
⎢⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎥⎦

+ x3

⎡
⎢⎢⎢⎢⎣

2

1

1

2

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

4

3

1

2

⎤
⎥⎥⎥⎥⎦
,

we obtain the system of equations

x1 + x2 + 2x3 = 4

x2 + x3 = 3

x1 + x2 + x3 = 1

2x1 + x2 + 2x3 = 2 .

In matrix notation, we must solve Ax = b, where the columns of A are v1, v2, and v3:

A =

⎡
⎢⎢⎢⎢⎣

1 1 2

0 1 1

1 1 1

2 1 2

⎤
⎥⎥⎥⎥⎦
.

So we take the augmented matrix to reduced echelon form:

[A | b ] =

⎡
⎢⎢⎢⎢⎣

1 1 2 4

0 1 1 3

1 1 1 1

2 1 2 2

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 1 2 4

0 1 1 3

0 0 −1 −3

0 −1 −2 −6

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 1 2 4

0 1 1 3

0 0 1 3

0 0 0 0

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 0 0 −2

0 1 0 0

0 0 1 3

0 0 0 0

⎤
⎥⎥⎥⎥⎦
.
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This tells us that the solution is

x =
⎡
⎢⎣

−2

0

3

⎤
⎥⎦ , so b = −2v1 + 0v2 + 3v3,

which, as the reader can check, works.

Now we modify the preceding example slightly.

EXAMPLE 2

We would like to express the vector

b′ =

⎡
⎢⎢⎢⎢⎣

1

1

0

1

⎤
⎥⎥⎥⎥⎦

as a linear combination of the same vectors v1, v2, and v3. This then leads analogously to
the system of equations

x1 + x2 + 2x3 = 1

x2 + x3 = 1

x1 + x2 + x3 = 0

2x1 + x2 + 2x3 = 1

and to the augmented matrix
⎡
⎢⎢⎢⎢⎣

1 1 2 1

0 1 1 1

1 1 1 0

2 1 2 1

⎤
⎥⎥⎥⎥⎦
,

whose echelon form is
⎡
⎢⎢⎢⎢⎣

1 1 2 1

0 1 1 1

0 0 1 1

0 0 0 1

⎤
⎥⎥⎥⎥⎦
.

The last row of the augmented matrix corresponds to the equation

0x1 + 0x2 + 0x3 = 1,

which obviously has no solution. Thus, the original system of equations has no solu-
tion: The vector b′ in this example cannot be written as a linear combination of v1, v2,
and v3.

These examples lead us to make the following definition.

Definition. If the system of equations Ax = b has no solutions, the system is said to be
inconsistent; if it has at least one solution, then it is said to be consistent.
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A system of equations is consistent precisely when a solution exists. We see that the
system of equations in Example 2 is inconsistent and the system of equations in Example 1
is consistent. It is easy to recognize an inconsistent system of equations from the echelon
form of its augmented matrix: The system is inconsistent precisely when there is an equation
that reads

0x1 + 0x2 + · · · + 0xn = c

for some nonzero scalar c, i.e., when there is a row in the echelon form of the augmented
matrix all of whose entries are 0 except for the rightmost.

Turning this around a bit, let [U | c ] denote an echelon form of the augmented matrix
[A | b ]. The system Ax = b is consistent if and only if any zero row in U corresponds to
a zero entry in the vector c.

There are two geometric interpretations of consistency. From the standpoint of row
vectors, the systemAx = b is consistent precisely when the intersection of the hyperplanes

A1 · x = b1, . . . , Am · x = bm

is nonempty. From the point of view of column vectors, the system Ax = b is consistent
precisely when the vector b can be written as a linear combination of the column vectors
a1, . . . , an of A; in other words, it is consistent when b ∈ Span (a1, . . . , an).

In the next example, we characterize those vectors b ∈ R4 that can be expressed as a
linear combination of the three vectors v1, v2, and v3 from Examples 1 and 2.

EXAMPLE 3

For what vectors

b =

⎡
⎢⎢⎢⎢⎣

b1

b2

b3

b4

⎤
⎥⎥⎥⎥⎦

will the system of equations

x1 + x2 + 2x3 = b1

x2 + x3 = b2

x1 + x2 + x3 = b3

2x1 + x2 + 2x3 = b4

have a solution? We form the augmented matrix [A | b ] and put it in echelon form:

⎡
⎢⎢⎢⎢⎣

1 1 2 b1

0 1 1 b2

1 1 1 b3

2 1 2 b4

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 1 2 b1

0 1 1 b2

0 0 −1 b3 − b1

0 −1 −2 b4 − 2b1

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 1 2 b1

0 1 1 b2

0 0 1 b1 − b3

0 0 0 −b1 + b2 − b3 + b4

⎤
⎥⎥⎥⎥⎦
.
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We deduce that the original system of equations will have a solution if and only if

(∗∗) −b1 + b2 − b3 + b4 = 0.

That is, the vector b belongs to Span (v1, v2, v3) precisely when b satisfies the constraint
equation (∗∗). Changing letters slightly, we infer that a Cartesian equation of the hyperplane
spanned by v1, v2, and v3 in R4 is −x1 + x2 − x3 + x4 = 0.

EXAMPLE 4

As a further example, we take

A =

⎡
⎢⎢⎢⎢⎣

1 −1 1

3 2 −1

1 4 −3

3 −3 3

⎤
⎥⎥⎥⎥⎦
,

and we look for constraint equations that describe the vectors b ∈ R4 for which Ax = b is
consistent, i.e., all vectors b that can be expressed as a linear combination of the columns
of A.

As before, we consider the augmented matrix [A | b ] and determine an echelon form
[U | c ]. In order for the system to be consistent, every entry of c corresponding to a row
of 0’s in U must be 0 as well:

[A | b ] =

⎡
⎢⎢⎢⎢⎣

1 −1 1 b1

3 2 −1 b2

1 4 −3 b3

3 −3 3 b4

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 −1 1 b1

0 5 −4 b2 − 3b1

0 5 −4 b3 − b1

0 0 0 b4 − 3b1

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 −1 1 b1

0 5 −4 b2 − 3b1

0 0 0 b3 − b2 + 2b1

0 0 0 b4 − 3b1

⎤
⎥⎥⎥⎥⎦
.

Here we have two rows of 0’s in U , so we conclude that Ax = b is consistent if and only
if b satisfies the two constraint equations

2b1 − b2 + b3 = 0 and − 3b1 + b4 = 0.

These equations describe the intersection of two hyperplanes through the origin in R4 with
respective normal vectors (2,−1, 1, 0) and (−3, 0, 0, 1).

Notice that in the last two examples, we have reversed the process of Sections 3 and 4.
There we expressed the general solution of a system of linear equations as a linear combi-
nation of certain vectors, just as we described lines, planes, and hyperplanes parametrically
earlier. Here, starting with the column vectors of the matrixA, we have found the constraint
equations that a vector b must satisfy in order to be a linear combination of them (that is,
to be in their span). This is the process of determining Cartesian equations of a space that
is defined parametrically.

Remark. It is worth noting that since A has different echelon forms, one can arrive at
different constraint equations. We will investigate this more deeply in Chapter 3.
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EXAMPLE 5

Find a Cartesian equation of the plane in R3 given parametrically by

x =

⎡
⎢⎢⎣

1

2

1

⎤
⎥⎥⎦+ s

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

2

1

1

⎤
⎥⎥⎦ .

We ask which vectors b = (b1, b2, b3) can be written in the form
⎡
⎢⎢⎣

1

2

1

⎤
⎥⎥⎦+ s

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

2

1

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
b1

b2

b3

⎤
⎥⎥⎦ .

This system of equations can be rewritten as
⎡
⎢⎢⎣

1 2

0 1

1 1

⎤
⎥⎥⎦
[
s

t

]
=

⎡
⎢⎢⎣
b1 − 1

b2 − 2

b3 − 1

⎤
⎥⎥⎦ ,

and so we want to know when this system of equations is consistent. Reducing the aug-
mented matrix to echelon form, we have

⎡
⎢⎢⎣

1 2 b1 − 1

0 1 b2 − 2

1 1 b3 − 1

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 2 b1 − 1

0 1 b2 − 2

0 0 b3 − b1 + b2 − 2

⎤
⎥⎥⎦ .

Thus, the constraint equation is −b1 + b2 + b3 − 2 = 0. A Cartesian equation of the given
plane is x1 − x2 − x3 = −2.

In general, given an m× n matrix, we might wonder how many conditions a vector
b ∈ Rm must satisfy in order to be a linear combination of the columns of A. From the
procedure we’ve just followed, the answer is quite clear: Each row of 0’s in the echelon
form of A contributes one constraint. This leads us to our next definition.

Definition. The rank of a matrixA is the number of nonzero rows (the number of pivots)
in any echelon form of A. It is usually denoted by r .

Then the number of rows of 0’s in the echelon form is m− r , and b must satisfy m− r
constraint equations. Note that it is a consequence of Proposition 4.2 that the rank of a
matrix is well-defined, i.e., independent of the choice of echelon form.

Now, given a system of m linear equations in n variables, let A denote its coefficient
matrix and r the rank of A. We summarize the above remarks as follows.

Proposition 5.1. The linear system Ax = b is consistent if and only if the rank of the
augmented matrix [A | b ] equals the rank of A. In particular, when the rank of A equals
m, the system Ax = b will be consistent for all vectors b ∈ Rm.

Proof. Let [U | c ] denote the echelon form of the augmented matrix [A | b ]. We know
thatAx = b is consistent if and only if any zero row in U corresponds to a zero entry in the
vector c, which occurs if and only if the number of nonzero rows in the augmented matrix
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[U | c ] equals the number of nonzero rows in U , i.e., the rank of A. When r = m, there is
no row of 0’s in U and hence no possibility of inconsistency.

5.2 Uniqueness and Nonuniqueness of Solutions
We now turn our attention to the question of how many solutions a given consistent system
of equations has. Our experience with solving systems of equations in Sections 3 and 4
suggests that the solutions of a consistent linear system Ax = b are intimately related to
the solutions of the system Ax = 0.

Definition.A systemAx = b of linear equations is called inhomogeneous when b �= 0;
the corresponding equation Ax = 0 is called the associated homogeneous system.

To relate the solutions of the inhomogeneous systemAx = b and those of the associated
homogeneous system Ax = 0, we need the following fundamental algebraic observation.

Proposition 5.2. Let A be an m× n matrix and let x, y ∈ Rn. Then

A(x + y) = Ax + Ay.

(This is called the distributive property of matrix multiplication.)

Proof. Recall that, by definition, the i th entry of the product Ax is equal to the dot product
Ai · x. The distributive property of dot product (the last property listed in Proposition 2.1)
dictates that

Ai · (x + y) = Ai · x + Ai · y,

and so the i th entry of A(x + y) equals the i th entry of Ax + Ay. Since this holds for all
i = 1, . . . , m, the vectors are equal.

This argument establishes the first part of the following theorem.

Theorem 5.3. Assume the systemAx = b is consistent, and let u1 be a particular solution.15

Then all the solutions are of the form

u = u1 + v

for some solution v of the associated homogeneous system Ax = 0.

Proof. First we observe that any such vector u is a solution of Ax = b. Using Proposition
5.2, we have

Au = A(u1 + v) = Au1 + Av = b + 0 = b.

Conversely, every solution of Ax = b can be written in this form, for if u is an arbitrary
solution of Ax = b, then, by distributivity again,

A(u − u1) = Au − Au1 = b − b = 0,

so v = u − u1 is a solution of the associated homogeneous system; now we just solve for
u, obtaining u = u1 + v, as required.

Remark. As Figure 5.1 suggests, when the inhomogeneous system Ax = b is consistent,
its solutions are obtained by translating the set of solutions of the associated homogeneous

15This is classical terminology for any single solution of the inhomogeneous system. There need not be anything
special about it. In Example 5 on p. 44, we saw a way to pick a particular particular solution.
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FIGURE 5.1

u
v

v

Solutions of Ax = 0

Solutions of Ax = b
u1

system by a particular solution u1. Since u1 lies on each of the hyperplanes Ai · x = bi ,
i = 1, . . . , m, we can translate each of the hyperplanes Ai · x = 0, which pass through the
origin, by the vector u1. Thus, translating the intersection of the hyperplanes Ai · x = 0,
i = 1, . . . , m, by the vector u1 gives us the intersection of the hyperplanes Ai · x = bi ,
i = 1, . . . , m, as indicated in Figure 5.2.

Solutions of Ax = 0

Solutions of Ax = bu1

A1 · x = b1

A2 · x = b2

A1 · x = 0

A2 · x = 0

FIGURE 5.2

Of course, a homogeneous system is always consistent, because the trivial solution,
x = 0, is always a solution of Ax = 0. Now, if the rank of A is r , then there will be r pivot
variables and n− r free variables in the general solution ofAx = 0. In particular, if r = n,
then x = 0 is the only solution of Ax = 0.

Definition. If the system of equations Ax = b has precisely one solution, then we say
that the system has a unique solution.

Thus, a homogeneous system Ax = 0 has a unique solution when r = n and infinitely
many solutions when r < n. Note that it is impossible to have r > n, since there cannot
be more pivots than columns. Similarly, there cannot be more pivots than rows in the
matrix, so it follows that whenever n > m (i.e., there are more variables than equations),
the homogeneous system Ax = 0 must have infinitely many solutions.

From Theorem 5.3 we know that if the inhomogeneous system Ax = b is consistent,
then its solutions are obtained by translating the solutions of the associated homogeneous
system Ax = 0 by a particular solution. So we have the following proposition.

Proposition 5.4. Suppose the system Ax = b is consistent. Then it has a unique solution if
and only if the associated homogeneous system Ax = 0 has only the trivial solution. This
happens exactly when r = n.
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We conclude this discussion with an important special case. It is natural to ask when
the inhomogeneous system Ax = b has a unique solution for every b ∈ Rm. From Propo-
sition 5.1 we infer that for the system always to be consistent, we must have r = m; from
Proposition 5.4 we infer that for solutions to be unique, we must have r = n. And so we
see that we can have both conditions only when r = m = n.

Definition. An n× n matrix of rank r = n is called nonsingular. An n× n matrix of
rank r < n is called singular.

We observe that an n× n matrix is nonsingular if and only if there is a pivot in each row,
hence in each column, of its echelon form. Thus, its reduced echelon form must be the
n× n matrix ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

0
. . .

0
1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It seems silly to remark that when m = n, if r = n, then r = m, and conversely. But
the following result, which will be extremely important in the next few chapters, is an
immediate consequence of this observation.

Proposition 5.5. Let A be an n× n matrix. The following are equivalent:

1. A is nonsingular.

2. Ax = 0 has only the trivial solution.

3. For every b ∈ Rn, the equation Ax = b has a solution (indeed, a unique
solution).

Exercises 1.5

1.∗ By solving a system of equations, find the linear combination of the vectors v1 =
⎡
⎢⎣

1

0

−1

⎤
⎥⎦,

v2 =
⎡
⎢⎣

0

1

2

⎤
⎥⎦, v3 =

⎡
⎢⎣

2

1

1

⎤
⎥⎦ that gives b =

⎡
⎢⎣

3

0

−2

⎤
⎥⎦.

2.∗ For each of the following vectors b ∈ R4, decide whether b is a linear combination of

v1 =

⎡
⎢⎢⎢⎣

1

0

1

−2

⎤
⎥⎥⎥⎦, v2 =

⎡
⎢⎢⎢⎣

0

−1

0

1

⎤
⎥⎥⎥⎦, and v3 =

⎡
⎢⎢⎢⎣

1

−2

1

0

⎤
⎥⎥⎥⎦.

a. b =

⎡
⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎦ b. b =

⎡
⎢⎢⎢⎣

1

−1

1

−1

⎤
⎥⎥⎥⎦ c. b =

⎡
⎢⎢⎢⎣

1

1

0

−2

⎤
⎥⎥⎥⎦
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3. Find constraint equations (if any) that b must satisfy in order forAx = b to be consistent.

a. A =
⎡
⎢⎣

3 −1

6 −2

−9 3

⎤
⎥⎦

b.∗ A =
⎡
⎢⎣

1 1 1

−1 1 2

1 3 4

⎤
⎥⎦

c. A =
⎡
⎢⎣

0 1 1

1 2 1

2 1 −1

⎤
⎥⎦

d.∗ A =
⎡
⎢⎣

1 1 2

2 −1 2

1 −2 1

⎤
⎥⎦

e. A =

⎡
⎢⎢⎢⎣

1 2 1

0 1 1

−1 3 4

−2 −1 1

⎤
⎥⎥⎥⎦

f. A =

⎡
⎢⎢⎢⎣

1 1 1

1 −1 1

1 1 −1

1 2 3

⎤
⎥⎥⎥⎦

4. Find constraint equations that b must satisfy in order to be an element of
a. V = Span

(
(−1, 2, 1), (2,−4,−2)

)
b. V = Span

(
(1, 0, 1, 1), (0, 1, 1, 2), (1, 1, 1, 0)

)
c. V = Span

(
(1, 0, 1, 1), (0, 1, 1, 2), (2,−1, 1, 0)

)
d. V = Span

(
(1, 2, 3), (−1, 0,−2), (1,−2, 1)

)

5. By finding appropriate constraint equations, give a Cartesian equation of each of the
following planes in R3.
a. x = s(1,−2,−2)+ t (2, 0,−1), s, t ∈ R

b. x = (1, 2, 3)+ s(1,−2,−2)+ t (2, 0,−1), s, t ∈ R

c. x = (4, 2, 1)+ s(1, 0, 1)+ t (1, 2,−1), s, t ∈ R

6. Suppose A is a 3 × 4 matrix satisfying the equations

A

⎡
⎢⎢⎢⎢⎣

1

2

−1

4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

1

2

3

⎤
⎥⎥⎦ and A

⎡
⎢⎢⎢⎢⎣

0

3

1

−2

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ .

Find a vector x ∈ R4 such thatAx =
⎡
⎢⎣

0

1

2

⎤
⎥⎦. Give your reasoning. (Hint: Look carefully

at the vectors on the right-hand side of the equations.)

7. Find a matrix A with the given property or explain why none can exist.

a. One of the rows of A is (1, 0, 1), and for some b ∈ R2 both the vectors

⎡
⎢⎣

1

0

1

⎤
⎥⎦ and⎡

⎢⎣
2

1

1

⎤
⎥⎦ are solutions of the equation Ax = b.

b.∗ The rows of A are linear combinations of (0, 1, 0, 1) and (0, 0, 1, 1), and for some

b ∈ R2 both the vectors

⎡
⎢⎢⎢⎣

1

2

1

2

⎤
⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎣

4

1

0

3

⎤
⎥⎥⎥⎦ are solution of the equation Ax = b.
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c. The rows of A are orthogonal to

⎡
⎢⎢⎢⎣

1

0

1

0

⎤
⎥⎥⎥⎦, and for some nonzero vector b ∈ R2 both

the vectors

⎡
⎢⎢⎢⎣

1

0

1

0

⎤
⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎦ are solutions of the equation Ax = b.

d.∗ For some vectors b1, b2 ∈ R2 both the vectors

⎡
⎢⎣

1

0

1

⎤
⎥⎦ and

⎡
⎢⎣

2

1

1

⎤
⎥⎦ are solutions of the

equationAx = b1, and both the vectors

⎡
⎢⎣

1

0

0

⎤
⎥⎦ and

⎡
⎢⎣

1

1

1

⎤
⎥⎦ are solutions of the equation

Ax = b2.

8.∗ Let A =
[

1 α

α 3α

]
.

a. For which numbers α will A be singular?

b. For all numbers α not on your list in part a, we can solve Ax = b for every vector
b ∈ R2. For each of the numbers α on your list, give the vectors b for which we
can solve Ax = b.

9. Let A =
⎡
⎢⎣

1 α α

α 2 1

α α 1

⎤
⎥⎦.

a. For which numbers α will A be singular?

b. For all numbers α not on your list in part a, we can solve Ax = b for every vector
b ∈ R3. For each of the numbers α on your list, give the vectors b for which we
can solve Ax = b.

10. Let A be an m× n matrix. Prove or give a counterexample: If Ax = 0 has only the
trivial solution x = 0, then Ax = b always has a unique solution.

11. LetA andB bem× nmatrices. Prove or give a counterexample: IfAx = 0 andBx = 0
have the same solutions, then the set of vectors b such that Ax = b is consistent is the
same as the set of the vectors b such that Bx = b is consistent.

12. In each case, give positive integersm and n and an example of anm× nmatrixAwith
the stated property, or explain why none can exist.
a.∗ Ax = b is inconsistent for every b ∈ Rm.

b.∗ Ax = b has one solution for every b ∈ Rm.

c. Ax = b has no solutions for some b ∈ Rm and one solution for every other b ∈ Rm.

d. Ax = b has infinitely many solutions for every b ∈ Rm.

e.∗ Ax = b is inconsistent for some b ∈ Rm and has infinitely many solutions whenever
it is consistent.

f. There are vectors b1, b2, b3 so that Ax = b1 has no solution, Ax = b2 has exactly
one solution, and Ax = b3 has infinitely many solutions.

13.� Suppose A is an m× n matrix with rank m and v1, . . . , vk ∈ Rn are vectors with
Span (v1, . . . , vk) = Rn. Prove that Span (Av1, . . . , Avk) = Rm.

14. Let A be an m× n matrix with row vectors A1, . . . ,Am ∈ Rn.
a.∗ Suppose A1 + · · · + Am = 0. Deduce that rank(A) < m. (Hint: Why must there

be a row of 0’s in the echelon form of A?)

b. More generally, suppose there is some linear combination c1A1 + · · · + cmAm = 0,
where some ci �= 0. Show that rank(A) < m.
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15. Let A be an m× n matrix with column vectors a1, . . . , an ∈ Rm.
a. Suppose a1 + · · · + an = 0. Prove that rank(A) < n. (Hint: Consider solutions of
Ax = 0.)

b. More generally, suppose there is some linear combination c1a1 + · · · + cnan = 0,
where some ci �= 0. Prove that rank(A) < n.

6 Some Applications

We whet the reader’s appetite with a few simple applications of systems of linear equations.
In later chapters, when we begin to think of matrices as representing functions, we will find
further applications of linear algebra.

6.1 Curve Fitting
The first application is to fitting data points to a certain class of curves.

EXAMPLE 1

We want to find the equation of the line passing through the points (1, 1), (2, 5), and
(−2,−11). Of course, none of us needs any linear algebra to solve this problem—the
point-slope formula will do; but let’s proceed anyhow.

We hope to find an equation of the form

y = mx + b
that is satisfied by each of the three points. (See Figure 6.1.) That gives us a system of

FIGURE 6.1
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three equations in the two variables m and b when we substitute the respective points into
the equation:

1m + b = 1

2m + b = 5

−2m + b = −11 .

It is easy enough to solve this system of equations using Gaussian elimination:⎡
⎢⎢⎣

1 1 1

2 1 5

−2 1 −11

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 1 1

0 −1 3

0 3 −9

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 1 1

0 1 −3

0 0 0

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

1 0 4

0 1 −3

0 0 0

⎤
⎥⎥⎦ ,

and so the line we sought is y = 4x − 3. The reader should check that all three points
indeed lie on this line.
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Of course, with three data points, we would expect this system of equations to be
inconsistent. In Chapter 4 we will see a beautiful application of dot products and projection
to find the line of regression (“least squares line”) giving the best fit to the data points in
that situation.

Given three points, it is plausible that if they are not collinear, then we should be able
to fit a parabola

y = ax2 + bx + c
to them (provided no two lie on a vertical line). You are asked to prove this in Exercise 7,
but let’s do a numerical example here.

EXAMPLE 2

Given the points (0, 3), (2,−5), and (7, 10), we wish to find the parabola y = ax2 + bx + c
passing through them. (See Figure 6.2.) Now we write down the system of equations in

FIGURE 6.2

2 4 6
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the variables a, b, and c:

0a + 0b + c = 3

4a + 2b + c = −5

49a + 7b + c = 10 .

We’re supposed to solve this system by Gaussian elimination, but we can’t resist the temp-
tation to use the fact that c = 3 and then rewrite the remaining equations as

2a + b = −4

7a + b = 1 ,

which we can solve easily to obtain a = 1 and b = −6. Thus, our desired parabola is
y = x2 − 6x + 3; once again, the reader should check that each of the three data points lies
on this curve.

The curious reader might wonder whether, given n+ 1 points in the plane (no two with
the same x-coordinate), there is a polynomial P(x) of degree at most n so that all n+ 1
points lie on the graph y = P(x). The answer is yes, as we will prove with the Lagrange
interpolation formula in Chapter 3. It is widely used in numerical applications.
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6.2 Stoichiometry
For our next application, we recall the torture of balancing chemical equations in our
freshman chemistry class. The name stoichiometry16 suggests that a chemist should be
measuring how many moles of each reactant and product there are; the analysis of how a
complicated chemical reaction occurs as a sequence of certain simpler reactions is actually
quite fascinating. Nevertheless, there is a fundamental mathematical issue of balancing
the number of atoms of each element on the two sides of the reaction, and this amounts
to—surprise! surprise!—a system of linear equations.

EXAMPLE 3

Consider the chemical reaction

aH2O + bFe � cFe(OH)3 + dH2.

We wish to find the smallest positive integersa, b, c, andd for which the “equation balances.”
Comparing the number of atoms of H, O, and Fe on either side of the reaction leads to the
following system of equations:

2a = 3c + 2d

a = 3c

b = c

Moving all the variables to the left side yields the homogeneous system

2a − 3c − 2d = 0

a − 3c = 0

b − c = 0 .

Applying Gaussian elimination to bring the coefficient matrix to reduced echelon form, we
find ⎡

⎢⎢⎣
2 0 −3 −2

1 0 −3 0

0 1 −1 0

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 0 0 −2

0 1 0 − 2
3

0 0 1 − 2
3

⎤
⎥⎥⎦ .

That is, we have

a = 2d

b = 2
3d

c = 2
3d

d = d ,

and so we see that the solution consisting of the smallest positive integers will arise when
d = 3, resulting in a = 6, b = c = 2. That is, we have the chemical equation

6H2O + 2Fe � 2Fe(OH)3 + 3H2.

16Indeed, the root is the Greek stoicheion, meaning “first principle” or “element.”
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6.3 Electric Circuits
Electrical appliances, computers, televisions, and so on can be rather simplistically thought
of as a network of wires through which electrons “flow,” together with various sources of
energy providing the impetus to move the electrons. The components of the gadget use
the electrons for various purposes (e.g., to provide heat, turn a motor, or light a computer
screen) and thus resist the flow of the electrons. The standard unit of measurement of current
(electron flow) is the amp(ere), that of resistance is the ohm, and the unit of electromotive
force (voltage drop) is the volt. The basic relation among these is given by

(Ohm’s Law) V = IR,

i.e., the electromotive force (often coming from a battery) applied across a wire (in volts) is
the product of the current passing through the wire (in amps) and the resistance of the wire
(in ohms). For example, a 12-volt battery will create a current of 6 amps in a wire with a
2-ohm resistor.

Now, given a complicated network of wires with resistances and sources of electro-
motive force, one may ask what current flows in the various wires. Gustav R. Kirchhoff
(1824–1887) developed two basic rules with which to answer this question. The first con-
cerns a node in the network, a point where two or more wires come together.

Kirchhoff’s First Law: The total current coming into a node equals the total
current leaving the node.

This is an example of a conservation law. It says that the total number of electrons passing
into the node in a given interval of time equals the total number passing out of the node in
that same interval of time. It is not hard to see that the first law cannot uniquely determine
the currents. For example, given any solution, multiplying all the current values by the
same constant will yield another solution.

EXAMPLE 4

Consider the network depicted in Figure 6.3. The three nodes are labeled A, B, and C.
The sawlike symbols denote resistors, contributing resistances of R1, . . . , R5 (in ohms),
and the symbol beside the “V ” denotes a battery of voltage V . Through the wires flow the
currents I1, . . . , I5 (in amps). Notice that we have indicated a direction of current flow in
each wire; by convention, current flows from the “+” side of the battery to the “−” side.
If one can’t tell in which direction the current will flow, one picks a direction arbitrarily;
if the current in a particular wire turns out to be flowing opposite to the direction chosen,
then the resulting value of Ij will turn out to be negative. Kirchhoff’s first law gives us the
three equations

I1 − I2 − I3 = 0

I3 − I4 − I5 = 0

−I1 + I2 + I4 + I5 = 0 .

FIGURE 6.3
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Since there are fewer equations than unknowns, this system of linear equations must have
infinitely many solutions, just as we expect from the physics. Note that the third equation
is clearly redundant, so we will discard it below.

To determine the currents completely, we need Kirchhoff’s second law, which concerns
the loops in a network. A loop is any path in the network starting and ending at the same
node. We have specified three “basic” loops in this example in the diagram.

Kirchhoff’s Second Law: The net voltage drop around a loop is zero. That is,
the total “applied” voltage must equal the sum of the products IjRj for each wire
in the loop.

EXAMPLE 5

We continue the analysis of Example 4. First, loop 1 has an external applied voltage V , so

R1I1 + R3I3 + R5I5 = V.

(We are writing the variables in this awkward order because we ultimately will be given
values ofRj and will want to solve for the currents Ij .) There is no external voltage in loop
2, so the IR sum must be 0; i.e.,

R2I2 − R3I3 − R4I4 = 0.

Similarly, loop 3 gives

R4I4 − R5I5 = 0.

Of course, there are other loops in the circuit. The reader may find it interesting to notice
that any equation determined by another loop is a linear combination of the three equations
we’ve given, so that, in some sense, the three loops we chose are the only ones required.

Summarizing, we now have five equations in the five unknowns I1, . . . , I5:

I1 − I2 − I3 = 0

I3 − I4 − I5 = 0

R1I1 + R3I3 + R5I5 = V

R2I2 − R3I3 + R4I4 = 0

R4I4 − R5I5 = 0 .

One can solve this system for general values of R1, . . . , R5, and V , but it gets quite messy.
Instead, let’s assign some specific values and solve the resulting system of linear equations.
With

R1 = R3 = R4 = 2, R2 = R5 = 4, and V = 210,

after some work, we obtain the solution

I1 = 55, I2 = 25, I3 = 30, I4 = 20, I5 = 10.
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Here are a few intermediate steps in the row reduction, for those who would like to check
our work: ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 0 0 0

0 0 1 −1 −1 0

2 0 2 0 4 210

0 4 −2 −2 0 0

0 0 0 2 −4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 0 0 0

0 0 1 −1 −1 0

0 2 −1 −1 0 0

0 0 0 1 −2 0

2 0 2 0 4 210

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 0 0 0

0 2 −1 −1 0 0

0 0 1 −1 −1 0

0 0 0 1 −2 0

0 0 0 0 21 210

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

from which we deduce that I5 = 10, and the rest follows easily by back-substitution.

As a final remark, we add that this analysis can be applied to other types of network
problems where there is a conservation law along with a linear relation between the “force”
and the “rate of flow.” For example, when water flows in a network of pipes, the amount of
water flowing into a joint must equal the amount flowing out (the analogue of Kirchhoff’s
first law). Also, under a fixed amount of pressure, water will flow faster in a pipe with
small cross section than in one with large cross section. Thus, inverse cross-sectional area
corresponds to resistance, and water pressure corresponds to voltage; we leave it to the
reader to formulate the appropriate version of Kirchhoff’s second law. The reader may find
it amusing to try to generalize these ideas to trucking networks, airplane scheduling, or
manufacturing problems. Also, see Section 5 of Chapter 3, where we take up Kirchhoff’s
laws from a more conceptual viewpoint.

6.4 Difference Equations and Discrete Dynamical
Systems

One of the most extensive applications of linear algebra is to the study of difference equa-
tions, a discrete version of the differential equations you may have seen in calculus modeling
continuous growth and natural phenomena.

EXAMPLE 6

The most basic problem involving population growth comes from simple compounding (so
the population is likely to be either rabbits or dollars in a bank account). If xk denotes
the population on day k, we may stipulate that the increase from day k to day k + 1, i.e.,
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xk+1 − xk , is given by αxk , so α represents the daily interest (or reproduction) rate. That
is, we have the equation

xk+1 − xk = αxk, or, equivalently, xk+1 = (1 + α)xk,
which is easily solved. If x0 is the original population, then the population on day k is
merely

xk = (1 + α)kx0.

No linear algebra there. Now let’s consider a problem—admittedly facetious—with two
competing species, but more realistic such models play an important role in ecology. Denote
by ck and mk , respectively, the cat population and the mouse population in month k. Let’s
say that it has been observed that

ck+1 = 0.7ck + 0.2mk

mk+1 = −0.6ck + 1.4mk

Note that the presence of mice helps the cat population grow (an ample food supply),
whereas the presence of cats diminishes the growth of the mouse population.

Remark. Although this is not in the form of a difference equation per se, any recursive
formula of this type can be related to a difference equation simply by subtracting the kth

term from both sides. Since the recursion describes how the system changes as time passes,
this is called a discrete dynamical system.

If we let xk =
[
ck

mk

]
denote the cat/mouse population vector in month k, then we have

the matrix equation

xk+1 =
[
ck+1

mk+1

]
=
[

0.7 0.2

−0.6 1.4

][
ck

mk

]
=
[

0.7 0.2

−0.6 1.4

]
xk,

and so x1 = Ax0, x2 = Ax1 = A(Ax0), etc. We can (with the help of a computer) calculate
the population some months later. Indeed, it’s interesting to see what happens with different
beginning cat/mouse populations. (Here we round off to the nearest integer.)

k ck mk

0 10 25

5 22 49

10 42 89

15 74 152

20 125 254

25 207 418

k ck mk

0 60 87

5 56 80

10 50 68

15 41 49

20 26 18

25 1 −31

Although the initial populations of c0 = 10 and m0 = 25 allow both species to flourish,
there seems to be a catastrophe when the initial populations are c0 = 60 andm0 = 87. The
reader should also investigate what happens if we start with, say, 10 cats and 15 mice. We
will return to a complete analysis of this example in Chapter 6.

The previous example illustrates how difference equations arise in modeling competi-
tion between species. The population of a single species can also be modeled using matrices.
For instance, to study the population dynamics of an animal whose life span is 5 years, we
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can denote by p1 the number of animals from age 0 to age 1, by p2 the number of animals
from age 1 to age 2, and so on, and set up the vector

x =

⎡
⎢⎢⎢⎢⎢⎣

p1

p2

...

p5

⎤
⎥⎥⎥⎥⎥⎦
.

From year to year, a certain fraction of each segment of the population will survive to
graduate to the next level, and each level will contribute to the first level through some
birthrate. Thus, if we let

xk =

⎡
⎢⎢⎢⎢⎢⎣

p1(k)

p2(k)

...

p5(k)

⎤
⎥⎥⎥⎥⎥⎦

denote the population distribution after k years, then we will have

p1(k + 1) = b1p1(k) + b2p2(k) + b3p3(k) + b4 p4(k) + b5p5(k)

p2(k + 1) = r1p1(k)

p3(k + 1) = r2p2(k)

p4(k + 1) = r3p3(k)

p5(k + 1) = r4p4(k),

where the coefficients b1, . . . , b5 are the birthrates for the various population segments
and the coefficients r1, . . . , r4 are the respective graduation rates. We can write the above
system of equations in the matrix form xk+1 = Axk , where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1 b2 b3 b4 b5

r1 0 0 0 0

0 r2 0 0 0

0 0 r3 0 0

0 0 0 r4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix A is called the Leslie matrix after P. H. Leslie, who introduced these population
distribution studies in the 1940s.

EXAMPLE 7

The flour beetle Tribolium castaneum is largely considered a pest, but is a particularly nice
species to study for its population distributions. As all beetles do, Tribolium goes through
three major stages of life: larval, pupal, and adult. The larval and pupal stages are about
the same duration (two weeks), and only the adults are reproductive. Thus, if we let L(k),
P(k), and A(k) denote the populations of larvae, pupae, and adults after 2k weeks, we will
have the following system of equations:⎡

⎢⎢⎣
L(k + 1)

P (k + 1)

A(k + 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 b

r1 0 0

0 r2 s

⎤
⎥⎥⎦

⎡
⎢⎢⎣
L(k)

P (k)

A(k)

⎤
⎥⎥⎦ ,
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where b denotes the birthrate, r1 and r2 denote the graduation rates, respectively, from
larvae to pupae and from pupae to adults, and s is the survival rate of the adults from one
2-week period to the next. What makes this species nice for population studies is that by
hand culling, it is easy to adjust the rates r1, r2, and s (and by introducing additional larvae,
one can increase b). For example, if we take b = 0.9, r1 = 0.9, r2 = 0.8, and s = 0.4 and
start with the initial populations L(0) = P(0) = 0 and A(0) = 100, we get the following
results (rounded to the nearest integer):

k L(k) P (k) A(k)

0 0 0 100

10 50 36 61

20 61 53 69

30 75 65 85

40 92 81 105

50 114 100 129

But if we change r1 to r1 = 0.6, then we get

k L(k) P (k) A(k)

0 0 0 100

10 19 11 21

20 8 5 8

30 3 2 3

40 1 1 1

50 1 0 1

Thus, in this scenario, an effective larvicide can control this pest.17

Iterated systems like those that arise in difference equations also arise in other contexts.
Here is an example from probability.

EXAMPLE 8

Suppose that over the years in which Fred and Barney have played cribbage, they have
observed that when Fred wins a game, he has a 60% chance of winning the next game,
whereas when Barney wins a game, he has only a 55% chance of winning the next game.
Fred wins the first game; one might wonder what Fred’s “expected” win/loss ratio will be
after 5 games, 10 games, 100 games, and so on. And how would this have changed if
Barney had won the first game?

It is somewhat surprising that this too is a problem in linear algebra. The reason is that
there is a system of two linear equations lurking here: If pk is the probability that Fred wins
the kth game and qk = 1 − pk is the probability that Barney wins the kth game, then what

17More elaborate models have been developed for Tribolium involving nonlinear effects, such as the cannibalistic
tendency of adults to eat pupae and eggs. These models show that the population can display fascinating dynamics
such as periodicity and even chaos.
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can we say about pk+1 and qk+1? The basic formula from probability theory is this:

pk+1 = 0.60pk + 0.45qk

qk+1 = 0.40pk + 0.55qk

The probability that Fred wins the game is 0.60 if he won the preceding game and only
0.45 if he lost. Reciprocally, the probability that Barney wins the game is 0.40 if he lost
the preceding game (i.e., Fred won) and 0.55 if he won. We can write this system of linear
equations in matrix and vector notation if we let

xk =
[
pk

qk

]
and A =

[
0.60 0.45

0.40 0.55

]
,

for then we have

xk+1 =
[

0.60 0.45

0.40 0.55

]
xk, k = 1, 2, 3, . . . .

If Fred wins the first game, we have x1 =
[

1

0

]
, and we can calculate (to five decimal

places only)

x2 = Ax1 =
[

0.60

0.40

]

x3 = Ax2 =
[

0.540

0.460

]

x4 = Ax3 =
[

0.531

0.469

]

x5 = Ax4 =
[

0.52965

0.47035

]

...

x10 = Ax9 =
[

0.52941

0.47059

]

...

x100 = Ax99 =
[

0.52941

0.47059

]
.

These numbers suggest that, provided he wins the first game, Fred has a long-term 52.94%
chance of winning any given match in the future.
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But what if he loses the first game? Then we take x1 =
[

0

1

]
and repeat the calculations,

arriving at

x2 = Ax1 =
[

0.45

0.55

]

x3 = Ax2 =
[

0.5175

0.4825

]

x4 = Ax3 =
[

0.52763

0.47238

]

x5 = Ax4 =
[

0.52914

0.47086

]

...

x10 = Ax9 =
[

0.52941

0.47059

]

...

x100 = Ax99 =
[

0.52941

0.47059

]
.

Hmm … The results of the first match seem irrelevant in the long run. In both cases, it
seems clear that the vectors xk are approaching a limiting vector x∞. Since Axk = xk+1, it
follows that Ax∞ = x∞. Such a vector x∞ is called an eigenvector of the matrix A. We’ll
deal with better ways of computing and understanding this example in Chapter 6.

Perhaps even more surprising, here is an application of these ideas to number theory.

EXAMPLE 9

Consider the famous Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . ,

where each term (starting with the third) is obtained by adding the preceding two. We will
see in Chapter 6 how to use linear algebra to give a concrete formula for the kth number in
this sequence. But let’s suggest now how this might be the case. If we make vectors out of
consecutive pairs of Fibonacci numbers, we get the following:

x0 =
[

1

1

]
, x1 =

[
1

2

]
, x2 =

[
2

3

]
, x3 =

[
3

5

]
,

x4 =
[

5

8

]
, . . . , xk =

[
ak

ak+1

]
,

where ak is the kth number in the sequence. But the rule

ak+2 = ak + ak+1

allows us to give a “transition matrix” that turns each vector in this list into the next. For
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example,

x3 =
[

3

5

]
=
[

3

2 + 3

]
=
[

0 1

1 1

][
2

3

]
=
[

0 1

1 1

]
x2;

x4 =
[

5

8

]
=
[

5

3 + 5

]
=
[

0 1

1 1

][
3

5

]
=
[

0 1

1 1

]
x3,

and so on. Since

xk+1 =
[
ak+1

ak+2

]
=
[

ak+1

ak + ak+1

]
=
[

0 1

1 1

][
ak

ak+1

]
=
[

0 1

1 1

]
xk,

we see that, as in the previous examples, by repeatedly multiplying our original vector by

the transition matrix

[
0 1

1 1

]
, we can get as far as we’d like in the sequence.

Exercises 1.6

1.∗ (from Henry Burchard Fine’s A College Algebra, 1905) A and B are alloys of silver and
copper. An alloy that is 5 parts A and 3 parts B is 52% silver. One that is 5 parts A and
11 parts B is 42% silver. What are the percentages of silver in A and B, respectively?

2. (from Henry Burchard Fine’s A College Algebra, 1905) Two vessels, A and B, contain
mixtures of alcohol and water. A mixture of 3 parts from A and 2 parts from B will
contain 40% of alcohol; and a mixture of 1 part from A and 2 parts from B will contain
32% of alcohol. What are the percentages of alcohol in A and B, respectively?

3. (from Henry Burchard Fine’s A College Algebra, 1905) Two points move at constant
rates along the circumference of a circle whose length is 150 ft. When they move in
opposite senses they meet every 5 seconds; when they move in the same sense they are
together every 25 seconds. What are their rates?

4. A grocer mixes dark roast and light roast coffee beans to sell what she calls a French
blend and a Viennese blend. For French blend she uses a mixture that is 3 parts dark
and 1 part light roast; for Viennese, she uses a mixture that is 1 part dark and 1 part
light roast. If she has at hand 20 pounds of dark roast and 17 pounds of light roast, how
many pounds each of French and Viennese blend can she make so as to have no waste?

5.∗ Find the parabola y = ax2 + bx + c passing through the points (−1, 9), (1,−1), and
(2, 3).

6. Find the parabola y = ax2 + bx + c passing through the points (−2,−6), (1, 6), and
(3, 4).

7. Let Pi = (xi, yi) ∈ R2, i = 1, 2, 3. Assume x1, x2, and x3 are distinct (i.e., no two are
equal).
a. Show that the matrix ⎡

⎢⎢⎣
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

⎤
⎥⎥⎦

is nonsingular.18

18No confusion intended here: x2
i means (xi )2, i.e., the square of the real number xi .
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b. Show that the system of equations⎡
⎢⎢⎣
x2

1 x1 1

x2
2 x2 1

x2
3 x3 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
a

b

c

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
y1

y2

y3

⎤
⎥⎥⎦

always has a unique solution. (Hint: Try reordering a, b, and c.)

Remark. If a = 0, then the points P1, P2, and P3 lie on the line y = bx + c; thus, we
have shown that three noncollinear points lie on a unique parabola y = ax2 + bx + c.

8. Find the cubic y = ax3 + bx2 + cx + d passing through the points (−2, 5), (−1,−3),
(1,−1), and (2,−3).

9.∗ A circle C passes through the points (2, 6), (−1, 7), and (−4,−2). Find the center
and radius of C. (Hint: The equation of a circle can be written in the form x2 + y2 +
ax + by + c = 0. Why?)

10. A circle C passes through the points (−7,−2), (−1, 4), and (1, 2). Find the center and
radius of C.

11. Let Pi = (xi, yi) ∈ R2, i = 1, 2, 3. Let

A =
⎡
⎢⎣
x1 y1 1

x2 y2 1

x3 y3 1

⎤
⎥⎦ .

a. Show that the three points P1, P2, and P3 are collinear if and only if the equation
Ax = 0 has a nontrivial solution. (Hint: A general line in R2 is of the form ax +
by + c = 0, where a and b are not both 0.)

b. Deduce that if the three given points are not collinear, then there is a unique circle
passing through them. (Hint: If you set up a system of linear equations as suggested
by the hint for Exercise 9, you should use part a to deduce that the appropriate
coefficient matrix is nonsingular.)

12. Use Gaussian elimination to balance the following chemical reactions.
a.∗ aCl2 + bKOH � cKCl + dKClO3 + eH2O

b. aPb(N3)2 + bCr(MnO4)2 � cCr2O3 + dMnO2 + ePb3O4 + fN2

13. Use Gaussian elimination to solve for the following partial fraction decompositions.

a.∗ 4x3 − 7x

x4 − 5x2 + 4
= A

x − 1
+ B

x + 1
+ C

x − 2
+ D

x + 2

b.
x

(x + 1)(x2 + 1)
= A

x + 1
+ Bx + C
x2 + 1

14.∗ In each of the circuits pictured in Figure 6.4, calculate the current in each of the wires.
(� is the standard abbreviation for ohms.)

(a) (b) (c)

+ V
+

+

+

6V

9V

4V
I2

I3

I1

R2

R1

1�

6�

1�

2�

2�

3�

I1
I1

I2

I3

I2

I3

A B

A B

A B

FIGURE 6.4
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15. Let A be the matrix given in Example 8.
a. Show that we can find vectors x ∈ R2 satisfying Ax = x by solving Bx = 0, where

B =
[
−0.40 0.45

0.40 −0.45

]
.

(See Exercise 1.4.5.) Give the general solution of Bx = 0 in standard form.

b. Find the solution x of Bx = 0 with x1 + x2 = 1. (Note that in our discussion of
Example 8, we always had pk + qk = 1.)

c. Compare your answer to part b with the vector x∞ obtained in Example 8.

16. Investigate (with a computer or programmable calculator) the cat/mouse population
behavior in Example 6, choosing a variety of beginning populations, if

a. ck+1 = 0.7ck + 0.1mk

mk+1 = −0.2ck + mk

b.∗ ck+1 = 1.3ck + 0.2mk

mk+1 = −0.1ck + mk

c. ck+1 = 1.1ck + 0.3mk

mk+1 = 0.1ck + 0.9mk

17. Suppose a living organism that can live to a maximum age of 3 years has Leslie matrix

A =

⎡
⎢⎢⎣

0 0 8
1
2 0 0

0 1
4 0

⎤
⎥⎥⎦ .

Find a stable age distribution vector x, i.e., a vector x ∈ R3 with Ax = x.

18. In Example 9, we took our initial vector to be x0 =
[

1

1

]
.

a. Find the first ten terms of the sequence obtained by starting instead with x′
0 =

[
2

1

]
.

b. Describe the sequence obtained by starting instead with x′
0 =

[
b

c

]
. (Hint: Use the

fact that

[
b

c

]
= b

[
1

0

]
+ c

[
0

1

]
.)

19. (A computer or calculator may be helpful in solving this problem.) Find numbers a, b,
c, d , e, and f so that the five points (0, 2), (−3, 0), (1, 5), (1, 1), and (−1, 1) all lie on
the conic

ax2 + bxy + cy2 + dx + ey + f = 0.

Show, moreover, that a, b, c, d, e, and f are uniquely determined up to a common
factor.

HISTORICAL NOTES
In writing this text, we have tried to present the material in a logical manner that builds on
ideas in a fairly linear fashion. Of course, the historical development of the subject did
not go so smoothly. As with any area of mathematics, the ideas and concepts we present
in this text were conceived in fits and starts by many different people, at different times,
and for entirely different reasons. Only with hindsight were people able to notice patterns
and common threads among earlier developments, and gradually a deeper understanding
developed. Some computational elements of linear algebra can be traced to civilizations
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that existed several millennia ago. Throughout history, systems of linear equations have
arisen repeatedly in applications. However, the approach we take in today’s linear algebra
course began to develop in the seventeenth century and did not achieve its polished state
until the middle of the twentieth. In these historical notes at the end of each chapter, we will
mention some of the mathematicians and scientists who played key roles in the development
of linear algebra, and we will outline a few of the routes taken in that development.

The two central topics of this first chapter are vectors and systems of linear equations.
The idea of vector, that of a quantity possessing both magnitude and direction, arose in
the study of mechanics and forces. Sir Isaac Newton (1642–1727) is credited with the
formulation of our current view of forces in his work Principia (1687). Pierre de Fermat
(1601–1665) and René Descartes (1596–1650) had already laid the groundwork for analytic
geometry. Although Fermat published very little of the mathematics he developed, he
is generally given credit for having simultaneously developed the ideas that Descartes
published in La Géométrie (1637).

Following Newton, many scholars began to use directed line segments to represent
forces and the parallelogram rule to add such segments. Joseph-Louis Lagrange (1736–
1813) published his Mécanique analytique in 1788, in which he summarized all the post-
Newtonian efforts in a single cohesive mathematical treatise on forces and mechanics.
Later, another French mathematician, Louis Poinsot (1777–1859), took the geometry of
vector forces to yet another level in his Éléments de statique and his subsequent work, in
which he invented the geometric study of statics.

Some of these ideas, however, had first appeared 2000 years before Newton. In Physics,
Aristotle (384–322 BCE) essentially introduced the notion of vector by discussing a force
in terms of the distance and direction it displaced an object. Aristotle’s work is purely
descriptive and not mathematical. In a later work, Mechanics, often credited toAristotle but
now believed to be the work of scholarly peers, we find the following insightful observation:

Now whenever a body is moved in two directions in a fixed ratio, it necessarily
travels in a straight line, which is the diagonal of the figure which the lines
arranged in this ratio describe.

This is, of course, the parallelogram rule.
As for systems of linear equations, virtually all historians cite a particular excerpt from

the Nine Chapters of the Mathematical Art as the earliest use of what would come to be the
modern method for solving such systems, elimination. This text, written during the years
200–100 BCE, at the beginning of the intellectually fruitful Han dynasty, represents the
state of Chinese mathematics at that time.

There are three types of corn. One bundle of the first type, two of the second, and
three of the third total to 26 measures. Two bundles of the first type, three of the
second, and one of the third total 34 measures. Lastly, three bundles of corn of the
first type, two bundles of the second type, and one bundle of the third type make a
total of 39 measures. How many measures make up a single bundle of each type?

Yes, even back then they had the dreaded word problem!
Today, we would solve this problem by letting x, y, and z represent the measures in

a single bundle of each type of corn, translating the word problem to the system of linear
equations

x + 2y + 3z = 26

2x + 3y + z = 34

3x + 2y + z = 39 .
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The Chinese solved the problem in the same way, although they did not use variables, but
what is remarkable about the solution given in the Nine Chapters is how forward-thinking
it truly is. The author wrote the coefficients above as columns in an array

1 2 3

2 3 2

3 1 1

26 34 39.

He then multiplied the first column by 3 and subtracted the third column to put a 0 in the first
column (that is, to eliminate x). Similar computations were applied to the second column,
and so on. Although the words and formalisms were not there, the ancient Chinese had, in
fact, invented matrices and the methods of elimination.

Carl Friedrich Gauss (1777–1855) devised the formal algorithm now known as Gaus-
sian elimination in the early nineteenth century while studying the orbits of asteroids. Wil-
helm Jordan (1842–1899) extended Gauss’s technique to what is now called Gauss-Jordan
elimination in the third edition of his Handbuch der Vermessungskunde (1888). Celestial
mechanics also led Carl Gustav Jacob Jacobi (1804–1851), a contemporary of Gauss, to
a different method of solving the system Ax = b for certain square matrices A. Jacobi’s
method gives a way to approximate the solution when A satisfies certain conditions. Other
iterative methods, generalizing Jacobi’s, have proven invaluable for solving large systems
on computers.

Indeed, the modern history of systems of equations has been greatly affected by the
advent of the computer age. Problems that were computationally impossible 50 years ago
became tractable in the 1960s and 1970s on large mainframes and are now quite manageable
on laptops. In this realm, important research continues to find new efficient and effective
numerical schemes for solving systems of equations.
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C H A P T E R 2
MATRIX ALGEBRA

I n the previous chapter we introduced matrices as a shorthand device for representing
systems of linear equations. Now we will see that matrices have a life of their own, first

algebraically and then geometrically. The crucial new ingredient is to interpret an m× n
matrix as a special sort of function that assigns to each vector x ∈ Rn the productAx ∈ Rm.

1 Matrix Operations

Recall that an m× n matrix A is a rectangular array of mn real numbers,

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 . . . a1n

a21 . . . a2n

...
. . .

...

am1 . . . amn

⎤
⎥⎥⎥⎥⎥⎦
,

where aij represents the entry in the i th row and j th column. We recall that two m× n
matrices A and B are equal if aij = bij for all i = 1, . . . , m and j = 1, . . . , n.

We take this opportunity to warn our readers that the word if is ordinarily used in
mathematical definitions, even though it should be the phrase if and only if . That is,
even though we don’t say so, we intend it to be understood that, for example, in this
case, if A = B, then aij = bij for all i and j . Be warned: This custom applies only
to definitions, not to propositions and theorems! See the earlier discussions of if and
only if on p. 21.

A has m row vectors,

A1 = (a11, . . . , a1n),

A2 = (a21, . . . , a2n),

...

Am = (am1, . . . , amn),
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which are vectors in Rn, and n column vectors,

a1 =

⎡
⎢⎢⎣
a11

...

am1

⎤
⎥⎥⎦ , a2 =

⎡
⎢⎢⎣
a12

...

am2

⎤
⎥⎥⎦ , . . . , an =

⎡
⎢⎢⎣
a1n

...

amn

⎤
⎥⎥⎦ ,

which are, correspondingly, vectors in Rm.
We denote by O the zero matrix, the m× n matrix all of whose entries are 0. We also

introduce the notation Mm×n for the set of all m× n matrices. For future reference, we
call a matrix square if m = n (i.e., it has equal numbers of rows and columns). In the case
of a square matrix, we refer to the entries aii , i = 1, . . . , n, as diagonal entries.

Definition. Let A be an n× n (square) matrix with entries aij for i = 1, . . . , n and
j = 1, . . . , n.

1. We callA diagonal if every nondiagonal entry is zero, i.e., if aij = 0 whenever
i �= j .

2. We callA upper triangular if all of the entries below the diagonal are zero, i.e.,
if aij = 0 whenever i > j .

3. We callA lower triangular if all of the entries above the diagonal are zero, i.e.,
if aij = 0 whenever i < j .

Let’s now consider various algebraic operations we can perform on matrices. Given
an m× n matrix A, the simplest algebraic manipulation is to multiply every entry of A by
a real number c (scalar multiplication). If A is the matrix with entries aij (i = 1, . . . , m
and j = 1, . . . , n), then cA is the matrix whose entries are caij :

cA = c

⎡
⎢⎢⎢⎢⎢⎣

a11 . . . a1n

a21 . . . a2n

...
. . .

...

am1 . . . amn

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

ca11 . . . ca1n

ca21 . . . ca2n

...
. . .

...

cam1 . . . camn

⎤
⎥⎥⎥⎥⎥⎦
.

Next comes addition of matrices. Given m× n matrices A and B, we define their sum
entry by entry. In symbols, when

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 . . . a1n

a21 . . . a2n

...
. . .

...

am1 . . . amn

⎤
⎥⎥⎥⎥⎥⎦

and B =

⎡
⎢⎢⎢⎢⎢⎣

b11 . . . b1n

b21 . . . b2n

...
. . .

...

bm1 . . . bmn

⎤
⎥⎥⎥⎥⎥⎦
,

we define

A+ B =

⎡
⎢⎢⎢⎢⎢⎣

a11 + b11 . . . a1n + b1n

a21 + b21 . . . a2n + b2n

...
. . .

...

am1 + bm1 . . . amn + bmn

⎤
⎥⎥⎥⎥⎥⎦
.
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It is important to understand that when we refer to the set of allm× nmatrices, Mm×n,
we have not specified the positive integers m and n. They can be chosen arbitrarily.
However, when we say thatA,B ∈ Mm×n, we mean thatA andB must have the same
“shape,” i.e., the same number of rows (m) and the same number of columns (n).

EXAMPLE 1

Let c = −2 and

A =

⎡
⎢⎢⎣

1 2 3

2 1 −2

4 −1 3

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

6 4 −1

−3 1 1

0 0 0

⎤
⎥⎥⎦ , C =

[
1 2 1

2 1 1

]
.

Then

cA =

⎡
⎢⎢⎣

−2 −4 −6

−4 −2 4

−8 2 −6

⎤
⎥⎥⎦ , A+ B =

⎡
⎢⎢⎣

7 6 2

−1 2 −1

4 −1 3

⎤
⎥⎥⎦ ,

and neither sum A+ C nor B + C makes sense, because C has a different shape from A

and B.

We leave it to the reader to check that scalar multiplication of matrices and matrix ad-
dition satisfy the same list of properties we gave in Exercise 1.1.28 for scalar multiplication
of vectors and vector addition. We list them here for reference.

Proposition 1.1. Let A,B,C ∈ Mm×n and let c, d ∈ R.

1. A+ B = B + A.

2. (A+ B)+ C = A+ (B + C).
3. O + A = A.

4. There is a matrix −A so that A+ (−A) = O.

5. c(dA) = (cd)A.

6. c(A+ B) = cA+ cB.

7. (c + d)A = cA+ dA.

8. 1A = A.

Proof. Left to the reader in Exercise 3.

To understand these properties, one might simply examine corresponding entries of
the appropriate matrices and use the relevant properties of real numbers to see why
they are equal. A more elegant approach is the following: We can encode an m× n
matrix as a vector in Rmn, for example,

⎡
⎢⎢⎣

1 −1

2 3

−5 4

⎤
⎥⎥⎦ ∈ M3×2 � (1,−1, 2, 3,−5, 4) ∈ R6,
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and you can check that scalar multiplication and addition of matrices correspond
exactly to scalar multiplication and addition of vectors. We will make this concept
more precise in Section 6 of Chapter 3.

The real power of matrices comes from the operation of matrix multiplication. Just as
we can compute a dot product of two vectors in Rn, ending up with a scalar, we shall see
that we can multiply matrices of appropriate shapes:

Mm×n × Mn×p → Mm×p.

In particular, when m = n = p (so that our matrices are square and of the same size), we
have a way of combining two n× n matrices to obtain another n× n matrix.

Definition. Let A be an m× n matrix and B an n× p matrix. Their product AB is an
m× p matrix whose ij -entry is

(AB)ij = ai1b1j + ai2b2j + · · · + ainbnj =
n∑
k=1

aikbkj ;

that is, the dot product of the i th row vector of A and the j th column vector of B, both
of which are vectors in Rn. Graphically, we have
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n

...

ai1 ai2 · · · ain

...

am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

b11

b21

...

bn1

. . .

b1j

b2j

...

bnj

. . .

b1p

b2p

...

bnp

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · ·
...

· · · · · · (AB)ij · · · · · ·
...

· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We reiterate that in order for the product AB to be defined, the number of columns of A
must equal the number of rows of B.

Recall that in Section 4 of Chapter 1 we defined the product of anm× nmatrixAwith
a vector x ∈ Rn. The definition we just gave generalizes that if we think of an n× p matrix
B as a collection of p column vectors. In particular,

The j th column of AB is the product of A with the j th column vector of B.
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EXAMPLE 2

Note that this definition is compatible with our definition in Chapter 1 of the multiplication
of an m× n matrix with a column vector in Rn (an n× 1 matrix). For example, if

A =

⎡
⎢⎢⎣

1 3

2 −1

1 1

⎤
⎥⎥⎦ , x =

[
4

−1

]
, and B =

[
4 1 0 −2

−1 1 5 1

]
,

then

Ax =

⎡
⎢⎢⎣

1 3

2 −1

1 1

⎤
⎥⎥⎦

⎡
⎣ 4

−1

⎤
⎦ =

⎡
⎢⎢⎢⎣

1

9

3

⎤
⎥⎥⎥⎦ , and

AB =

⎡
⎢⎢⎣

1 3

2 −1

1 1

⎤
⎥⎥⎦

⎡
⎣ 4

−1

1

1

0

5

−2

1

⎤
⎦ =

⎡
⎢⎢⎢⎣

1

9

3

4

1

2

15

−5

5

1

−5

−1

⎤
⎥⎥⎥⎦ .

Notice also that the product BA does not make sense: B is a 2 × 4 matrix and A is 3 × 2,
and 4 �= 3.

The preceding example brings out an important point about the nature of matrix mul-
tiplication: It can happen that the matrix product AB is defined and the product BA is not.
Now if A is an m× n matrix and B is an n×m matrix, then both products AB and BA
make sense: AB is m×m and BA is n× n. Notice that these are both square matrices,
but of different sizes.

EXAMPLE 3

To see an extreme example of this, consider the 1 × 3 matrix A =
[
1 2 3

]
and the

3 × 1 matrix B =

⎡
⎢⎢⎣

1

−1

2

⎤
⎥⎥⎦. Then

AB =
[
1 2 3

]
⎡
⎢⎢⎣

1

−1

2

⎤
⎥⎥⎦ =

[
5
]
, whereas

BA =

⎡
⎢⎢⎣

1

−1

2

⎤
⎥⎥⎦
[
1 2 3

]
=

⎡
⎢⎢⎣

1 2 3

−1 −2 −3

2 4 6

⎤
⎥⎥⎦ .

Even if we start with both A and B as n× n matrices, the products AB and BA have
the same shape but need not be equal.
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EXAMPLE 4

Let

A =
[

1 2

−3 1

]
and B =

[
−1 0

1 0

]
.

Then

AB =
[

1 0

4 0

]
, whereas BA =

[
−1 −2

1 2

]
.

When—and only when—A is a square matrix, we can multiply A by itself, obtaining
A2 = AA,A3 = A2A = AA2, etc. In the last examples of Chapter 1, Section 6, the vectors
xk are obtained from the initial vector x0 by repeatedly multiplying by the matrix A, so that
xk = Akx0.

EXAMPLE 5

There is an interesting way to interpret matrix powers in terms of directed graphs. Starting
with the matrix

A =

⎡
⎢⎢⎣

0 2 1

1 1 1

1 0 1

⎤
⎥⎥⎦ ,

we draw a graph with 3 nodes (vertices) and aij directed edges (paths) from node i to node
j , as shown in Figure 1.1. For example, there are 2 edges from node 1 to node 2 and none
from node 3 to node 2. If we multiply aij by ajk , we get the number of two-step paths from
node i to node k passing through node j . Thus, in this case, the sum

ai1a1k + ai2a2k + ai3a3k

gives all the two-step paths from node i to node k. For example, the 13-entry of A2,

(A2)13 = a11a13 + a12a23 + a13a33 = (0)(1)+ (2)(1)+ (1)(1) = 3,

gives the number of two-step paths from node 1 to node 3. With a bit of thought, the reader
will convince herself that the ij -entry of An is the number of n-step directed paths from
node i to node j .

FIGURE 1.1 1

2

3
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We calculate

A2 =

⎡
⎢⎢⎣

0 2 1

1 1 1

1 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 2 1

1 1 1

1 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3 2 3

2 3 3

1 2 2

⎤
⎥⎥⎦ ,

A3 =

⎡
⎢⎢⎣

5 8 8

6 7 8

4 4 5

⎤
⎥⎥⎦ , and . . .

A7 =

⎡
⎢⎢⎣

272 338 377

273 337 377

169 208 233

⎤
⎥⎥⎦ .

In particular, there are 169 seven-step paths from node 3 to node 1.

We have seen that, in general, matrix multiplication is not commutative. However, it
does have the following crucial properties. Let In denote the n× n matrix with 1’s on the
diagonal and 0’s elsewhere, as illustrated on p. 61.

Proposition 1.2. Let A and A′ be m× n matrices, let B and B ′ be n× p matrices, let C
be a p × q matrix, and let c be a scalar. Then

1. AIn = A = ImA. For this reason, In is called the n× n identity matrix.

2. (A+ A′)B = AB + A′B and A(B + B ′) = AB + AB ′. This is the distributive
property of matrix multiplication over matrix addition.

3. (cA)B = c(AB) = A(cB).

4. (AB)C = A(BC). This is the associative property of matrix multiplication.

Proof. We prove the associative property and leave the rest to the reader in Exercise 4.
Note first of all that there is hope: AB is an m× p matrix and C is a p × q matrix, so
(AB)C will be anm× q matrix; similarly, A is anm× nmatrix and BC is a n× q matrix,
so A(BC) will be an m× q matrix. Associativity amounts to the statement that

(AB)c = A(Bc)

for any column vector c of the matrixC: To calculate the j th column of (AB)C we multiply
AB by the j th column of C; to calculate the j th column of A(BC) we multiply A by the j th

column of BC, which, in turn, is the product of B with the j th column of C.
Letting b1, . . . ,bp denote the column vectors of B, we recall (see the crucial observa-

tion (∗) on p. 53) thatBc is the linear combination c1b1 + c2b2 + · · · + cpbp, and so (using
Proposition 5.2 of Chapter 1)

A(Bc) =A(c1b1 + c2b2 + · · · + cpbp) = c1(Ab1)+ c2(Ab2)+ · · · + cp(Abp)

= c1(first column of AB)+ c2(second column of AB)

+ · · · + cp(pth column of AB)

= (AB)c.
There is an important conceptual point underlying this computation, as we now study.

Through Chapter 1, we thought of matrices simply as an algebraic shorthand for deal-
ing with systems of linear equations. However, we can interpret matrices as functions,
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hence imparting to them a geometric interpretation and explaining the meaning of matrix
multiplication.

Multiplying the m× n matrix A by vectors x ∈ Rn defines a function

μA : Rn → Rm, given by μA(x) = Ax.

The function μA has domain Rn and range Rm, and we often say that “μA maps Rn to Rm.”

A function f : X → Y is a “rule” that assigns to each element x of the domain X an
element f (x) of the range Y . We refer to f (x) as the value of the function at x. We
can think of a function as a machine that turns raw ingredients (inputs) into products
(outputs), depicted by a diagram such as on the left in Figure 1.2. In high school
mathematics and calculus classes, we tend to visualize a function f by means of its
graph, the set of ordered pairs (x, y)with y = f (x). The graph must pass the “vertical
line test”: For each x = x0 in X, there must be exactly one point (x0, y) among the
ordered pairs.

X

x

f

Y

Y

X

f (x)

FIGURE 1.2

We say the function is one-to-one if the graph passes the “horizontal line test”:
For each y = y0 ∈ Y , there is at most one point (x, y0) among the ordered pairs. The
function whose graph is pictured on the right in Figure 1.2 is not one-to-one. More
formally, f : X → Y is one-to-one (or injective) if, for a, b ∈ X, the only way we can
have f (a) = f (b) is with a = b.

Another term that appears frequently is this: We say f is onto (or surjective) if
every y ∈ Y is of the form y = f (x) for (at least one) x ∈ X. That is to say, f is onto
if the set of all its values (often called the image of f ) is all of Y . When we were
considering linear equations Ax = b in Chapter 1, we found constraint equations that
b must satisfy in order for the equation to be consistent. Vectors b satisfying those
constraint equations are in the image of μA. The mapping μA is onto precisely when
there are no constraint equations for consistency.

Last, a function f : X → Y that is both one-to-one and onto is often called a
one-to-one correspondence between X and Y (or a bijection). We saw in Section 5 of
Chapter 1 that μA : Rn → Rn is one-to-one and onto precisely whenA is nonsingular.

As we just saw in proving associativity of matrix multiplication, for an m× n matrix
A and an n× p matrix B,

(AB)c = A(Bc)

for every vector c ∈ Rp. We can now rewrite this as

μAB(c) = μA (μB(c)) = (μA◦μB
)
(c),
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where the latter notation denotes composition of functions. Of course, this formula is the real
motivation for defining matrix multiplication as we did. In fact, one might define the matrix
product as a composition of functions and then derive the computational formula. Now, we
know that composition of functions is associative (even though it is not commutative):

(f ◦g)◦h = f ◦(g◦h),

from which we infer that
(
μA◦μB

)
◦μC = μA◦

(
μB◦μC

)
, and so

μ(AB)C = μA(BC); that is,

(AB)C = A(BC).

This is how one should understand matrix multiplication and its associativity.

Remark. Mathematicians will often express the rule μAB = μA◦μB schematically by the
following diagram:

μAB

μB μA
R

p
R

n
R

m

We will continue to explore the interpretation of matrices as functions in the next section.

Exercises 2.1

1. Let A =
[

1 2

3 4

]
, B =

[
2 1

4 3

]
, C =

[
1 2 1

0 1 2

]
, and D =

⎡
⎢⎣

0 1

1 0

2 3

⎤
⎥⎦. Calculate each

of the following expressions or explain why it is not defined.
a. A+ B
b.∗ 2A− B
c. A− C

d. C +D
e. AB

f.∗ BA

g.∗ AC

h.∗ CA

i. BD

j. DB

k.∗ CD

l.∗ DC

2. LetA =
[

1 1

2 2

]
and B =

[
−1 3

1 −3

]
. Show thatAB = O but BA �= O. Explain this

result geometrically.

3. Prove Proposition 1.1. While you’re at it, prove (using these properties) that for any
A ∈ Mm×n, 0A = O.

4. a. Prove the remainder of Proposition 1.2.

b. Interpret parts 1, 2, and 3 of Proposition 1.2 in terms of properties of functions.

c. Suppose Charlie has carefully proved the first statement in part 2 and offers the
following justification of the second: Since (B + B ′)A = BA+ B ′A, we now
haveA(B + B ′) = (B + B ′)A = BA+ B ′A = AB + AB ′ = A(B + B ′). Decide
whether he is correct.

5. a.∗ If A is an m× n matrix and Ax = 0 for all x ∈ Rn, show that A = O.

b. If A and B are m× n matrices and Ax = Bx for all x ∈ Rn, show that A = B.

6. Prove or give a counterexample. Assume all the matrices are n× n.
a. If AB = CB and B �= O, then A = C.

b. If A2 = A, then A = O or A = I .
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c. (A+ B)(A− B) = A2 − B2.

d. If AB = CB and B is nonsingular, then A = C.

e. If AB = BC and B is nonsingular, then A = C.

In the box on p. 52, we suggested that in such a problem you might try n = 1 to get
intuition. Well, if we have real numbers a, b, and c satisfying ab = cb, then ab − cb =
(a − c)b = 0, so b = 0 or a = c. Similarly, if a2 = a, then a2 − a = a(a − 1) = 0,
so a = 0 or a = 1, and so on. So, once again, it’s not clear that the case n = 1 gives
much insight into the general case. But it might lead us to the right question: Is it true
for n× n matrices that AB = O implies A = O or B = O?

To answer this question, you might either play around with numerical examples
(e.g., with 2 × 2 matrices) or interpret this matrix product geometrically: What does
it say about the relation between the rows of A and the columns of B?

7. Find all 2 × 2 matrices A =
[
a b

c d

]
satisfying

a. A2 = I2 b.∗ A2 = O c. A2 = −I2

8. For each of the following matrices A, find a formula for Ak for positive integers k. (If
you know how to do proof by induction, please do.)

a. A =
[

2 0

0 3

]
b. A =

⎡
⎢⎢⎢⎢⎣

d1

d2

. . .

dn

⎤
⎥⎥⎥⎥⎦

c. A =
[

1 1

0 1

]

9. (Block multiplication) We can think of an (m+ n)× (m+ n) matrix as being decom-
posed into “blocks,” and thinking of these blocks as matrices themselves, we can form
products and sums appropriately. Suppose A and A′ are m×m matrices, B and B ′
are m× n matrices, C and C ′ are n×m matrices, and D and D′ are n× n matrices.
Verify the following formula for the product of “block” matrices:

[
A B

C D

][
A′ B ′

C ′ D′

]
=
[
AA′ + BC ′ AB ′ + BD′

CA′ +DC ′ CB ′ +DD′

]
.

10. Suppose A and B are nonsingular n× n matrices. Prove that AB is nonsingular.

Although it is tempting to try to show that the reduced echelon form ofAB is the identity
matrix, there is no direct way to do this. As is the case in most non-numerical problems
regarding nonsingularity, you should remember thatAB is nonsingular precisely when
the only solution of (AB)x = 0 is x = 0.

11. a.� SupposeA ∈ Mm×n, B ∈ Mn×m, and BA = In. Prove that if for some b ∈ Rm the
equation Ax = b has a solution, then that solution is unique.

b. Suppose A ∈ Mm×n, C ∈ Mn×m, and AC = Im. Prove that the system Ax = b is
consistent for every b ∈ Rm.
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To show that if a solution exists, then it is unique, one approach (which works well
here) is to suppose that x satisfies the equation and find a formula that determines
it. Another approach is to assume that x and y are both solutions and then use the
equations to prove that x = y.

To prove that a solution exists, the direct approach (which works here) is to find
some x that works—even if that means guessing. A more subtle approach to existence
questions involves proof by contradiction (see the box on p. 18): Assume there is no
solution, and deduce from this assumption something that is known to be false.

c.� Suppose A ∈ Mm×n and B,C ∈ Mn×m are matrices that satisfy BA = In and
AC = Im. Prove that B = C.

12. An n× n matrix is called a permutation matrix if it has a single 1 in each row and
column and all its remaining entries are 0.
a. Write down all the 2 × 2 permutation matrices. How many are there?

b. Write down all the 3 × 3 permutation matrices. How many are there?

c. Show that the product of two permutation matrices is again a permutation matrix.
Do they commute?

d. Prove that every permutation matrix is nonsingular.

e. IfA is an n× nmatrix and P is an n× n permutation matrix, describe the columns
of AP and the rows of PA.

13. Find matrices A so that

a. A �= O, but A2 = O

b. A2 �= O, but A3 = O

Can you make a conjecture about matrices satisfying An−1 �= O but An = O?

14. Find all 2 × 2 matricesA that commute with all 2 × 2 matricesB. That is, ifAB = BA

for all B ∈ M2×2, what are the possible matrices that A can be?

15. (The binomial theorem for matrices) Suppose A and B are n× n matrices with the
property that AB = BA. Prove that for any positive integer k, we have

(A+ B)k =
k∑
i=0

k!
i!(k − i)!A

k−iBi

= Ak + kAk−1B + k(k − 1)

2
Ak−2B2 + k(k − 1)(k − 2)

6
Ak−3B3

+ · · · + kABk−1 + Bk.
Show that the result is false when AB �= BA.

2 Linear Transformations: An Introduction
The function μA we defined at the end of Section 1 is a prototype of the functions one
studies in linear algebra, called linear transformations. We shall explore them in greater
detail in Chapter 4, but here we want to familiarize ourselves with a number of examples.
First, a definition:
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Definition. A function T : Rn → Rm is called a linear transformation (or linear map)
if it satisfies

(i) T (x + y) = T (x)+ T (y) for all x, y ∈ Rn.

(ii) T (cx) = cT (x) for all x ∈ Rn and all scalars c.

These are often called the linearity properties.

EXAMPLE 1

Here are a few examples of functions, some linear, some not.

(a) Consider the function T : R2 → R2 defined by T

([
x1

x2

])
=
[
x1 + x2

x1

]
. Let’s decide

whether it satisfies the two properties of a linear map.

(i)

T

([
x1

x2

]
+
[
y1

y2

])
= T

([
x1 + y1

x2 + y2

])

=
[
(x1 + y1)+ (x2 + y2)

(x1 + y1)

]
=
[
(x1 + x2)+ (y1 + y2)

x1 + y1

]

=
[
x1 + x2

x1

]
+
[
y1 + y2

y1

]
= T

([
x1

x2

])
+ T

([
y1

y2

])

(ii)

T

(
c

[
x1

x2

])
= T

([
cx1

cx2

])
=
[
cx1 + cx2

cx1

]

= c

[
x1 + x2

x1

]
= cT

([
x1

x2

])
for all scalars c.

Thus, T is a linear map.

It is important to remember that we have to check that the equationT (x + y) = T (x)+
T (y) holds for all vectors x and y, so the argument must be an algebraic one using
variables. Similarly, we must show T (cx) = cT (x) for all vectors x and all scalars c.
It is not enough to check a few cases.

(b) What about the function T : R2 → R2 defined by T

([
x1

x2

])
=
[
x1

2

]
? Here we can

see that both properties fail, but we only need to provide evidence that one fails.

For example, T

(
3

[
1

1

])
= T

([
3

3

])
=
[

3

2

]
�= 3

[
1

2

]
, which is what 3T

([
1

1

])
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would be. The reader can also try checking whether

T

([
1

1

])
= T

([
1

0

]
+
[

0

1

])
= T

([
1

0

])
+ T

([
0

1

])
.

Just a reminder: To check that a multi-part (in this case, two-part) definition holds,
we must check each condition. However, to show that a multi-part definition fails, we
only need to show that one of the criteria does not hold.

(c) We learned in Section 2 of Chapter 1 to project one vector onto another. We now
think of this as defining a function: Let a ∈ R2 be fixed and let T : R2 → R2 be given
by T (x) = projax. One can give a geometric argument that this is a linear map (see
Exercise 15), but we will use our earlier formula from p. 22 to establish this. Since

projax = x · a
‖a‖2

a,

we have

(i) T (x + y) = (x + y) · a
‖a‖2

a = x · a
‖a‖2

a + y · a
‖a‖2

a = T (x)+ T (y), and

(ii) T (cx) = (cx) · a
‖a‖2

a = c
x · a
‖a‖2

a = cT (x).

Notice that if we replace a with a nonzero scalar multiple of a, the map T doesn’t
change. For this reason, we will refer to T = proja as the projection of R2 onto the
line �, where � is the line spanned by a. We will denote this mapping by P�.

(d) It follows from Exercise 1.4.13 (see also Proposition 5.2 of Chapter 1) that for any
m× n matrix A, the function μA : Rn → Rm is a linear transformation.

EXAMPLE 2

Expanding on the previous example, we consider the linear transformations μA : R2 → R2

for some specific 2 × 2 matrices A and give geometric interpretations of these maps.

(a) IfA =
[

0 0

0 0

]
= O is the zero matrix, thenAx = 0 for all x ∈ R2, soμA sends every

vector in R2 to the zero vector 0. If B =
[

1 0

0 1

]
= I2 is the 2 × 2 identity matrix,

then Bx = x for all x ∈ R2. The function μB is the identity map from R2 to R2.

(b) Consider the linear transformation T : R2 → R2 defined by multiplication by the
matrix

A =
[

1 1

0 1

]
.

The effect of T is pictured in Figure 2.1. One might slide a deck of cards in this
fashion, and such a motion is called a shear.
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FIGURE 2.1

T

e2

e1 T(e1)

T(e2)

(c) Let

A =
[

0 −1

1 0

]
.

Then we have

A

[
x1

x2

]
=
[

0 −1

1 0

][
x1

x2

]
=
[
−x2

x1

]
,

and we see in Figure 2.2 that Ax is obtained by rotating x an angle of π/2 counter-
clockwise.

FIGURE 2.2

x

Ax

x1

x2

−x2

x1

(d) Let

B =
[

0 1

1 0

]
.

Then we have

B

[
x1

x2

]
=
[

0 1

1 0

][
x1

x2

]
=
[
x2

x1

]
,

as shown in Figure 2.3. We see thatBx is the “mirror image” of the vector x, reflecting
across the “mirror” x1 = x2. In general, we say T : R2 → R2 is given by reflection
across a line � if, for every x ∈ R2, T (x) has the same length as x and the two vectors
make the same angle with �.1

(e) Continuing with the matrices A and B from parts c and d, respectively, let’s consider
the function μAB : R2 → R2. Recalling that μAB = μA◦μB , we have the situation
shown in Figure 2.4. The picture suggests that μAB is the linear transformation
that gives reflection across the vertical axis, x1 = 0. To be sure, we can compute
algebraically:

AB =
[

0 −1

1 0

][
0 1

1 0

]
=
[
−1 0

0 1

]
,

1Strictly speaking, if the angle from � to x is θ , then the angle from � to T (x) should be −θ .
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x

x1

x1

x2

x2
Bx �

FIGURE 2.3

x

Bx

(AB)x = A(Bx)

x1−x1

x2x2

FIGURE 2.4

and so

(AB)x =
[
−1 0

0 1

][
x1

x2

]
=
[
−x1

x2

]
.

This is indeed the formula for the reflection across the vertical axis. So we have seen
that the functionμA◦μB—the composition of the reflection about the line x1 = x2 and
a rotation through an angle of π/2—is the reflection across the line x1 = 0. On the

FIGURE 2.5

x

Ax

(BA)x = B(Ax)

−x2

x1

x2

other hand, as indicated in Figure 2.5, the function μB◦μA = μBA : R2 → R2, as we
leave it to the reader to check, is the reflection across the line x2 = 0.

EXAMPLE 3

Continuing Example 2(d), if � is a line in R2 through the origin, the reflection across �
is the map R� : R2 → R2 that sends x to its “mirror image” in �. We begin by writing
x = x‖ + x⊥, where x‖ is parallel to � and x⊥ is orthogonal to �, as in Section 2 of Chapter
1. Then, as we see in Figure 2.6,

R�(x) = x‖ − x⊥ = x‖ − (x − x‖) = 2x‖ − x.

FIGURE 2.6

x⊥

x‖

R�(x)

�

x
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Using the notation of Example 1(c), we have x‖ = P�(x), and so R�(x) = 2P�(x)− x, or,
in functional notation,R� = 2P� − I , where I : R2 → R2 is the identity map. One can now
use the result of Exercise 11 to deduce that R� is a linear map.

It is worth noting that R�(x) is the vector on the other side of � from x that has the
same length as x and makes the same angle with � as x does. In particular, the right triangle
with leg x‖ and hypotenuse x is congruent to the right triangle with leg x‖ and hypotenuse
R�(x). This observation leads to a geometric argument that reflection across � is indeed a
linear transformation (see Exercise 15).

EXAMPLE 4

We conclude this discussion with a few examples of linear transformations from R3 to R3.

(a) Let

A =

⎡
⎢⎢⎣

−1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦ .

Because μA leaves the x2x3-plane fixed and sends (1, 0, 0) to (−1, 0, 0), we see that
Ax is obtained by reflecting x across the x2x3-plane.

(b) Let

B =

⎡
⎢⎢⎣

0 −1 0

1 0 0

0 0 1

⎤
⎥⎥⎦ .

Then we have

B

⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −1 0

1 0 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−x2

x1

x3

⎤
⎥⎥⎦ .

We see that μB leaves the x3-axis fixed and rotates the x1x2-plane through an angle of
π/2. Thus, μB rotates an arbitrary vector x ∈ R3 an angle of π/2 about the x3-axis,
as pictured in Figure 2.7.

FIGURE 2.7

x

Bx

(c) Let a = (1, 1, 1). For any x ∈ R3, we know that the projection of x onto a is given
by

projax = x · a
‖a‖2

a = 1

3
(x1 + x2 + x3)

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ = 1

3

⎡
⎢⎢⎣
x1 + x2 + x3

x1 + x2 + x3

x1 + x2 + x3

⎤
⎥⎥⎦ .
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Thus, if we define the matrix

C = 1

3

⎡
⎢⎢⎣

1 1 1

1 1 1

1 1 1

⎤
⎥⎥⎦ ,

we have projax = Cx. In particular, proja is the linear transformation μC . As we did
earlier in R2, we can also denote this linear map by P�, where � is the line spanned
by a.

2.1 The Standard Matrix of a Linear Transformation
When we examine the previous examples, we find a geometric meaning of the column
vectors of the matrices. As we know, when we multiply a matrix by a vector, we get the
appropriate linear combination of the columns of the matrix. In particular,

⎡
⎣ a11

a21

a12

a22

⎤
⎦
[

1

0

]
=
⎡
⎣ a11

a21

⎤
⎦ and

⎡
⎣ a11

a21

a12

a22

⎤
⎦
[

0

1

]
=
⎡
⎣ a12

a22

⎤
⎦ .

And so we see that the first column of A is the vector A

[
1

0

]
= μA

([
1

0

])
and the second

column of A is the vector A

[
0

1

]
= μA

([
0

1

])
. Turning this observation on its head, we

note that we can find the matrixA (and hence the linear map μA) by finding the two vectors

μA

([
1

0

])
andμA

([
0

1

])
. This seems surprising at first, as the functionμA is completely

determined by what it does to only two (nonparallel) vectors in R2.
This is, in fact, a general property of linear maps. If, for example, T : R2 → R2 is a

linear transformation, then for any x =
[
x1

x2

]
∈ R2, we write

x = x1

[
1

0

]
+ x2

[
0

1

]
,

and so, by the linearity properties,

T (x) = T

(
x1

[
1

0

]
+ x2

[
0

1

])

= x1T

([
1

0

])
+ x2T

([
0

1

])
.

That is, once we know the two vectors v1 = T

([
1

0

])
and v2 = T

([
0

1

])
, we can deter-

mine T (x) for every x ∈ R2. Indeed, if we create a 2 × 2 matrix by inserting v1 as the first
column and v2 as the second column, then it follows from what we’ve done that T = μA.
Specifically, if

v1 =
[
a11

a21

]
and v2 =

[
a12

a22

]
,
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then we obtain

A =
⎡
⎢⎣ v1 v2

⎤
⎥⎦ =

[
a11 a12

a21 a22

]
.

A is called the standard matrix for T . (This entire discussion works more generally for
linear transformations from Rn to Rm, but we will postpone that to Chapter 4.)

WARNING In order to apply the procedure we have just outlined, one must know in advance
that the given function T is linear. If it is not, the matrix A constructed in this manner will
not reproduce the original function T .

EXAMPLE 5

Let � be the line in R2 spanned by

[
1

2

]
and let P� : R2 → R2 be the projection onto �. We

checked in Example 1(c) that this is a linear map. Thus, we can find the standard matrix
for P�. To do this, we compute

P

([
1

0

])
= 1

5

[
1

2

]
and P

([
0

1

])
= 2

5

[
1

2

]
,

so the standard matrix representing P� is

A = 1

5

[
1 2

2 4

]
.

Since we know that reflection across � is given by R� = 2P� − I , the standard matrix for
R� will be

B = 2 · 1

5

[
1 2

2 4

]
−
[

1 0

0 1

]
= 1

5

[
−3 4

4 3

]
.

We ask the reader to find the matrix for reflection across a general line in Exercise 12.

EXAMPLE 6

Generalizing Example 2(c), we consider the matrix

Aθ =
[

cos θ − sin θ

sin θ cos θ

]
.

We see that

Aθ

[
1

0

]
=
[

cos θ

sin θ

]
and Aθ

[
0

1

]
=
[

− sin θ

cos θ

]
,

as pictured in Figure 2.8. Thus, the function μAθ rotates

[
1

0

]
and

[
0

1

]
through the angle

θ , and we strongly suspect that μAθ (x) = Aθx should be the vector obtained by rotating x
through angle θ . We leave it to the reader to check in Exercise 8 that this is the case, and
we call Aθ a rotation matrix.
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1
0

0
1 −sin θ

   cos θ
cos θ
sin θ

μAθ

−sin θ

sin θ
cos θ

cos θ

θ

FIGURE 2.8

On the other hand, we could equally well have started with the map Tθ : R2 → R2

defined by rotating each vector counterclockwise by the angle θ . To take a geometric
definition, the length of Tθ (x) is the same as the length of x, and the angle between them
is θ . Why is this map linear? Here is a detailed geometric justification. It is clear that
if we rotate x and then multiply by a scalar c, we get the same result as rotating the
vector cx (officially, the vector has the right length and makes the right angle with cx).
Now, as indicated in Figure 2.9, since the angle between Tθ (x) and Tθ (y) equals the angle
between x and y (why?) and since lengths are preserved, it follows from the side-angle-side
congruence theorem that the shaded triangles are congruent, and hence the parallelogram
spanned by x and y is congruent to the parallelogram spanned by Tθ (x) and Tθ (y). The
angle between Tθ (x)+ Tθ (y) and Tθ (x) is the same as the angle between x + y and x, so, by
simple arithmetic (do it!), the angle between Tθ (x)+ Tθ (y) and x + y is θ . Again because
the parallelograms are congruent, Tθ (x)+ Tθ (y) has the same length as x + y, hence the
same length as Tθ (x + y), and so the vectors Tθ (x)+ Tθ (y) and Tθ (x + y) must be equal.
Whew!

y Tθ(y)
Tθ(x)

Tθ(x) + Tθ(y)

x

x + y

FIGURE 2.9

A natural question to ask is this: What is the product AθAφ? The answer should be
quite clear if we think of this as the composition of functions μAθAφ = μAθ ◦μAφ . We leave
this to Exercise 7.

EXAMPLE 7

The geometric interpretation of a given linear transformation is not always easy to determine
just by looking at the matrix. For example, if we let

A =
[

1
5

2
5

2
5

4
5

]
,
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then we might observe that for every x ∈ R2, Ax is a scalar multiple of the vector

[
1

2

]

(why?). From our past experience, what does this suggest? As a clue to understanding the
associated linear transformation, we might try calculating A2, and we find that A2 = A; it
follows that An = A for all positive integers n (why?). What is the geometric explanation?

With some care we can unravel the mystery:

A

[
x1

x2

]
=
[

1
5 (x1 + 2x2)

2
5 (x1 + 2x2)

]
= x1 + 2x2

5

[
1

2

]
= x · (1, 2)

‖(1, 2)‖2

[
1

2

]

is the projection of x onto the line spanned by

[
1

2

]
. (Of course, if one remembers Example 5,

this was really no mystery.) This explains whyA2x = Ax for every x ∈ R2: A2x = A(Ax),
and once we’ve projected the vector x onto the line, it stays put.

Exercises 2.2

1. Suppose that T : R3 → R2 is a linear transformation and that

T

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1

2

1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

[
−1

2

]
and T

⎛
⎜⎜⎝

⎡
⎢⎢⎣

2

−1

1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

[
3

0

]
.

Compute T

⎛
⎜⎝2

⎡
⎢⎣

2

−1

1

⎤
⎥⎦

⎞
⎟⎠, T

⎛
⎜⎝

⎡
⎢⎣

3

6

3

⎤
⎥⎦

⎞
⎟⎠, and T

⎛
⎜⎝

⎡
⎢⎣

−1

3

0

⎤
⎥⎦

⎞
⎟⎠.

2. Suppose thatT : R3 → R2 is defined byT

⎛
⎜⎝

⎡
⎢⎣
x1

x2

x3

⎤
⎥⎦

⎞
⎟⎠ =

[
x1 + 2x2 + x3

3x1 − x2 − x3

]
. Find a matrix

A so that T = μA.

3. Suppose T : R2 → R2 is a linear transformation. In each case, use the information
provided to find the standard matrix A for T .

a.∗ T

([
1

0

])
=
[

2

−3

]
and T

([
2

1

])
=
[

−1

1

]

b. T

([
2

1

])
=
[

5

3

]
and T

([
0

1

])
=
[

1

−3

]

c. T

([
1

1

])
=
[

3

3

]
and T

([
1

−1

])
=
[

−1

1

]

4.∗ Determine whether each of the following functions is a linear transformation. If so,
provide a proof; if not, explain why.

a. T

([
x1

x2

])
=
[
x1 + 2x2

x2
2

]
b. T

([
x1

x2

])
=
[
x1 + 2x2

0

]
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c. T

([
x1

x2

])
= x1 − x2

d. T

([
x1

x2

])
=
[

|x2|
3x1

]
e. T

([
x1

x2

])
=
⎡
⎢⎣
x1 + 2x2

x2

−x1 + 3x2

⎤
⎥⎦

f. T : Rn → R given by T (x) = ‖x‖

5. Give 2 × 2 matrices A so that for any x ∈ R2 we have, respectively:
a. Ax is the vector whose components are, respectively, the sum and difference of the

components of x.

b.∗ Ax is the vector obtained by projecting x onto the line x1 = x2 in R2.

c. Ax is the vector obtained by first reflecting x across the linex1 = 0 and then reflecting
the resulting vector across the line x2 = x1.

d. Ax is the vector obtained by projecting x onto the line 2x1 − x2 = 0.

e.∗ Ax is the vector obtained by first projecting x onto the line 2x1 − x2 = 0 and then
rotating the resulting vector π/2 counterclockwise.

f. Ax is the vector obtained by first rotating x an angle of π/2 counterclockwise and
then projecting the resulting vector onto the line 2x1 − x2 = 0.

6.∗ Let T : R2 → R2 be the linear transformation defined by rotating the plane π/2 coun-
terclockwise; let S : R2 → R2 be the linear transformation defined by reflecting the
plane across the line x1 + x2 = 0.
a. Give the standard matrices representing S and T .

b. Give the standard matrix representing T ◦S.

c. Give the standard matrix representing S◦T .

7. a. Calculate AθAφ and AφAθ . (Recall the definition of the rotation matrix on p. 98.)

b. Use your answer to part a to derive the addition formulas for sine and cosine.

8. Let Aθ be the rotation matrix defined on p. 98, 0 ≤ θ ≤ π . Prove that
a. ‖Aθx‖ = ‖x‖ for all x ∈ R2.

b. the angle between x and Aθx is θ .
These properties characterize a rotation of the plane through angle θ .

9. Let � be the line spanned by a ∈ R2, and let R� : R2 → R2 be the linear map defined
by reflection across �. Using the formula R�(x) = x‖ − x⊥ given in Example 3, verify
that
a. ‖R�(x)‖ = ‖x‖ for all x ∈ R2.

b. R�(x) · a = x · a for all x ∈ R2; i.e., the angle between x and � is the same as the
angle between R�(x) and �.

10. Let T : Rn → Rm be a linear transformation. Prove the following:
a. T (0) = 0
b. T (au + bv) = aT (u)+ bT (v) for all u, v ∈ Rn and all scalars a and b

11. a. Prove that if T : Rn → Rm is a linear transformation and c is any scalar, then the
function cT : Rn → Rm defined by (cT )(x) = cT (x) (i.e., the scalar c times the
vector T (x)) is also a linear transformation.

b. Prove that if S : Rn → Rm and T : Rn → Rm are linear transformations, then the
function S + T : Rn → Rm defined by (S + T )(x) = S(x)+ T (x) is also a linear
transformation.

c. Prove that if S : Rm → Rp and T : Rn → Rm are linear transformations, then the
function S◦T : Rn → Rp is also a linear transformation.
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12. a. Let � be the line spanned by

[
cos θ

sin θ

]
. Show that the standard matrix for R� is

R =
[

cos 2θ sin 2θ

sin 2θ − cos 2θ

]

by using Figure 2.10 and basic geometry to find the reflections of (1, 0) and (0, 1).

FIGURE 2.10

θ

�

b. Derive this formula for R by using R� = 2P� − I (see Example 3).

c. Letting Aθ be the rotation matrix defined on p. 98, check that

A2θ

[
1 0

0 −1

]
= R = Aθ

[
1 0

0 −1

]
A(−θ).

d. Give geometric interpretations of these equalities.

13. Let � be a line through the origin in R2.
a. Show that P 2

� = P�◦P� = P�.

b. Show that R2
� = R�◦R� = I .

14. Let �1 be the line through the origin in R2 making angle α with the x1-axis, and let �2

be the line through the origin in R2 making angle β with the x1-axis. Find R�2
◦R�1 .

(Hint: One approach is to use the matrix for reflection found in Exercise 12.)

15. Let � ⊂ R2 be a line through the origin.
a. Give a geometric argument that reflection across �, the function R� : R2 → R2, is

a linear transformation. (Hint: Consider the right triangles formed by x and x‖, y
and y‖, and x + y and x‖ + y‖.)

b. Give a geometric argument that projection onto �, the function P� : R2 → R2, is a
linear transformation.

3 Inverse Matrices
Given an m× n matrix A, we are sometimes faced with the task of solving the equation
Ax = b for several different values of b ∈ Rm. To accomplish this, it would be convenient
to have an n×m matrix B satisfying AB = Im: Taking x = Bb, we will then have Ax =
A(Bb) = (AB)b = Imb = b. This leads us to the following definition.

Definition. Given an m× n matrix A, an n×m matrix B is called a right inverse of A
if AB = Im. Similarly, an n×m matrix C is called a left inverse of A if CA = In.

Note the symmetry here: If B is a right inverse of A, then A is a left inverse of B, and
vice versa. Also, thinking in terms of linear transformations, if B is a right inverse of A,
for example, then μA◦μB is the identity mapping from Rm to Rm.
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EXAMPLE 1

Let A =
[

2 −1 0

1 −2 2

]
and B =

⎡
⎢⎣

0 −1

−1 −2

−1 −1

⎤
⎥⎦. Then

AB =
[

2 −1 0

1 −2 2

]⎡⎢⎢⎣
0 −1

−1 −2

−1 −1

⎤
⎥⎥⎦ =

[
1 0

0 1

]
,

and so B is a right inverse of A (and A is a left inverse of B). Notice, however, that

BA =

⎡
⎢⎢⎣

0 −1

−1 −2

−1 −1

⎤
⎥⎥⎦
[

2 −1 0

1 −2 2

]
=

⎡
⎢⎢⎣

−1 2 2

−4 5 −4

−3 3 −2

⎤
⎥⎥⎦ ,

which is nothing like I3.

We observed earlier that if A has a right inverse, then we can always solve Ax = b;
i.e., this equation is consistent for every b ∈ Rm. On the other hand, if A has a left inverse,
C, then a solution, if it exists, must be unique: If Ax = b, then C(Ax) = Cb, and so
x = Inx = (CA)x = C(Ax) = Cb. Thus, provided x is a solution of Ax = b, then x must
equal Cb, but maybe there aren’t any solutions at all. To verify that Cb is in fact a solution,
we must calculate A(Cb) and see whether it is equal to b. Of course, by associativity, this
can be rewritten as (AC)b = b. This may or may not happen, but we do observe that if we
want the vector Cb to be a solution of Ax = b for every choice of b ∈ Rm, then we will
need to have AC = Im; i.e., we will need C to be both a left inverse and a right inverse
of A. (This might be a good time to review the discussion of solving equations in the blue
box on p. 23.)

We recall from Chapter 1 that, given the m× n matrix A, the equation Ax = b is
consistent for all b ∈ Rm precisely when the echelon form of A has no rows of 0’s, i.e.,
when the rank ofA is equal tom, the number of rows ofA. On the other hand, the equation
Ax = b has a unique solution precisely when the rank of A is equal to n, the number of
columns of A. Summarizing, we have the following proposition.

Proposition 3.1. If the m× n matrix A has a right inverse, then the rank of A must be m,
and if A has a left inverse, then its rank must be n. Thus, if A has both a left inverse and a
right inverse, it must be square (n× n) with rank n.

Now suppose A is a square, n× n, matrix with right inverse B and left inverse C, so
that

AB = In = CA.

Then, exploiting associativity of matrix multiplication, we have

(∗) C = CIn = C(AB) = (CA)B = InB = B.

That is, if A has both a left inverse and a right inverse, they must be equal. This leads us to
the following definition.
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Definition.An n× n matrix A is invertible if there is an n× n matrix B satisfying

AB = In and BA = In.

The matrix B is usually denoted A−1 (read “A inverse”).

Remark. Note that if B = A−1, then it is also the case that A = B−1. We also note from
equation (∗) that the inverse is unique: IfB andC are both inverses ofA, then, in particular,
AB = In and CA = In, so B = C.

EXAMPLE 2

Let

A =
[

2 5

1 3

]
and B =

[
3 −5

−1 2

]
.

Then AB = I2 and BA = I2, so B is the inverse matrix of A.

It is a consequence of our earlier discussion that if A is an invertible n× n matrix,
then Ax = c has a unique solution for every c ∈ Rn, and so it follows from Proposition 5.5
of Chapter 1 that A must be nonsingular. What about the converse? If A is nonsingular,
must A be invertible? Well, if A is nonsingular, we know that every equation Ax = c has
a unique solution. In particular, if ej = (0, . . . , 0, 1, 0, . . . , 0) is the vector with all entries
0 except for a 1 in the j th slot, there is a unique vector bj that solves Abj = ej . If we let
B be the n× n matrix whose column vectors are b1, . . . ,bn, then we have

AB = A

⎡
⎢⎢⎣

|
b1

|

|
b2

|
· · ·

|
bn

|

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

|
e1

|

|
e2

|
· · ·

|
en

|

⎤
⎥⎥⎦ = In.

This suggests that the matrix we’ve constructed should be the inverse matrix of A. But we
need to know that BA = In as well. Here is a very elegant way to understand why this is
so. We can find the matrix B by forming the giant augmented matrix (see Exercise 1.4.7)⎡

⎢⎢⎣
| |

A e1 · · · en

| |

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ A In

⎤
⎥⎥⎦

and using Gaussian elimination to obtain the reduced echelon form⎡
⎢⎢⎣ In B

⎤
⎥⎥⎦ .

(Note that the reduced echelon form of A must be In because A is nonsingular.) Now here
is the tricky part: By reversing the row operations, we find that the augmented matrix⎡

⎢⎢⎣ B In

⎤
⎥⎥⎦
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is transformed to ⎡
⎢⎢⎣ In A

⎤
⎥⎥⎦ .

This says that BA = In, which is what we needed to check. In conclusion, we have proved
the following theorem.

Theorem 3.2. An n× n matrix is nonsingular if and only if it is invertible.

Note that Gaussian elimination will also let us know when A is not invertible: If we
come to a row of 0’s while we are reducingA to echelon form, then, of course,A is singular
and so it cannot be invertible.

EXAMPLE 3

We wish to determine the inverse of the matrix

A =

⎡
⎢⎢⎣

1 −1 1

2 −1 0

1 −2 2

⎤
⎥⎥⎦

(if it exists). We apply Gaussian elimination to the augmented matrix:
⎡
⎢⎢⎣

1 −1 1 1 0 0

2 −1 0 0 1 0

1 −2 2 0 0 1

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 −1 1 1 0 0

0 1 −2 −2 1 0

0 −1 1 −1 0 1

⎤
⎥⎥⎦

�

⎡
⎢⎢⎣

1 −1 1 1 0 0

0 1 −2 −2 1 0

0 0 −1 −3 1 1

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 −1 1 1 0 0

0 1 −2 −2 1 0

0 0 1 3 −1 −1

⎤
⎥⎥⎦

�

⎡
⎢⎢⎣

1 −1 0 −2 1 1

0 1 0 4 −1 −2

0 0 1 3 −1 −1

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 0 0 2 0 −1

0 1 0 4 −1 −2

0 0 1 3 −1 −1

⎤
⎥⎥⎦

Since we have determined that A is nonsingular, it follows that

A−1 =

⎡
⎢⎢⎣

2 0 −1

4 −1 −2

3 −1 −1

⎤
⎥⎥⎦ .

(The reader should check our arithmetic by multiplying AA−1 or A−1A.)

EXAMPLE 4

It is convenient to derive a formula for the inverse (when it exists) of a general 2 × 2 matrix

A =
[
a b

c d

]
.
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We assume a �= 0 to start with. Then
[
a b 1 0

c d 0 1

]
�
[

1 b
a

1
a

0

c d 0 1

]
�
[

1 b
a

1
a

0

0 d − bc
a

− c
a

1

]
(assuming ad − bc �= 0)

�
[

1 b
a

1
a

0

0 1 − c
ad−bc

a
ad−bc

]
�
[

1 0 1
a

− b
a
(− c

ad−bc ) − b
a

a
ad−bc

0 1 − c
ad−bc

a
ad−bc

]

=
[

1 0 d
ad−bc − b

ad−bc
0 1 − c

ad−bc
a

ad−bc

]
,

and so we see that, provided ad − bc �= 0,

A−1 = 1

ad − bc

[
d −b

−c a

]
.

As a check, we have
[
a b

c d

]
1

ad − bc

[
d −b

−c a

]
= I2 = 1

ad − bc

[
d −b

−c a

][
a b

c d

]
.

Of course, we have derived this assuming a �= 0, but the reader can check easily that the
formula works fine even when a = 0. We do see, however, from the row reduction that

[
a b

c d

]
is nonsingular ⇐⇒ ad − bc �= 0,

because if ad − bc = 0, then we get a row of 0’s in the echelon form of A.

EXAMPLE 5

It follows immediately from Example 4 that for our rotation matrix

Aθ =
[

cos θ − sin θ

sin θ cos θ

]
, we have A−1

θ =
[

cos θ sin θ

− sin θ cos θ

]
.

Since cos(−θ) = cos θ and sin(−θ) = − sin θ , we see that this is the matrix A(−θ). If we
think about the corresponding functions μAθ and μA(−θ) , this result becomes obvious: To
invert (or “undo”) a rotation through angle θ , we must rotate through angle −θ .

By now it may have occurred to the reader that for square matrices, a one-sided inverse
must actually be a true inverse. We formalize this observation here.

Corollary 3.3. If A and B are n× n matrices satisfying BA = In, then B = A−1 and
A = B−1.

Proof. If Ax = 0, then x = (BA)x = B(Ax) = 0, so, by Proposition 5.5 of Chapter 1, A
is nonsingular. According to Theorem 3.2,A is therefore invertible. SinceA has an inverse
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matrix, A−1, we deduce that2

BA = In

⇓ multiplying both sides of the equation by A−1 on the right

(BA)A−1 = InA
−1

⇓ using the associative property

B(AA−1) = A−1

⇓ using the definition of A−1

B = A−1,

as desired. Because AB = In and BA = In, it now follows that A = B−1, as well.

EXAMPLE 6

We can use Gaussian elimination to find a right inverse of an m× n matrix A, so long as
the rank of A is equal to m. The fact that we have free variables when m < n will give
many choices of right inverse. For example, taking

A =
[

1 −1 1

2 −1 0

]
,

we apply Gaussian elimination to the augmented matrix
[

1 −1 1 1 0

2 −1 0 0 1

]
�
[

1 −1 1 1 0

0 1 −2 −2 1

]

�
[

1 0 −1 −1 1

0 1 −2 −2 1

]
.

From this we see that the general solution of Ax =
[

1

0

]
is

x =

⎡
⎢⎢⎣

−1

−2

0

⎤
⎥⎥⎦+ s

⎡
⎢⎢⎣

1

2

1

⎤
⎥⎥⎦

and the general solution of Ax =
[

0

1

]
is

x =

⎡
⎢⎢⎣

1

1

0

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

1

2

1

⎤
⎥⎥⎦ .

If we take s = t = 0, we get the right inverse

B =

⎡
⎢⎢⎣

−1 1

−2 1

0 0

⎤
⎥⎥⎦ ,

2We are writing the “implies” symbol (�⇒) vertically so that we can indicate the reasoning in each step.
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but we could take, say, s = 1 and t = −1 to obtain another right inverse,

B ′ =

⎡
⎢⎢⎣

0 0

0 −1

1 −1

⎤
⎥⎥⎦ .

Finding a left inverse is a bit trickier. You can sometimes do it with a little guesswork, or
you can set up a large system of equations to solve (thinking of the entries of the left inverse
as the unknowns), but we will discuss a more systematic approach in the next section.

We end this discussion with a very important observation.

Proposition 3.4. Suppose A and B are invertible n× n matrices. Then their product AB
is invertible, and

(AB)−1 = B−1A−1.

Remark. Some people refer to this result rather endearingly as the “shoe-sock theorem,”
for to undo (invert) the process of putting on one’s socks and then one’s shoes, one must
first remove the shoes and then remove the socks.

Proof. To prove the matrix AB is invertible, we need only check that the candidate for the
inverse works. That is, we need to check that

(AB)(B−1A−1) = In and (B−1A−1)(AB) = In.

But these follow immediately from associativity:

(AB)(B−1A−1) = A(BB−1)A−1 = AInA
−1 = AA−1 = In, and

(B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In.

Exercises 2.3

1. Use Gaussian elimination to find A−1 (if it exists):

a.∗ A =
[

1 2

1 3

]

b. A =
[

1 3

2 6

]

c. A =
[

1 2

−1 3

]

d. A =
⎡
⎢⎣

1 2 3

1 1 2

0 1 2

⎤
⎥⎦

e.∗ A =
⎡
⎢⎣

1 0 1

0 2 1

−1 3 1

⎤
⎥⎦

f. A =
⎡
⎢⎣

1 2 3

4 5 6

7 8 9

⎤
⎥⎦

g.∗ A =
⎡
⎢⎣

2 3 4

2 1 1

−1 1 2

⎤
⎥⎦

2. In each case, given A and b,

(i) Find A−1.

(ii) Use your answer to (i) to solve Ax = b.

(iii) Use your answer to (ii) to express b as a linear combination of the columns ofA.

a. A =
[

2 3

3 5

]
, b =

[
3

4

]
b.∗ A =

⎡
⎢⎣

1 1 1

0 2 3

3 2 2

⎤
⎥⎦, b =

⎡
⎢⎣

1

1

2

⎤
⎥⎦



3 Inverse Matrices 109

c. A =
⎡
⎢⎣

1 1 1

0 1 1

1 2 1

⎤
⎥⎦, b =

⎡
⎢⎣

3

0

1

⎤
⎥⎦ d.∗ A =

⎡
⎢⎢⎢⎣

1 1 1 1

0 1 1 1

0 0 1 3

0 0 1 4

⎤
⎥⎥⎥⎦, b =

⎡
⎢⎢⎢⎣

2

0

1

1

⎤
⎥⎥⎥⎦

3.∗ Suppose A is an n× n matrix and B is an invertible n× n matrix. Simplify the
following.
a. (BAB−1)2

b. (BAB−1)n (n a positive integer)

c. (BAB−1)−1 (what additional assumption is required here?)

4.∗ Suppose A is an invertible n× n matrix and x ∈ Rn satisfies Ax = 7x. Calculate
A−1x.

5. If P is a permutation matrix (see Exercise 2.1.12 for the definition), show that P is
invertible and find P−1.

6. a. Give another right inverse of the matrix A in Example 6.

b. Find two right inverses of the matrix A =
[

1 2 3
]
.

c. Find two right inverses of the matrix A =
[

1 2 3

0 1 1

]
.

7. a. Give a matrix that has a left inverse but no right inverse.

b. Give a matrix that has a right inverse but no left inverse.

c. Find two left inverses of the matrix A =
⎡
⎢⎣

1 2

0 −1

1 1

⎤
⎥⎦.

8.∗ Suppose A is a square matrix satisfying the equation A3 − 3A+ I = O. Show that A
is invertible. (Hint: Can you give an explicit formula for A−1?)

9. Suppose A is a square matrix satisfying the equation A3 − 2I = O. Prove that A and
A− I are both invertible. (Hint: Give explicit formulas for their inverses. In the
second case, a little trickery will be necessary: Start by factoring x3 − 1.)

10. Suppose A is an n× n matrix with the property that A− I is invertible.
a. For any k = 1, 2, 3, . . . , give a formula for (A− I )−1(Ak+1 − I ). (Hint: Think

about simplifying
xk+1 − 1

x − 1
for x �= 1.)

b. Use your answer to part a to find the number of paths of length ≤ 6 from node 1 to
node 3 in Example 5 in Section 1.

11. SupposeA and B are n× nmatrices. Prove that ifAB is nonsingular, then bothA and
B are nonsingular. (Hint: First show that B is nonsingular; then use Theorem 3.2 and
Proposition 3.4.)

12. Suppose A is an invertible m×m matrix and B is an invertible n× n matrix. (See
Exercise 2.1.9 for the notion of block multiplication.)
a. Show that the matrix

[
A O

O B

]

is invertible and give a formula for its inverse.



110 Chapter 2 Matrix Algebra

b. Suppose C is an arbitrary m× n matrix. Is the matrix
[
A C

O B

]

invertible?

13. Suppose A is an invertible matrix and A−1 is known.
a. Suppose B is obtained from A by switching two columns. How can we find B−1

from A−1? (Hint: Since A−1A = I , we know the dot products of the rows of A−1

with the columns of A. So rearranging the columns of A to make B, we should be
able to suitably rearrange the rows of A−1 to make B−1.)

b. Suppose B is obtained from A by multiplying the j th column by a nonzero scalar.
How can we find B−1 from A−1?

c. SupposeB is obtained fromA by adding a scalar multiple of one column to another.
How can we find B−1 from A−1?

d. Suppose B is obtained from A by replacing the j th column by a different vector.
Assuming B is still invertible, how can we find B−1 from A−1?

14. Let A be an m× n matrix.
a. Assume the rank of A is m and B is a right inverse of A. Show that B ′ is another

right inverse of A if and only if A(B − B ′) = O and that this occurs if and only if
every column of B − B ′ is orthogonal to every row of A.

b. Assume the rank of A is n and C is a left inverse of A. Show that C ′ is another left
inverse of A if and only if (C − C ′)A = O and that this occurs if and only if every
row of C − C ′ is orthogonal to every column of A.

15. Suppose A is an m× n matrix with a unique right inverse B. Prove that m = n and
that A is invertible.

16. Suppose A is an n× n matrix satisfying A10 = O. Prove that the matrix In − A is
invertible. (Hint: As a warm-up, try assuming A2 = O.)

4 Elementary Matrices: Rows Get Equal Time

So far we have focused on interpreting matrix multiplication in terms of columns—that is,
on the fact that the j th column of AB is the product of A with the j th column vector of B.
But equally relevant is the following observation:

The i th row of AB is the product of the i th row vector of A with B.

Just as multiplying the matrix A by a column vector x on the right,

⎡
⎢⎢⎣

|
a1

|

|
a2

|
· · ·

|
an

|

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎥⎥⎦
,

gives us the linear combination x1a1 + x2a2 + · · · + xnan of the columns of A, the reader
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can easily check that multiplying A on the left by the row vector [x1 x2 · · · xm],

[
x1 x2 · · · xm

]

⎡
⎢⎢⎢⎢⎢⎣

A1

A2

...

Am

⎤
⎥⎥⎥⎥⎥⎦
,

yields the linear combination x1A1 + x2A2 + · · · + xmAm of the rows of A.
It should come as no surprise, then, that we can perform row operations on a matrix A

by multiplying on the left by appropriately chosen matrices. For example, if

A =

⎡
⎢⎢⎣

1 2

3 4

5 6

⎤
⎥⎥⎦ ,

E1 =

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ , E2 =

⎡
⎢⎢⎣

1

1

4

⎤
⎥⎥⎦ , and E3 =

⎡
⎢⎢⎣

1

−2 1

1

⎤
⎥⎥⎦ ,

then

E1A =

⎡
⎢⎢⎣

3 4

1 2

5 6

⎤
⎥⎥⎦ , E2A =

⎡
⎢⎢⎣

1 2

3 4

20 24

⎤
⎥⎥⎦ , and E3A =

⎡
⎢⎢⎣

1 2

1 0

5 6

⎤
⎥⎥⎦ .

Here we establish the custom that when it is clearer to do so, we indicate 0 entries in a
matrix by blank spaces.

Such matrices that give corresponding elementary row operations are called elementary
matrices. Note that each elementary matrix differs from the identity matrix only in a small
way.

(i) To interchange rows i and j , we should multiply by an elementary matrix of the
form

i↓ j↓

i →

j →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

· · · 0 · · · 1 · · ·
. . .

· · · 1 · · · 0 · · ·
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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(ii) To multiply row i by a scalar c, we should multiply by an elementary matrix of
the form

i↓

i →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1

c

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(iii) To add c times row i to row j , we should multiply by an elementary matrix of
the form

i↓ j↓

i →

j →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
. . .

· · · c · · · 1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here’s an easy way to remember the form of these matrices: Each elementary matrix is
obtained by performing the corresponding elementary row operation on the identity matrix.

EXAMPLE 1

Let A =
[

4 3 5

1 2 5

]
. We put A in reduced echelon form by the following sequence of row

operations:
[

4 3 5

1 2 5

]
�
[

1 2 5

4 3 5

]
�
[

1 2 5

0 −5 −15

]

�
[

1 2 5

0 1 3

]
�
[

1 0 −1

0 1 3

]
.

These steps correspond to multiplying, in sequence from right to left, by the elementary
matrices

E1 =
[

1

1

]
, E2 =

[
1

−4 1

]
, E3 =

[
1

− 1
5

]
, E4 =

[
1 −2

1

]
.
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Now the reader can check that

E = E4E3E2E1 =
[

1 −2

1

][
1

− 1
5

][
1

−4 1

][
1

1

]
=
[

2
5 − 3

5

− 1
5

4
5

]

and, indeed,

EA =
[

2
5 − 3

5

− 1
5

4
5

][
4 3 5

1 2 5

]
=
[

1 0 −1

0 1 3

]
,

as it should. Remember: The elementary matrices are arranged from right to left in the
order in which the operations are done on A.

EXAMPLE 2

Let’s revisit Example 6 on p. 47. Let

A =

⎡
⎢⎢⎢⎢⎣

1 1 3 −1 0

−1 1 1 1 2

0 1 2 2 −1

2 −1 0 1 −6

⎤
⎥⎥⎥⎥⎦
.

To clear out the entries below the first pivot, we must multiply by the product of the two
elementary matrices E1 and E2:

E2E1 =

⎡
⎢⎢⎢⎢⎣

1

1

1

−2 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1

1 1

1

1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1

1 1

1

−2 1

⎤
⎥⎥⎥⎥⎦

;

to change the pivot in the second row to 1 and then clear out below, we multiply first by

E3 =

⎡
⎢⎢⎢⎢⎣

1
1
2

1

1

⎤
⎥⎥⎥⎥⎦

and then by the product

E5E4 =

⎡
⎢⎢⎢⎢⎣

1

1

1

3 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1

1

−1 1

1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1

1

−1 1

3 1

⎤
⎥⎥⎥⎥⎦
.

We next change the pivot in the third row to 1 and clear out below, multiplying by

E6 =

⎡
⎢⎢⎢⎢⎣

1

1
1
2

1

⎤
⎥⎥⎥⎥⎦

and E7 =

⎡
⎢⎢⎢⎢⎣

1

1

1

−3 1

⎤
⎥⎥⎥⎥⎦
.
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Now we clear out above the pivots by multiplying by

E8 =

⎡
⎢⎢⎢⎢⎣

1 1

1

1

1

⎤
⎥⎥⎥⎥⎦

and E9 =

⎡
⎢⎢⎢⎢⎣

1 −1

1

1

1

⎤
⎥⎥⎥⎥⎦
.

The net result is this: When we multiply the product

E9E8E7E6(E5E4)E3(E2E1) =

⎡
⎢⎢⎢⎢⎣

1
4 − 3

4
1
2 0

1
2

1
2 0 0

− 1
4 − 1

4
1
2 0

1
4

9
4 − 3

2 1

⎤
⎥⎥⎥⎥⎦

by the original matrix, we do in fact get the reduced echelon form:
⎡
⎢⎢⎢⎢⎣

1
4 − 3

4
1
2 0

1
2

1
2 0 0

− 1
4 − 1

4
1
2 0

1
4

9
4 − 3

2 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 3 −1 0

−1 1 1 1 2

0 1 2 2 −1

2 −1 0 1 −6

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 1 0 −2

0 1 2 0 1

0 0 0 1 −1

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
.

We now turn to some applications of elementary matrices to concepts we have studied
earlier. Recall from Chapter 1 that if we want to find the constraint equations that a vector b
must satisfy in order for Ax = b to be consistent, we reduce the augmented matrix [A | b ]
to echelon form [U | c ] and set equal to 0 those entries of c corresponding to the rows of
0’s in U . That is, when A is anm× nmatrix of rank r , the constraint equations are merely
the equations cr+1 = · · · = cm = 0. Letting E be the product of the elementary matrices
corresponding to the elementary row operations required to putA in echelon form, we have
U = EA, and so

(†) [U | c ] = [EA | Eb ] .

That is, the constraint equations are the equations

Er+1 · b = 0, . . . , Em · b = 0,

where, we recall, Er+1, . . . ,Em are the last m− r row vectors of E. Interestingly, we can
use the equation (†) to find a simple way to compute E: When we reduce the augmented
matrix [A | b ] to echelon form [U | c ], E is the matrix satisfying Eb = c.

EXAMPLE 3

Let’s once again consider the matrix

A =

⎡
⎢⎢⎢⎢⎣

1 1 3 −1 0

−1 1 1 1 2

0 1 2 2 −1

2 −1 0 1 −6

⎤
⎥⎥⎥⎥⎦
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from Example 2, and let’s find the constraint equations for Ax = b to be consistent. We
start with the augmented matrix

[A | b ] =

⎡
⎢⎢⎢⎢⎣

1 1 3 −1 0 b1

−1 1 1 1 2 b2

0 1 2 2 −1 b3

2 −1 0 1 −6 b4

⎤
⎥⎥⎥⎥⎦

and reduce to echelon form

[U | c ] =

⎡
⎢⎢⎢⎢⎣

1 1 3 −1 0 b1

0 2 4 0 2 b1 + b2

0 0 0 2 −2 − 1
2b1 − 1

2b2 + b3

0 0 0 0 0 b1 + 9b2 − 6b3 + 4b4

⎤
⎥⎥⎥⎥⎦
.

(Note that we have arranged to remove fractions from the entry in the last row.) Now it is
easy to see that if

Eb =

⎡
⎢⎢⎢⎢⎣

b1

b1 + b2

− 1
2b1 − 1

2b2 + b3

b1 + 9b2 − 6b3 + 4b4

⎤
⎥⎥⎥⎥⎦
, then E =

⎡
⎢⎢⎢⎢⎣

1

1 1

− 1
2 − 1

2 1

1 9 −6 4

⎤
⎥⎥⎥⎥⎦
.

The reader should check that, in fact, EA = U .
We could continue our Gaussian elimination to reach reduced echelon form:

[R | d ] =

⎡
⎢⎢⎢⎢⎣

1 0 1 0 −2 1
4b1 − 3

4b2 + 1
2b3

0 1 2 0 1 1
2b1 + 1

2b2

0 0 0 1 −1 − 1
4b1 − 1

4b2 + 1
2b3

0 0 0 0 0 b1 + 9b2 − 6b3 + 4b4

⎤
⎥⎥⎥⎥⎦
.

From this we see that R = E′A, where

E′ =

⎡
⎢⎢⎢⎢⎣

1
4 − 3

4
1
2 0

1
2

1
2 0 0

− 1
4 − 1

4
1
2 0

1 9 −6 4

⎤
⎥⎥⎥⎥⎦
,

which is very close to—but not the same as—the product of elementary matrices we obtained
at the end of Example 2. Can you explain why the first three rows must agree here, but not
the last?

EXAMPLE 4

If anm× nmatrixA has rank n, then every column is a pivot column, so its reduced echelon

form must be R =
[
In

O

]
. If we find a product, E, of elementary matrices so that EA = R,
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then the first m rows of E will give us a left inverse of A. For example, if A =
⎡
⎢⎣

1 1

1 −1

2 1

⎤
⎥⎦,

then we can take

E =

⎡
⎢⎢⎣

1 1
2 0

0 − 1
2 0

0 − 3
2 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0

−1 1 0

−2 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
2

1
2 0

1
2 − 1

2 0
3
2 − 3

2 1

⎤
⎥⎥⎦ ,

and so

C =
[

1
2

1
2 0

1
2 − 1

2 0

]

is a left inverse of A (as the diligent reader should check).

4.1 The LU Decomposition
As a final topic in this section, let’s reexamine the process of putting a matrix in echelon form
by using elementary matrices. The crucial point is that elementary matrices are invertible
and their inverses are elementary matrices of the same type (see Exercise 7). If E =
Ek · · ·E2E1 is the product of the elementary matrices we use to reduce A to echelon form,
then U = EA and so A = E−1U . Suppose that we use only lower triangular elementary
matrices of type (iii): No row interchanges are required, and no rows are multiplied through
by a scalar. In this event, all the Ei are lower triangular matrices with 1’s on the diagonal,
and soE is lower triangular with 1’s on the diagonal, andE−1 has the same property. In this
case, then, we’ve written A = LU , where L = E−1 is a lower triangular (square) matrix
with 1’s on the diagonal. This is called the LU decomposition of A.

EXAMPLE 5

Let

A =

⎡
⎢⎢⎣

1 2 −1 1

2 7 4 2

−1 4 13 −1

⎤
⎥⎥⎦ .

We reduce A to echelon form by the following sequence of row operations:
⎡
⎢⎢⎣

1 2 −1 1

2 7 4 2

−1 4 13 −1

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 2 −1 1

0 3 6 0

−1 4 13 −1

⎤
⎥⎥⎦

�

⎡
⎢⎢⎣

1 2 −1 1

0 3 6 0

0 6 12 0

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 2 −1 1

0 3 6 0

0 0 0 0

⎤
⎥⎥⎦ = U.

This is accomplished by multiplying by the respective elementary matrices

E1 =

⎡
⎢⎢⎣

1

−2 1

1

⎤
⎥⎥⎦ , E2 =

⎡
⎢⎢⎣

1

1

1 1

⎤
⎥⎥⎦ , and E3 =

⎡
⎢⎢⎣

1

1

−2 1

⎤
⎥⎥⎦ .
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Thus we have the equation

E3E2E1A = U,

whence

A = (E3E2E1)
−1U = E−1

1 E−1
2 E−1

3 U.

Note that it is easier to calculate the inverses of the elementary matrices (see Exercise 7)
and then calculate their product. In our case,

E−1
1 =

⎡
⎢⎢⎣

1

2 1

1

⎤
⎥⎥⎦ , E−1

2 =

⎡
⎢⎢⎣

1

1

−1 1

⎤
⎥⎥⎦ , and E−1

3 =

⎡
⎢⎢⎣

1

1

2 1

⎤
⎥⎥⎦ ,

and so

L = E−1
1 E−1

2 E−1
3 =

⎡
⎢⎢⎣

1

2 1

1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1

1

−1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1

1

2 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1

2 1

−1 2 1

⎤
⎥⎥⎦ .

In fact, we see that when i > j , the ij -entry of L is the negative of the multiple of row j
that we added to row i during our row operations.

Our LU decomposition, then, is as follows:

A =

⎡
⎢⎢⎣

1 2 −1 1

2 7 4 2

−1 4 13 −1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0

2 1 0

−1 2 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 2 −1 1

0 3 6 0

0 0 0 0

⎤
⎥⎥⎦ = LU.

EXAMPLE 6

We reiterate that the LU decomposition exists only when no row interchanges are required
to reduce the matrix to echelon form. For example, the matrix

A =
[

0 1

1 0

]

has no such expression. See Exercise 14.

We shall see in Chapter 3 that, given the LU decomposition of a matrixA, we can read
off a great deal of information. But the main reason it is of interest is this: To solveAx = b
for different vectors b using computers, it is significantly more cost-effective to use theLU
decomposition (see Exercise 13). Notice that Ax = b if and only if (LU)x = L(Ux) = b,
so first we solve Ly = b (by “forward substitution”) and then we solve Ux = y (by “back
substitution”). Actually, working by hand, it is even easier to determine L−1, which is the
product of elementary matrices that puts A in echelon form (L−1A = U ), so then we find
y = L−1b and solve Ux = y as before.
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Exercises 2.4

1.∗ For each of the matrices A in Exercise 1.4.3, find a product of elementary matrices
E = · · ·E2E1 so that EA is in echelon form. Use the matrix E you’ve found to give
constraint equations for Ax = b to be consistent.

2.∗ For each of the matrices A in Exercise 1.4.3, use the method of Example 3 to find a
matrix E so that EA = U , where U is in echelon form.

3.∗ Give theLU decomposition (when it exists) of each of the matricesA in Exercise 1.4.3.

4.∗ Let A =

⎡
⎢⎢⎢⎣

1 0 1 1 1

1 1 −1 1 0

0 1 −2 −1 1

2 1 0 0 5

⎤
⎥⎥⎥⎦.

a. Give the LU decomposition of A.

b. Give the reduced echelon form of A.

5. Find a left inverse of each of the following matricesA using the method of Example 4.

a.

[
1

2

]
b.

⎡
⎢⎣

1 2

1 3

1 −1

⎤
⎥⎦ c.

⎡
⎢⎢⎢⎣

1 0 1

1 1 −1

0 1 −1

2 1 0

⎤
⎥⎥⎥⎦

6. Given A =
⎡
⎢⎣

1

−1 1

2 1 1

⎤
⎥⎦

⎡
⎢⎣

1 2 2

3 1

−1

⎤
⎥⎦, solve Ax = b, where

a.∗ b =
⎡
⎢⎣

2

1

1

⎤
⎥⎦ b. b =

⎡
⎢⎣

1

0

2

⎤
⎥⎦ c.∗ b =

⎡
⎢⎣

5

−1

4

⎤
⎥⎦

7. Show that the inverse of every elementary matrix is again an elementary matrix. Indeed,
give a simple prescription for determining the inverse of each type of elementary matrix.
(See the proof of Theorem 4.1 of Chapter 1.)

8. Prove or give a counterexample: Every invertible matrix can be written as a product
of elementary matrices.

9. Use elementary matrices to prove Theorem 4.1 of Chapter 1.

10. a.∗ Suppose E1 and E2 are elementary matrices that correspond to adding multiples
of the same row to other rows. Show that E1E2 = E2E1 and give a simple de-
scription of the product. Explain how to use this observation to compute the LU
decomposition more efficiently.

b. In a similar vein, let i < j , i < k, and j < �. LetE1 be an elementary matrix corre-
sponding to adding a multiple of row i to row k, and let E2 be an elementary matrix
corresponding to adding a multiple of row j to row �. Give a simple description
of the product E1E2, and explain how to use this observation to compute the LU
decomposition more efficiently. Does E2E1 = E1E2 this time?

11. Complete the following alternative argument that the matrix obtained by Gaussian
elimination must be the inverse matrix of A. It thereby provides another proof of
Corollary 3.3. Suppose A is nonsingular.
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a. Show that there are finitely many elementary matrices E1, E2, . . . , Ek so that
EkEk−1 · · ·E2E1A = I .

b. Let B = EkEk−1 · · ·E2E1. Apply Proposition 3.4 to show that A = B−1 and, thus,
that AB = I .

12. Assume A and B are two m× n matrices with the same reduced echelon form. Show
that there exists an invertible matrix E so that EA = B. Is the converse true?

13. We saw in Exercise 1.4.17 that it takes on the order of n3/3 multiplications to put an
n× n matrix in reduced echelon form (and, hence, to solve a square inhomogeneous
system Ax = b). Indeed, in solving that exercise, one shows that it takes on the order
of n3/3 multiplications to obtain U (and one obtains L just by bookkeeping). Show
now that if one has different vectors b for which one wishes to solveAx = b, once one
has A = LU , it takes on the order of n2 multiplications to solve for x each time.

14. a. Show that the matrix

[
0 1

1 0

]
has no LU decomposition.

b. Show that for anym× nmatrix A, there is anm×m permutation matrix P so that
PA does have an LU decomposition.

5 The Transpose

The final matrix operation we discuss in this chapter is the transpose. When A is anm× n
matrix with entries aij , the matrix AT (read “A transpose”) is the n×m matrix whose
ij -entry is aji ; in other words, the i th row of AT is the i th column of A. We say a square
matrix A is symmetric if AT = A and is skew-symmetric if AT = −A.

EXAMPLE 1

Suppose

A =
[

1 2 1

3 −1 0

]
, B =

⎡
⎢⎢⎣

1 3

2 −1

1 0

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

1

2

−3

⎤
⎥⎥⎦ , and D =

[
1 2 −3

]
.

Then AT = B, BT = A, CT = D, and DT = C. Note, in particular, that the transpose of a
column vector, i.e., an n× 1 matrix, is a row vector, i.e., a 1 × n matrix. An example of a
symmetric matrix is

S =

⎡
⎢⎢⎣

1 2 3

2 0 −1

3 −1 7

⎤
⎥⎥⎦ , since ST =

⎡
⎢⎢⎣

1 2 3

2 0 −1

3 −1 7

⎤
⎥⎥⎦ = S.

The basic properties of the transpose operation are as follows:
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Proposition 5.1. Let A and A′ be m× n matrices, let B be an n× p matrix, and let c be
a scalar. Then

1. (AT)T = A.

2. (cA)T = cAT.

3. (A+ A′)T = AT + A′T.

4. (AB)T = BTAT.

5. When A is invertible, then so is AT, and (AT)−1 = (A−1)T.

Proof. The first is obvious, inasmuch as we swap rows and columns and then swap again,
returning to our original matrix. The second and third are immediate to check. The fourth
result is more interesting, and we will use it to derive a crucial result in a moment. To prove
4, note, first, that AB is an m× p matrix, so (AB)T will be a p ×m matrix; BTAT is the
product of a p × n matrix and an n×m matrix and hence will be p ×m as well, so the
shapes agree. Now, the ji-entry of AB is the dot product of the j th row vector of A and
the i th column vector of B, i.e., the ij -entry of (AB)T is

(
(AB)T

)
ij

= (AB)ji = Aj · bi .

On the other hand, the ij -entry of BTAT is the dot product of the i th row vector of BT and
the j th column vector of AT; but this is, by definition, the dot product of the i th column
vector of B and the j th row vector of A. That is,

(BTAT)ij = bi · Aj ,

and, since dot product is commutative, the two formulas agree. The proof of 5 is left to
Exercise 8.

The transpose matrix will be important to us because of the interplay between dot
product and transpose. If x and y are vectors in Rn, then by virtue of our very definition of
matrix multiplication,

x · y = xTy,

provided we agree to think of a 1 × 1 matrix as a scalar. (On the right-hand side we are
multiplying a 1 × nmatrix by ann× 1 matrix.) Now we have this highly useful proposition:

Proposition 5.2. Let A be an m× n matrix, x ∈ Rn, and y ∈ Rm. Then

Ax · y = x · ATy.

(On the left, we take the dot product of vectors in Rm; on the right, of vectors in Rn.)

Remark. You might remember this: To move the matrix “across the dot product,” you must
transpose it.

Proof. We just calculate, using the formula for the transpose of a product and, as usual,
associativity:

Ax · y = (Ax)Ty = (xTAT)y = xT(ATy) = x · ATy.

EXAMPLE 2

We return to the economic interpretation of dot product given in the Remark on p. 25.
Suppose that m different ingredients are required to manufacture n different products.
To manufacture the product vector x = (x1, . . . , xn) requires the ingredient vector y =



5 The Transpose 121

(y1, . . . , ym), and we suppose that x and y are related by the equation y = Ax for some
m× n matrix A. If each unit of ingredient j costs a price pj , then the cost of producing x
is

m∑
j=1

pjyj = y · p = Ax · p = x · ATp =
n∑
i=1

qixi,

where q = ATp. Notice then that qi is the amount it costs to produce a unit of the i th product.
Our fundamental formula, Proposition 5.2, tells us that the total cost of the ingredients should
equal the total worth of the products we manufacture. See Exercise 18 for a less abstract
(but more fattening) example.

EXAMPLE 3

We just saw that when x, y ∈ Rn, the matrix product xTy is a 1 × 1 matrix. However, when
we switch the position of the transpose and calculate xyT, the result is an n× nmatrix (see
Exercise 13). A particularly important application of this has arisen already in Chapter 1.
Given a vector a ∈ Rn, consider the n× n matrix A = aaT. What does it mean? That is,
what is the associated linear transformationμA? Well, by the associativity of multiplication,
we have Ax = (aaT)x = a(aTx) = (a · x)a. When a is a unit vector, this is the projection
of x onto a. And, in general, we can now write

projax = x · a
‖a‖2

a = a · x
‖a‖2

a =
(

1

‖a‖2
aaT

)
x.

We will see the importance of this formulation in Chapter 4.

Exercises 2.5

1. Let A =
[

1 2

3 4

]
, B =

[
2 1

4 3

]
, C =

[
1 2 1

0 1 2

]
, and D =

⎡
⎢⎣

0 1

1 0

2 3

⎤
⎥⎦. Calculate each

of the following expressions or explain why it is not defined.
a. AT

b.∗ 2A− BT

c. CT

d. CT +D
e.∗ ATC

f. ACT

g.∗ CTAT

h. BDT

i. DTB

j.∗ CCT

k.∗ CTC

l. CTDT

2. Let a =
⎡
⎢⎣

1

2

1

⎤
⎥⎦ and b =

⎡
⎢⎣

0

3

−1

⎤
⎥⎦. Calculate the following matrices.

a.∗ aaT

b.∗ aTa
c. bTb
d. bbT

e. abT

f.∗ aTb
g. bTa
h. baT

3. Following Example 3, find the standard matrix for the projection proja.

a. a =
[

1

1

]
b.∗ a =

[
4

3

]
c. a =

⎡
⎢⎣

1

0

0

⎤
⎥⎦ d. a =

⎡
⎢⎣

1

2

1

⎤
⎥⎦
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4.� Suppose a, b, c, and d ∈ Rn. Check that, surprisingly,
⎡
⎢⎢⎣

|
a

|

|
b

|

⎤
⎥⎥⎦
[

cT

dT

]
= acT + bdT.

5.∗ SupposeA andB are symmetric. Show thatAB is symmetric if and only ifAB = BA.

6. Let A be an arbitrary m× n matrix. Show that ATA is symmetric.

7. Explain why the matrix ATA is a diagonal matrix whenever the column vectors of A
are orthogonal to one another.

8.� Suppose A is invertible. Check that (A−1)TAT = I and AT(A−1)T = I , and deduce
that AT is likewise invertible with inverse (A−1)T.

9. If P is a permutation matrix (see Exercise 2.1.12 for the definition), show that P T =
P−1.

10. Suppose A =
⎡
⎢⎣

0 −1 0

0 0 −1

1 0 0

⎤
⎥⎦. Check that the vector y =

⎡
⎢⎣

1

−1

1

⎤
⎥⎦ satisfies Ay = y and

ATy = y. Show that if x · y = 0, then Ax · y = 0 as well. Interpret this result geomet-
rically.

11. Let A be an m× n matrix and let x, y ∈ Rn. Prove that if Ax = 0 and y = ATb for
some b ∈ Rm, then x · y = 0.

12.� Suppose A is a symmetric n× n matrix. If x and y ∈ Rn are vectors satisfying the
equations Ax = 2x and Ay = 3y, show that x and y are orthogonal. (Hint: Consider
Ax · y.)

13. SupposeA is anm× nmatrix with rank 1. Prove that there are nonzero vectors u ∈ Rm

and v ∈ Rn such that A = uvT. (Hint: What do the rows of uvT look like?)

14. Given the matrix

A =

⎡
⎢⎢⎣

1 2 1

1 3 1

0 1 −1

⎤
⎥⎥⎦ and its inverse matrix A−1 =

⎡
⎢⎢⎣

4 −3 1

−1 1 0

−1 1 −1

⎤
⎥⎥⎦ .

By thinking about rows and columns of these matrices, find the inverse of

a.

⎡
⎢⎣

1 1 0

2 3 1

1 1 −1

⎤
⎥⎦ b.

⎡
⎢⎣

1 0 1

2 1 3

1 −1 1

⎤
⎥⎦ c.

⎡
⎢⎣

1 1 0

2 3 2

1 1 −2

⎤
⎥⎦

15.�∗ Suppose A is an m× n matrix and x ∈ Rn satisfies (ATA)x = 0. Prove that Ax = 0.
(Hint: What is ‖Ax‖?)

16. Suppose A is a symmetric matrix satisfying A2 = O. Show that A = O. Give an
example to show that the hypothesis of symmetry is required.

17.∗ Let Aθ be the rotation matrix defined on p. 98. Using geometric reasoning, explain
why A−1

θ = AT
θ .

18. (With thanks to Maida Heatter for approximate and abbreviated recipes) To make 8
dozen David’s cookies requires 1 lb. semisweet chocolate, 1 lb. butter, 2 c. sugar, 2
eggs, and 4 c. flour. To make 8 dozen chocolate chip oatmeal cookies requires 3/4
lb. semisweet chocolate, 1 lb. butter, 3 c. sugar, 2 eggs, 2 1/2 c. flour, and 6 c. oats.
With the following approximate prices, what is the cost per dozen for each cookie?
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Use the approach of Example 2; what are the matrices A and AT?

Item Cost

1 lb. chocolate $4.80

1 lb. butter 3.40

1 c. sugar 0.20

1 dozen eggs 1.40

1 c. flour 0.10

1 c. oats 0.20

19.� We say an n× n matrix A is orthogonal if ATA = In.
a. Prove that the column vectors a1, . . . , an of an orthogonal matrixA are unit vectors

that are orthogonal to one another, i.e.,

ai · aj =
{

1, i = j

0, i �= j
.

b. Fill in the missing columns in the following matrices to make them orthogonal:

[ √
3

2 ?

− 1
2 ?

]
,

⎡
⎢⎢⎣

1 0 ?

0 −1 ?

0 0 ?

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
3 ? 2

3
2
3 ? − 2

3
2
3 ? 1

3

⎤
⎥⎥⎦

c. Show that any 2 × 2 orthogonal matrix A must be of the form
[

cos θ − sin θ

sin θ cos θ

]
or

[
cos θ sin θ

sin θ − cos θ

]

for some real number θ . (Hint: Use part a, rather than the original definition.)

d.∗ Show that ifA is an orthogonal 2 × 2 matrix, thenμA : R2 → R2 is either a rotation
or the composition of a rotation and a reflection.

e. Prove that the row vectors A1, . . . ,An of an orthogonal matrix A are unit vectors
that are orthogonal to one another. (Hint: Corollary 3.3.)

20. (Recall the definition of orthogonal matrices from Exercise 19.)
a. Show that if A and B are orthogonal n× n matrices, then so is AB.

b.∗ Show that if A is an orthogonal matrix, then so is A−1.

21. Here is an alternative argument that when A is square and AB = I , it must be the case
that BA = I and so B = A−1.
a. Suppose AB = I . Prove that AT is nonsingular. (Hint: Solve ATx = 0.)

b. Prove there exists a matrix C so that ATC = I , and hence CTA = I .

c. Use the result of part c of Exercise 2.1.11 to prove that B = A−1.

22.� a. Show that the only matrix that is both symmetric and skew-symmetric is O.

b. Given any square matrixA, show thatS = 1
2 (A+ AT) is symmetric andK = 1

2 (A−
AT) is skew-symmetric.

c. Deduce that any square matrix A can be written in the form A = S +K , where S
is symmetric and K is skew-symmetric.
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d. Prove that the expression in part c is unique: If A = S +K and A = S ′ +K ′
(where S and S ′ are symmetric and K and K ′ are skew-symmetric), then S = S ′
and K = K ′. (Hint: Use part a.)

(Recall the box on p. 91.) Remember also that to prove existence (in part c), you
need only find some S and K that work. There are really two different ways to prove
uniqueness (in part d ). The route suggested in the problem is to suppose there were
two different solutions and show they are really the same; an alternative is to derive
formulas for S and K , given the expression A = S +K .

23. a. Suppose A is an m× n matrix and Ax · y = 0 for every vector x ∈ Rn and every
vector y ∈ Rm. Prove that A = O.

b. Suppose A is a symmetric n× n matrix. Prove that if Ax · x = 0 for every vector
x ∈ Rn, then A = O. (Hint: Consider A(x + y) · (x + y).)

c. Give an example to show that the symmetry hypothesis is necessary in part b.

24. Suppose A is an n× n matrix satisfying Ax · y = x · Ay for all vectors x, y ∈ Rn.
Prove that A is a symmetric matrix. (Hint: Show that (A− AT)x · y = 0 for all
x, y ∈ Rn. Then use the result of part a of Exercise 23.)

HISTORICAL NOTES
In Chapter 1 we introduced matrices as a bookkeeping device for studying systems of
linear equations, whereas in this chapter the algebra of matrices has taken on a life of its
own, independent of any system of equations. Historically, the man who recognized the
importance of the algebra of matrices and unified the various fragments of this theory into
a subject worthy of standing by itself was Arthur Cayley (1821–1895).

Cayley was a British lawyer specializing in real estate law. He was successful but
was known to say that the law was a way for him to make money so that he could pursue
his true passion, mathematics. Indeed, he wrote almost 300 mathematics papers during
his fourteen years of practicing law. Finally, in 1863, he sacrificed money for love and
accepted a professorship at Cambridge University. Of the many hundreds of mathematics
papers Cayley published during his career, the one of greatest interest here is his “Memoir
on the Theory of Matrices,” which was published in 1858 while Cayley was still practicing
law. It was in this work that Cayley defined much of what you have seen in this chapter.

The term matrix was coined by Cayley’s friend and colleague, James Joseph Sylvester
(1814–1897). Many authors referred to what we now call a matrix as an “array” or “tableau.”
Before its mathematical definition came along, the word matrix was used to describe “some-
thing which surrounds, within which something is contained.” A perfect word for this new
object. The German mathematician F. G. Frobenius (1849–1917) had also been working
with these structures, apparently without any knowledge of the work of Cayley and his
colleagues. In 1878 he read Cayley’s “Memoir” and adopted the use of the word matrix.



Historical Notes 125

As for the notion of containment, Cayley was the first to delimit these arrays, bracketing
them to emphasize that a matrix was an object to be treated as a whole. Actually, Cayley
used an odd combination of curved and straight lines:

( r s t )

u v w

x y z

.

After introducing these objects, Cayley then defined addition, subtraction, and multiplica-
tion and multiplicative inverse. Cayley’s study of matrices was initially motivated by the
study of linear transformations. He considered matrices as defining transformations taking
quantities (x, y, z) to new quantities (X, Y, Z), and he defined matrix multiplication by
composing two such transformations, just as we did in Sections 1 and 2.

It may seem that the discovery of matrices and matrix algebra was a simple bit of
mathematics, but it helped lay a foundation on which a great deal of mathematics, applied
mathematics, and science has been built.
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C H A P T E R 3
VECTOR SPACES

We return now to elaborate on the geometric discussion of solutions of systems of linear
equations initiated in Chapter 1. Because every solution of a homogeneous system of linear
equations is given as a linear combination of vectors, we should view the sets of solutions
geometrically as generalizations of lines, planes, and hyperplanes. Intuitively, lines and
planes differ in that it takes only one free variable (parameter) to describe points on a
line (so a line is “one-dimensional”), but two to describe points on a plane (so a plane is
“two-dimensional”). One of the goals of this chapter is to make algebraically precise the
geometric notion of dimension, so that we may assign a dimension to every subspace of
Rn. Finally, at the end of this chapter, we shall see that these ideas extend far beyond the
realm of Rn to the notion of an “abstract” vector space.

1 Subspaces of Rn

In Chapter 1 we learned to write the general solution of a system of linear equations in
standard form; one consequence of this procedure is that it enables us to express the solution
set of a homogeneous system as the span of a particular set of vectors. The alert reader
will realize she learned one way of reversing this process in Chapter 1, and we will learn
others shortly. However, we should stop to understand that the span of a set of vectors in
Rn and the set of solutions of a homogeneous system of linear equations share some salient
properties.

Definition. A set V ⊂ Rn (a subset of Rn) is called a subspace of Rn if it satisfies all
the following properties:

1. 0 ∈ V (the zero vector belongs to V ).

2. Whenever v ∈ V and c ∈ R, we have cv ∈ V (V is closed under scalar multi-
plication).

3. Whenever v,w ∈ V , we have v + w ∈ V (V is closed under addition).
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EXAMPLE 1

Let’s begin with some familiar examples.

(a) The trivial subspace consisting of just the zero vector 0 ∈ Rn is a subspace, since
c0 = 0 for any scalar c and 0 + 0 = 0.

(b) Rn itself is a subspace of Rn.

(c) Any line � through the origin in Rn is a subspace of Rn: If the direction vector of � is
u ∈ Rn, this means that

� = {tu : t ∈ R}.
To prove that � is a subspace, we must check that the three criteria hold:

1. Setting t = 0, we see that 0 ∈ �.
2. If v ∈ � and c ∈ R, then v = tu for some t ∈ R, and so cv = c(tu) = (ct)u,

which is again a scalar multiple of u and hence an element of �.

3. If v,w ∈ �, this means that v = su and w = tu for some scalars s and t . Then
v + w = su + tu = (s + t)u, so v + w ∈ �, as needed.

(d) Similarly, any plane through the origin in Rn is a subspace of Rn. We leave this to the
reader to check, but it is a special case of Proposition 1.2 below.

(e) Let a ∈ Rn be a nonzero vector, and consider the hyperplane passing through the
origin defined by V = {x ∈ Rn : a · x = 0}. Recall that a is the normal vector of the
hyperplane. We claim that V is a subspace. As expected, we check the three criteria:

1. Since a · 0 = 0, we conclude that 0 ∈ V .

2. Suppose v ∈ V and c ∈ R. Then a · (cv) = c(a · v) = c0 = 0, and so cv ∈ V as
well.

3. Suppose v,w ∈ V . Then a · (v + w) = (a · v)+ (a · w) = 0 + 0 = 0, and there-
fore v + w ∈ V , as we needed to show.

EXAMPLE 2

Let’s consider next a few subsets of R2 that are not subspaces, as pictured in Figure 1.1.

(a) (b) (c)

Not subspaces of R2

FIGURE 1.1

As we commented on p. 93, to show that a multi-part definition fails, we only need to
find one of the criteria that does not hold.
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(a) S = {(x1, x2) ∈ R2 : x2 = 2x1 + 1} is not a subspace. All three criteria fail, but it
suffices to point out 0 /∈ S.

(b) S = {(x1, x2) ∈ R2 : x1x2 = 0} is not a subspace. Each of the vectors v = (1, 0) and
w = (0, 1) lies in S, and yet their sum v + w = (1, 1) does not.

(c) S = {(x1, x2) ∈ R2 : x2 ≥ 0} is not a subspace. The vector v = (0, 1) lies in S, and
yet any negative scalar multiple of it, e.g., (−2)v = (0,−2), does not.

We now return to our motivating discussion. First, we consider the solution set of a
homogeneous linear system.

Proposition 1.1. Let A be an m× n matrix, and consider the set of solutions of the
homogeneous system of linear equations Ax = 0; that is, let

V = {x ∈ Rn : Ax = 0}.
Then V is a subspace of Rn.

Proof. The proof is essentially the same as Example 1(e) if we think of the equationAx = 0
as being the collection of equations A1 · x = A2 · x = · · · = Am · x = 0. But we would
rather phrase the argument in terms of the linearity properties of matrix multiplication,
discussed in Section 1 of Chapter 2.

As usual, we need only check that the three defining criteria all hold.

1. To check that 0 ∈ V , we recall thatA0 = 0, as a consequence of either of our ways
of thinking of matrix multiplication.

2. If v ∈ V and c ∈ R, then we must show that cv ∈ V . Well, A(cv) = c(Av) =
c0 = 0.

3. If v,w ∈ V , then we must show that v + w ∈ V . Since Av = Aw = 0, we have
A(v + w) = Av + Aw = 0 + 0 = 0, as required.

Thus, V is indeed a subspace of Rn.

Next, let v1, . . . , vk be vectors in Rn. In Chapter 1 we defined Span (v1, . . . , vk) to be
the set of all linear combinations of v1, . . . , vk; that is,

Span (v1, . . . , vk) = {v ∈ Rn : v = c1v1 + c2v2 + · · · + ckvk for some scalars c1, . . . , ck}.
Generalizing what we observed in Examples 1(c) and (d), we have the following proposition.

Proposition 1.2. Let v1, . . . , vk ∈ Rn. Then V = Span (v1, . . . , vk) is a subspace of Rn.

Proof. We check that all three criteria hold.

1. To see that 0 ∈ V , we merely take c1 = c2 = · · · = ck = 0. Then c1v1 + c2v2 +
· · · + ckvk = 0v1 + · · · + 0vk = 0 + · · · + 0 = 0.

2. Suppose v ∈ V and c ∈ R. By definition, there are scalars c1, . . . , ck so that
v = c1v1 + c2v2 + · · · + ckvk . Thus,

cv = c(c1v1 + c2v2 + · · · + ckvk) = (cc1)v1 + (cc2)v2 + · · · + (cck)vk,
which is again a linear combination of v1, . . . , vk , so cv ∈ V , as desired.

3. Suppose v,w ∈ V . This means there are scalars c1, . . . , ck and d1, . . . , dk so that1

v = c1v1 + · · · + ckvk and w = d1v1 + · · · + dkvk;

1This might be a good time to review the content of the box following Exercise 1.1.22.
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adding, we obtain

v + w = (c1v1 + · · · + ckvk)+ (d1v1 + · · · + dkvk)
= (c1 + d1)v1 + · · · + (ck + dk)vk,

which is again a linear combination of v1, . . . , vk and hence an element of V .

This completes the verification that V is a subspace of Rn.

Remark. Let V ⊂ Rn be a subspace and let v1, . . . , vk ∈ V . Then of course the subspace
Span (v1, . . . , vk) is a subset ofV . We say that v1, . . . , vk spanV if Span (v1, . . . , vk) = V .
(The point here is that every vector in V must be a linear combination of the vectors
v1, . . . , vk .)

EXAMPLE 3

The plane

P1 =

⎧⎪⎪⎨
⎪⎪⎩
s

⎡
⎢⎢⎣

1

−1

2

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

2

0

1

⎤
⎥⎥⎦ : s, t ∈ R

⎫⎪⎪⎬
⎪⎪⎭

is the span of the vectors

v1 =

⎡
⎢⎢⎣

1

−1

2

⎤
⎥⎥⎦ and v2 =

⎡
⎢⎢⎣

2

0

1

⎤
⎥⎥⎦

and is therefore a subspace of R3. On the other hand, the plane

P2 =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦+ s

⎡
⎢⎢⎣

1

−1

2

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

2

0

1

⎤
⎥⎥⎦ : s, t ∈ R

⎫⎪⎪⎬
⎪⎪⎭

is not a subspace. This is most easily verified by checking that 0 /∈ P2. Well, 0 ∈ P2

precisely when we can find values of s and t such that
⎡
⎢⎢⎣

0

0

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦+ s

⎡
⎢⎢⎣

1

−1

2

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

2

0

1

⎤
⎥⎥⎦ .

This amounts to the system of equations

s + 2t = −1

−s = 0

2s + t = 0 ,

which we easily see is inconsistent.
A word of warning here: We might have expressed P1 in the form

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1

1

−1

⎤
⎥⎥⎦+ s

⎡
⎢⎢⎣

1

−1

2

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

2

0

1

⎤
⎥⎥⎦ : s, t ∈ R

⎫⎪⎪⎬
⎪⎪⎭

;
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the presence of the “shifting” term may not prevent the plane from passing through the
origin.

EXAMPLE 4

Let

P1 = Span

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0

1

1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ and P2 = Span

⎛
⎜⎜⎝

⎡
⎢⎢⎣

−1

1

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2

1

2

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

We wish to find all the vectors contained in both P1 and P2, i.e., the intersection P1 ∩ P2.
A vector x lies in both P1 and P2 if and only if we can write x in both the forms

x = a

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦+ b

⎡
⎢⎢⎣

0

1

1

⎤
⎥⎥⎦ and x = c

⎡
⎢⎢⎣

−1

1

0

⎤
⎥⎥⎦+ d

⎡
⎢⎢⎣

2

1

2

⎤
⎥⎥⎦

for some scalars a, b, c, and d. Setting the two expressions for x equal to one another and
moving all the vectors to one side, we obtain the system of equations

−a

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦− b

⎡
⎢⎢⎣

0

1

1

⎤
⎥⎥⎦+ c

⎡
⎢⎢⎣

−1

1

0

⎤
⎥⎥⎦+ d

⎡
⎢⎢⎣

2

1

2

⎤
⎥⎥⎦ = 0.

In other words, we want to find all solutions of the system

⎡
⎢⎢⎣

1 0 −1 2

0 1 1 1

0 1 0 2

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

−a
−b
c

d

⎤
⎥⎥⎥⎥⎦

= 0,

and so we reduce the matrix

A =

⎡
⎢⎢⎣

1 0 −1 2

0 1 1 1

0 1 0 2

⎤
⎥⎥⎦

to reduced echelon form

R =

⎡
⎢⎢⎣

1 0 0 1

0 1 0 2

0 0 1 −1

⎤
⎥⎥⎦

and find that every solution of Ay = 0 is a scalar multiple of the vector
⎡
⎢⎢⎢⎢⎣

−a
−b
c

d

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

−1

−2

1

1

⎤
⎥⎥⎥⎥⎦
.
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This means that

x = 1

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦+ 2

⎡
⎢⎢⎣

0

1

1

⎤
⎥⎥⎦ = 1

⎡
⎢⎢⎣

−1

1

0

⎤
⎥⎥⎦+ 1

⎡
⎢⎢⎣

2

1

2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1

2

2

⎤
⎥⎥⎦

spans the intersection of P1 and P2. We expected such a result on geometric grounds, since
the intersection of two distinct planes through the origin in R3 should be a line.

We ask the reader to show in Exercise 6 that, more generally, the intersection of
subspaces is again always a subspace. We now investigate some other ways to concoct new
subspaces from old.

EXAMPLE 5

Let U and V be subspaces of Rn. We define their sum to be

U + V = {x ∈ Rn : x = u + v for some u ∈ U and v ∈ V }.
That is, U + V consists of all vectors that can be obtained by adding some vector in U to
some vector in V , as shown in Figure 1.2. Be careful to note that, unless one of U or V is

FIGURE 1.2

V

U

U + V

contained in the other, U + V is much larger than U ∪ V . We check that if U and V are
subspaces, then U + V is again a subspace:

1. Since 0 ∈ U and 0 ∈ V , we have 0 = 0 + 0 ∈ U + V .

2. Suppose x ∈ U + V and c ∈ R. We are to show that cx ∈ U + V . By definition,
x can be written in the form

x = u + v for some u ∈ U and v ∈ V.
Then we have

cx = c(u + v) = (cu)+ (cv) ∈ U + V,
noting that cu ∈ U and cv ∈ V since each of U and V is closed under scalar
multiplication.

3. Suppose x, y ∈ U + V . Then

x = u + v and y = u′ + v′ for some u, u′ ∈ U and v, v′ ∈ V.
Therefore, we have

x + y = (u + v)+ (u′ + v′) = (u + u′)+ (v + v′) ∈ U + V,
noting that u + u′ ∈ U and v + v′ ∈ V since U and V are both closed under ad-
dition.

Thus, as required, U + V is a subspace. Indeed, it is the smallest subspace containing both
U and V . (See Exercise 7.)
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Given anm× nmatrixA, we can think of the solution set of the homogeneous system
Ax = 0 as the set of all vectors that are orthogonal to each of the row vectors A1,A2, . . . ,Am,
and, hence, by Exercise 1.2.11, are orthogonal to every vector in V = Span (A1, . . . ,Am).
This leads us to a very important and natural notion.

Definition. Given a subspace V ⊂ Rn, define

V ⊥ = {x ∈ Rn : x · v = 0 for every v ∈ V }.
V ⊥ (read “V perp”) is called the orthogonal complement of V .2 (See Figure 1.3.)

FIGURE 1.3

V

V⊥

Proposition 1.3. V ⊥ is a subspace of Rn.

Proof. We check the requisite three properties.

1. 0 ∈ V ⊥ because 0 · v = 0 for every v ∈ V .

2. Suppose x ∈ V ⊥ and c ∈ R. We must check that cx ∈ V ⊥. We calculate

(cx) · v = c(x · v) = 0

for all v ∈ V , as required.

3. Suppose x, y ∈ V ⊥; we must check that x + y ∈ V ⊥. Well,

(x + y) · v = (x · v)+ (y · v) = 0 + 0 = 0

for all v ∈ V , as needed.

EXAMPLE 6

Let V = Span
(
(1, 2, 1)

) ⊂ R3. Then V ⊥ is by definition the plane W = {x : x1 + 2x2 +
x3 = 0}. And what is W⊥? Clearly, any multiple of (1, 2, 1) must be orthogonal to every
vector inW ; but is Span

(
(1, 2, 1)

)
all ofW⊥? Common sense suggests that the answer is

yes, but let’s be sure.
We know that the vectors⎡

⎢⎢⎣
−2

1

0

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

−1

0

1

⎤
⎥⎥⎦

spanW (why?), so we can findW⊥ by solving the equations

(−2, 1, 0) · x = (−1, 0, 1) · x = 0.

2In fact, both this definition and Proposition 1.3 work just fine for any subset V ⊂ Rn.
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By finding the reduced echelon form of the coefficient matrix

A =
[
−2 1 0

−1 0 1

]
�
[

1 0 −1

0 1 −2

]
,

we see that, indeed, every vector inW⊥ is a multiple of (1, 2, 1), as we suspected.

It is extremely important to observe that if c ∈ V ⊥, then all the elements of V satisfy
the linear equation c · x = 0. Thus, there is an intimate relation between elements of V ⊥
and Cartesian equations defining the subspace V . We will explore and exploit this relation
more fully in the next few sections.

It will be useful for us to make the following definition.

Definition. LetV andW be subspaces of Rn. We sayV andW are orthogonal subspaces
if every element of V is orthogonal to every element ofW , i.e., if

v · w = 0 for every v ∈ V and every w ∈ W.

Remark. If V = W⊥ or W = V ⊥, then clearly V and W are orthogonal subspaces. On
the other hand, if V and W are orthogonal subspaces of Rn, then certainly W ⊂ V ⊥ and
V ⊂ W⊥. (See Exercise 12.) Of course, W need not be equal to V ⊥: Consider, for
example, V to be the x1-axis and W to be the x2-axis in R3. Then V ⊥ is the x2x3-plane,
which contains W and more. It is natural, however, to ask the following question: If
W = V ⊥, must V = W⊥? We will return to this shortly.

Exercises 3.1

1.∗ Which of the following are subspaces? Justify your answer in each case.
a. {x ∈ R2 : x1 + x2 = 1}

b. {x ∈ R3 : x =
⎡
⎢⎣

a

b

a + b

⎤
⎥⎦ for some a, b ∈ R}

c. {x ∈ R3 : x1 + 2x2 < 0}
d. {x ∈ R3 : x2

1 + x2
2 + x2

3 = 1}
e. {x ∈ R3 : x2

1 + x2
2 + x2

3 = 0}
f. {x ∈ R3 : x2

1 + x2
2 + x2

3 = −1}

g. {x ∈ R3 : x = s

⎡
⎢⎣

2

1

1

⎤
⎥⎦+ t

⎡
⎢⎣

1

2

1

⎤
⎥⎦ for some s, t ∈ R}

h. {x ∈ R3 : x =
⎡
⎢⎣

3

0

1

⎤
⎥⎦+ s

⎡
⎢⎣

2

1

1

⎤
⎥⎦+ t

⎡
⎢⎣

1

2

1

⎤
⎥⎦ for some s, t ∈ R}

i. {x ∈ R3 : x =
⎡
⎢⎣

2

4

−1

⎤
⎥⎦+ s

⎡
⎢⎣

2

1

1

⎤
⎥⎦+ t

⎡
⎢⎣

1

2

−1

⎤
⎥⎦ for some s, t ∈ R}
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2.∗ Decide whether each of the following collections of vectors spans R3.
a. (1, 1, 1), (1, 2, 2)

b. (1, 1, 1), (1, 2, 2), (1, 3, 3)

c. (1, 0, 1), (1,−1, 1), (3, 5, 3), (2, 3, 2)

d. (1, 0,−1), (2, 1, 1), (0, 1, 5)

3.∗ Criticize the following argument: For any vector v, we have 0v = 0. So the first
criterion for subspaces is, in fact, a consequence of the second criterion and could
therefore be omitted.

4. Let A be an n× n matrix. Verify that

V = {x ∈ Rn : Ax = 3x}
is a subspace of Rn.

5. Let A and B be m× n matrices. Show that

V = {x ∈ Rn : Ax = Bx}
is a subspace of Rn.

6. a. Let U and V be subspaces of Rn. Define the intersection of U and V to be

U ∩ V = {x ∈ Rn : x ∈ U and x ∈ V }.
Show that U ∩ V is a subspace of Rn. Give two examples.

b. Is U ∪ V = {x ∈ Rn : x ∈ U or x ∈ V } always a subspace of Rn? Give a proof or
counterexample.

7. Prove that ifU and V are subspaces of Rn andW is a subspace of Rn containing all the
vectors of U and all the vectors of V (that is, U ⊂ W and V ⊂ W ), then U + V ⊂ W .
This means that U + V is the smallest subspace containing both U and V .

8. Let v1, . . . , vk ∈ Rn and let v ∈ Rn. Prove that

Span (v1, . . . , vk) = Span (v1, . . . , vk, v) if and only if v ∈ Span (v1, . . . , vk).

9. Determine the intersection of the subspaces P1 and P2 in each case:
a.∗ P1 = Span

(
(1, 0, 1), (2, 1, 2)

)
, P2 = Span

(
(1,−1, 0), (1, 3, 2)

)
b. P1 = Span

(
(1, 2, 2), (0, 1, 1)

)
, P2 = Span

(
(2, 1, 1), (1, 0, 0)

)
c. P1 = Span

(
(1, 0,−1), (1, 2, 3)

)
, P2 = {x : x1 − x2 + x3 = 0}

d.∗ P1 = Span
(
(1, 1, 0, 1), (0, 1, 1, 0)

)
, P2 = Span

(
(0, 0, 1, 1), (1, 1, 0, 0)

)
e. P1 = Span

(
(1, 0, 1, 2), (0, 1, 0,−1)

)
, P2 = Span

(
(1, 1, 2, 1), (1, 1, 0, 1)

)

10.�∗ Let V ⊂ Rn be a subspace. Show that V ∩ V ⊥ = {0}.
11. Suppose V andW are orthogonal subspaces of Rn, i.e., v · w = 0 for every v ∈ V and

every w ∈ W . Prove that V ∩W = {0}.
12.�∗ Suppose V andW are orthogonal subspaces of Rn, i.e., v · w = 0 for every v ∈ V and

every w ∈ W . Prove that V ⊂ W⊥.

13.� Let V ⊂ Rn be a subspace. Show that V ⊂ (V ⊥)⊥. Do you think more is true?

14.� Let V andW be subspaces of Rn with the property that V ⊂ W . Prove thatW⊥ ⊂ V ⊥.

15. Let A be an m× n matrix. Let V ⊂ Rn andW ⊂ Rm be subspaces.
a. Show that {x ∈ Rn : Ax ∈ W } is a subspace of Rn.

b. Show that {y ∈ Rm : y = Ax for some x ∈ V } is a subspace of Rm.

16. Suppose A is a symmetric n× n matrix. Let V ⊂ Rn be a subspace with the property
that Ax ∈ V for every x ∈ V . Show that Ay ∈ V ⊥ for all y ∈ V ⊥.

17. Use Exercises 13 and 14 to prove that for any subspace V ⊂ Rn, we have V ⊥ =(
(V ⊥)⊥

)⊥
.

18. Suppose U and V are subspaces of Rn. Prove that (U + V )⊥ = U⊥ ∩ V ⊥.
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2 The Four Fundamental Subspaces

As we have seen, two of the most important constructions we’ve studied in linear algebra—
the span of a collection of vectors and the set of solutions of a homogeneous linear system
of equations—lead to subspaces. Let’s use these notions to define four important subspaces
associated to an m× n matrix.

The first two are already quite familiar to us from our work in Chapter 1, and we have
seen in Section 1 of this chapter that they are in fact subspaces. Here we will give them
their official names.

Definition (Nullspace). Let A be an m× n matrix. The nullspace of A is the set of
solutions of the homogeneous system Ax = 0:

N(A) = {x ∈ Rn : Ax = 0}.

Definition (Column Space). Let A be an m× n matrix with column vectors a1, . . . ,

an ∈ Rm. We define the column space of A to be the subspace of Rm spanned by the
column vectors:

C(A) = Span (a1, . . . , an) ⊂ Rm.

Of course, the nullspace, N(A), is just the set of solutions of the homogeneous linear
system Ax = 0 that we first encountered in Section 4 of Chapter 1. What is less obvious is
that we encountered the column space, C(A), in Section 5 of Chapter 1, as we now see.

Proposition 2.1. Let A be an m× n matrix. Let b ∈ Rm. Then b ∈ C(A) if and only if
b = Ax for some x ∈ Rn. That is,

C(A) = {b ∈ Rm : Ax = b is consistent}.

Proof. By definition, C(A) = Span (a1, . . . , an), and so b ∈ C(A) if and only if b is a
linear combination of the vectors a1, . . . , an; i.e., b = x1a1 + · · · + xnan for some scalars
x1, . . . , xn. Recalling our crucial observation (∗) on p. 53, we conclude that b ∈ C(A) if
and only if b = Ax for some x ∈ Rn. The final reformulation is straightforward so long as
we remember that the system Ax = b is consistent provided it has a solution.

Remark. If, as in Section 1 of Chapter 2, we think ofA as giving a functionμA : Rn → Rm,
then C(A) ⊂ Rm is the set of all the values of the function μA, i.e., the image of μA. It
is important to keep track of where each subspace “lives” as you continue through this
chapter: The nullspace N(A) consists of x’s (inputs of μA) and is a subspace of Rn; the
column space C(A) consists of b’s (outputs of the function μA) and is a subspace of Rm.

A theme we explored in Chapter 1 was that lines and planes can be described either
parametrically or by Cartesian equations. This idea should work for general subspaces of
Rn. We give a parametric description of a subspace V when we describe V as the span of
vectors v1, . . . , vk . Putting these vectors as the columns of a matrix A amounts to writing
V = C(A). Similarly, giving Cartesian equations forV , once we translate them into matrix
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form, is giving V = N(A) for the appropriate matrix A.3 Much of Sections 4 and 5 of
Chapter 1 was devoted to going from one description to the other: In our present language,
by finding the general solution of Ax = 0, we obtain a parametric description of N(A)
and thus obtain vectors that span that subspace. On the other hand, finding the constraint
equations for Ax = b to be consistent provides a set of Cartesian equations for C(A).

EXAMPLE 1

Let

A =

⎡
⎢⎢⎣

1 −1 1 2

1 0 1 1

1 2 1 −1

⎤
⎥⎥⎦ .

Of course, we bring A to its reduced echelon form

R =

⎡
⎢⎢⎣

1 0 1 1

0 1 0 −1

0 0 0 0

⎤
⎥⎥⎦

and read off the general solution of Ax = 0:

x1 = −x3 − x4

x2 = x4

x3 = x3

x4 = x4 ,

that is,

x =

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

−x3−x4

x4

x3

x4

⎤
⎥⎥⎥⎥⎦

= x3

⎡
⎢⎢⎢⎢⎣

−1

0

1

0

⎤
⎥⎥⎥⎥⎦

+ x4

⎡
⎢⎢⎢⎢⎣

−1

1

0

1

⎤
⎥⎥⎥⎥⎦
.

From this we see that the vectors

v1 =

⎡
⎢⎢⎢⎢⎣

−1

0

1

0

⎤
⎥⎥⎥⎥⎦

and v2 =

⎡
⎢⎢⎢⎢⎣

−1

1

0

1

⎤
⎥⎥⎥⎥⎦

span N(A).

On other hand, we know that the vectors

⎡
⎢⎣

1

1

1

⎤
⎥⎦,

⎡
⎢⎣

−1

0

2

⎤
⎥⎦, and

⎡
⎢⎣

2

1

−1

⎤
⎥⎦ span C(A). To find

Cartesian equations for C(A), we find the constraint equations for Ax = b to be consistent

3The astute reader may be worried that we have not yet shown that every subspace can be described in either
manner. We will address this matter in Section 4.
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by reducing the augmented matrix
⎡
⎢⎢⎣

1 −1 1 2 b1

1 0 1 1 b2

1 2 1 −1 b3

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

1 −1 1 2 b1

0 1 0 −1 b2 − b1

0 0 0 0 2b1 − 3b2 + b3

⎤
⎥⎥⎦ ,

from which we see that 2b1 − 3b2 + b3 = 0 gives a Cartesian description of C(A). Of
course, we might want to replace b’s with x’s and just write

C(A) = {x ∈ R3 : 2x1 − 3x2 + x3 = 0}.
We can summarize these results by defining new matrices

X =

⎡
⎢⎢⎢⎢⎣

−1 −1

0 1

1 0

0 1

⎤
⎥⎥⎥⎥⎦

and Y =
[
2 −3 1

]
,

and then we have N(A) = C(X) and C(A) = N(Y ). One final remark: Note that the
coefficients of the constraint equation(s), i.e., the row(s) of Y , give vectors orthogonal to
C(A), just as the rows of A are orthogonal to N(A) (and hence to the columns of X).

We now move on to discuss the last two of the four subspaces associated to the matrix
A. In the interest of fair play, since we’ve already dedicated a subspace to the columns of
A, it is natural to make the following definition.

Definition (RowSpace). LetA be anm× nmatrix with row vectors A1, . . . ,Am ∈ Rn.
We define the row space of A to be the subspace of Rn spanned by the row vectors
A1, . . . ,Am:

R(A) = Span (A1, . . . ,Am) ⊂ Rn.

It is important to remember that, as vectors in Rn, the Ai are still represented by column
vectors with n entries. But we continue our practice of writing vectors in parentheses when
it is typographically more convenient.

Noting that R(A) = C(AT), it is natural then to complete the quartet as follows:

Definition (Left Nullspace). We define the left nullspace of the m× n matrix A to be

N(AT) = {x ∈ Rm : ATx = 0} = {x ∈ Rm : xTA = 0T}.
(The latter description accounts for the terminology.)

Just as elements of the nullspace of A give us the linear combinations of the column
vectors of A that result in the zero vector, elements of the left nullspace give us the linear
combinations of the row vectors of A that result in zero.

Once again, we pause to remark on the “locations” of the subspaces. N(A) and R(A)
are “neighbors,” both being subspaces of Rn (the domain of the linear map μA). C(A) and
N(AT) are “neighbors” in Rm, the range of μA and the domain of μAT . We will soon have
a more complete picture of the situation.

In the discussion leading up to Proposition 1.3 we observed that vectors in the nullspace
ofA are orthogonal to all the row vectors ofA—that is, that N(A) and R(A) are orthogonal
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subspaces. In fact, the orthogonality relations among our “neighboring” subspaces will
provide a lot of information about linear maps. We begin with the following proposition.

Proposition 2.2. Let A be an m× n matrix. Then N(A) = R(A)⊥.

Proof. If x ∈ N(A), then x is orthogonal to each row vector A1, . . . ,Am ofA. By Exercise
1.2.11, x is orthogonal to every vector in R(A) and is therefore an element of R(A)⊥. Thus,
N(A) is a subset of R(A)⊥, and so we need only show that R(A)⊥ is a subset of N(A).
(Recall the box on p. 12.) If x ∈ R(A)⊥, this means that x is orthogonal to every vector
in R(A), so, in particular, x is orthogonal to each of the row vectors A1, . . . ,Am. But this
means that Ax = 0, so x ∈ N(A), as required.

Since C(A) = R(AT), when we substituteAT forA the following result is an immediate
consequence of Proposition 2.2.

Proposition 2.3. Let A be an m× n matrix. Then N(AT) = C(A)⊥.

Proposition 2.3 has a very pleasant interpretation in terms of the constraint equations
for Ax = b to be consistent—the Cartesian equations for C(A). As we commented in
Section 1, the coefficients of such a Cartesian equation give a vector orthogonal to C(A),
i.e., an element of C(A)⊥ = N(AT). Thus, a constraint equation gives a linear combination
of the rows that results in the zero vector. But, of course, this is where constraint equations
come from in the first place. Conversely, any such relation among the row vectors of A
gives an element of N(AT) = C(A)⊥, and hence the coefficients of a constraint equation
that b must satisfy in order for Ax = b to be consistent.

EXAMPLE 2

Let

A =

⎡
⎢⎢⎢⎢⎣

1 2

1 1

0 1

1 2

⎤
⎥⎥⎥⎥⎦
.

We find the constraint equations forAx = b to be consistent by row reducing the augmented
matrix:⎡

⎢⎢⎢⎢⎣

1 2 b1

1 1 b2

0 1 b3

1 2 b4

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 2 b1

0 −1 b2 − b1

0 1 b3

0 0 b4 − b1

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 2 b1

0 1 b1 − b2

0 0 −b1 + b2 + b3

0 0 −b1 + b4

⎤
⎥⎥⎥⎥⎦
.

The constraint equations are

−b1 + b2 + b3 = 0

−b1 + b4 = 0 .

Note that the vectors

c1 =

⎡
⎢⎢⎢⎢⎣

−1

1

1

0

⎤
⎥⎥⎥⎥⎦

and c2 =

⎡
⎢⎢⎢⎢⎣

−1

0

0

1

⎤
⎥⎥⎥⎥⎦

are in N(AT) and correspond to linear combinations of the rows yielding 0.
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Proposition 2.3 tells us that N(AT) = C(A)⊥, and so N(AT) and C(A) are orthogonal
subspaces. It is natural, then, to ask whether N(AT)⊥ = C(A), as well.

Proposition 2.4. Let A be an m× n matrix. Then C(A) = N(AT)⊥.

Proof. Since C(A) and N(AT) are orthogonal subspaces, we infer from Exercise 3.1.12
that C(A) ⊂ N(AT)⊥. On the other hand, from Section 5 of Chapter 1 we know that there
is a system of constraint equations

c1 · b = · · · = ck · b = 0

that give necessary and sufficient conditions for b ∈ Rm to belong to C(A). Setting V =
Span (c1, . . . , ck) ⊂ Rm, this means that C(A) = V ⊥. Since each such vector cj is an
element of C(A)⊥ = N(AT), we conclude thatV ⊂ N(AT). It follows from Exercise 3.1.14
that N(AT)⊥ ⊂ V ⊥ = C(A). Combining the two inclusions, we have C(A) = N(AT)⊥, as
required.

Now that we have proved Proposition 2.4, we can complete the circle of ideas. We
have the following result, summarizing the geometric relations of the pairs of the four
fundamental subspaces.

Theorem 2.5. Let A be an m× n matrix. Then

1. R(A)⊥ = N(A)

2. N(A)⊥ = R(A)

3. C(A)⊥ = N(AT)

4. N(AT)⊥ = C(A)

Proof. All but the second are the contents of Propositions 2.2, 2.3, and 2.4. The second
follows from Proposition 2.4 by substituting AT for A.

Figure 2.1 is a schematic diagram giving a visual representation of these results.

N(A)

R(A)

C(A)
Rn Rm

μA

μA�

N(A�)

FIGURE 2.1

Remark. Combining these pairs of results, we conclude that for any of the four fundamental
subspaces V = R(A), N(A), C(A), and N(AT), it is the case that (V ⊥)⊥ = V . If we knew
that every subspace of Rn could be so written, we would have the result in general; this will
come soon.
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EXAMPLE 3

Let’s look for matrices whose row spaces are the plane in R3 spanned by

⎡
⎢⎣

1

1

1

⎤
⎥⎦ and

⎡
⎢⎣

1

−1

−1

⎤
⎥⎦

and satisfy the extra conditions given below. Note, first of all, that these must be m× 3
matrices for some positive integers m.

(a) Suppose we want such a matrix A with

⎡
⎢⎣

1

2

−1

⎤
⎥⎦ in its nullspace. Remember that

N(A) = R(A)⊥. We cannot succeed: Although

⎡
⎢⎣

1

2

−1

⎤
⎥⎦ is orthogonal to

⎡
⎢⎣

1

−1

−1

⎤
⎥⎦, it is

not orthogonal to

⎡
⎢⎣

1

1

1

⎤
⎥⎦ and hence not orthogonal to every vector in the row space.

(b) Suppose we want such a matrix with its column space equal to R2. Now we win: We
need a 2 × 3 matrix, and we just try

A =
[

1 1 1

1 −1 −1

]
.

Then C(A) = Span

([
1

1

]
,

[
1

−1

])
= R2, as required.

(c) Suppose we want such a matrix A whose column space is spanned by

[
1

−1

]
. This

seems impossible, but here’s an argument to that effect. If we had such a matrix

A, note that C(A)⊥ = N(AT) is spanned by

[
1

1

]
, and so we would have to have

A1 + A2 = 0. This means that the row space of A is a line.

(d) Following this reasoning, let’s look for a matrix A whose column space is spanned

by

⎡
⎢⎣

1

0

1

⎤
⎥⎦ and

⎡
⎢⎣

0

1

1

⎤
⎥⎦. We note that A now must be a 3 × 3 matrix. As before, note that

⎡
⎢⎣

1

1

−1

⎤
⎥⎦ ∈ C(A)⊥ = N(AT), and so the third row of Amust be the sum of the first two

rows. So now we just try

A =

⎡
⎢⎢⎣

1 1 1

1 −1 −1

2 0 0

⎤
⎥⎥⎦ .
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Perhaps it’s not obvious thatA really works, but if we add the first and second columns,

we get

⎡
⎢⎣

2

0

2

⎤
⎥⎦, and if we subtract them we get

⎡
⎢⎣

0

2

2

⎤
⎥⎦, so C(A) contains both the desired

vectors and hence their span. We leave it to the reader to check that C(A) is not larger
than this span.

Exercises 3.2

1.�∗ Show that if B is obtained from A by performing one or more row operations, then
R(B) = R(A).

2. What vectors b are in the column space ofA in each case? (Give constraint equations.)
Check that the coefficients of the constraint equations give linear combinations of the
rows of A summing to 0.

a.∗ A =
⎡
⎢⎣

3 −1

6 −2

−9 3

⎤
⎥⎦ b.∗ A =

⎡
⎢⎣

1 1 1

−1 1 2

1 3 −5

⎤
⎥⎦ c. A =

⎡
⎢⎢⎢⎣

1 −2 1

0 1 3

−1 3 0

1 0 −1

⎤
⎥⎥⎥⎦

3. Given each matrix A, find matricesX and Y so that C(A) = N(X) and N(A) = C(Y ).

a.∗ A =
⎡
⎢⎣

3 −1

6 −2

−9 3

⎤
⎥⎦ b. A =

⎡
⎢⎣

1 1 0

2 1 1

1 −1 2

⎤
⎥⎦ c. A =

⎡
⎢⎢⎢⎣

1 1 1

1 2 0

1 1 1

1 0 2

⎤
⎥⎥⎥⎦

4.∗ Let A =
⎡
⎢⎣

1 2 1 1

−1 0 3 4

2 2 −2 −3

⎤
⎥⎦.

a. Give constraint equations for C(A).
b. Find vectors spanning N(AT).

5.∗ Let

L =

⎡
⎢⎢⎣

1 0 0

2 1 0

1 −1 1

⎤
⎥⎥⎦ and U =

⎡
⎢⎢⎣

1 2 1 1

0 0 2 −2

0 0 0 0

⎤
⎥⎥⎦ .

If A = LU , give vectors that span R(A), C(A), and N(A).

6. a. Construct a matrix whose column space contains

⎡
⎢⎣

1

1

1

⎤
⎥⎦ and

⎡
⎢⎣

0

1

1

⎤
⎥⎦ and whose nullspace

contains

⎡
⎢⎣

1

0

1

⎤
⎥⎦ and

⎡
⎢⎣

0

1

0

⎤
⎥⎦, or explain why none can exist.

b.∗ Construct a matrix whose column space contains

⎡
⎢⎣

1

1

1

⎤
⎥⎦ and

⎡
⎢⎣

0

1

1

⎤
⎥⎦ and whose nullspace

contains

⎡
⎢⎢⎢⎣

1

0

1

0

⎤
⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎣

1

0

0

1

⎤
⎥⎥⎥⎦, or explain why none can exist.
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7. Let A =
⎡
⎢⎣

1 1 0

1 1 0

0 1 1

⎤
⎥⎦ and B =

⎡
⎢⎣

1 1 0

−1 −1 0

0 −1 −1

⎤
⎥⎦.

a. Give C(A) and C(B). Are they lines, planes, or all of R3?

b. Describe C(A+ B) and C(A)+ C(B). Compare your answers.

8. a.∗ Construct a 3 × 3 matrix A with C(A) ⊂ N(A).
b. Construct a 3 × 3 matrix A with N(A) ⊂ C(A).
c. Do you think there can be a 3 × 3 matrix A with N(A) = C(A)? Why or why not?

d. Construct a 4 × 4 matrix A with C(A) = N(A).

9.∗ Let A be an m× n matrix and recall that we have the associated function μA : Rn →
Rm defined by μA(x) = Ax. Show that μA is a one-to-one function if and only if
N(A) = {0}.

10.� Let A be an m× n matrix and B be an n× p matrix. Prove that
a. N(B) ⊂ N(AB).
b. C(AB) ⊂ C(A). (Hint: Use Proposition 2.1.)

c. N(B) = N(AB) when A is n× n and nonsingular. (Hint: See the box on p. 12.)

d. C(AB) = C(A) when B is n× n and nonsingular.

11.� Let A be an m× n matrix. Prove that N(ATA) = N(A). (Hint: Use Exercise 10 and
Exercise 2.5.15.)

12. Suppose A and B are m× n matrices. Prove that C(A) and C(B) are orthogonal
subspaces of Rm if and only if ATB = O.

13. Suppose A is an n× n matrix with the property that A2 = A.
a. Prove that C(A) = {x ∈ Rn : x = Ax}.
b. Prove that N(A) = {x ∈ Rn : x = u − Au for some u ∈ Rn}.
c. Prove that C(A) ∩ N(A) = {0}.
d. Prove that C(A)+ N(A) = Rn.

3 Linear Independence and Basis

In view of our discussion in the preceding section, it is natural to ask the following question:

Given vectors v1, . . . , vk ∈ Rn and v ∈ Rn, is v ∈ Span (v1, . . . , vk)?

Of course, we recognize that this is a question of whether there exist scalars c1, . . . , ck such
that v = c1v1 + c2v2 + · · · + ckvk . As we are well aware, this is, in turn, a question of
whether a certain (inhomogeneous) system of linear equations has a solution. As we saw
in Chapter 1, one is often interested in the allied question: Is that solution unique?

EXAMPLE 1

Let

v1 =

⎡
⎢⎢⎣

1

1

2

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

1

−1

0

⎤
⎥⎥⎦ , v3 =

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦ , and v =

⎡
⎢⎢⎣

1

1

0

⎤
⎥⎥⎦ .
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We ask first of all whether v ∈ Span (v1, v2, v3). This is a familiar question when we recast
it in matrix notation: Let

A =

⎡
⎢⎢⎣

1 1 1

1 −1 0

2 0 1

⎤
⎥⎥⎦ and b =

⎡
⎢⎢⎣

1

1

0

⎤
⎥⎥⎦ .

Is the system Ax = b consistent? Immediately we write down the appropriate augmented
matrix and reduce to echelon form:

⎡
⎢⎢⎣

1 1 1 1

1 −1 0 1

2 0 1 0

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

1 1 1 1

0 2 1 0

0 0 0 −2

⎤
⎥⎥⎦ ,

so the system is obviously inconsistent. The answer is: No, v is not in Span (v1, v2, v3).
What about

w =

⎡
⎢⎢⎣

2

3

5

⎤
⎥⎥⎦ ?

As the reader can easily check, w = 3v1 − v3, so w ∈ Span (v1, v2, v3). What’s more,
w = 2v1 − v2 + v3, as well. So, obviously, there is no unique expression for w as a linear
combination of v1, v2, and v3. But we can conclude more: Setting the two expressions for
w equal, we obtain

3v1 − v3 = 2v1 − v2 + v3, i.e., v1 + v2 − 2v3 = 0.

That is, there is a nontrivial relation among the vectors v1, v2, and v3, and this is why we
have different ways of expressing w as a linear combination of the three of them. Indeed,
because v1 = −v2 + 2v3, we can see easily that any linear combination of v1, v2, and v3 is
a linear combination of just v2 and v3:

c1v1 + c2v2 + c3v3 = c1(−v2 + 2v3)+ c2v2 + c3v3 = (c2 − c1)v2 + (c3 + 2c1)v3.

The vector v1 was redundant, since

Span (v1, v2, v3) = Span (v2, v3).

We might surmise that the vector w can now be written uniquely as a linear combination of
v2 and v3. This is easy to check with an augmented matrix:

[
A′ | w

] =

⎡
⎢⎢⎣

1 1 2

−1 0 3

0 1 5

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

1 1 2

0 1 5

0 0 0

⎤
⎥⎥⎦ ;

from the fact that the matrix A′ has rank 2, we infer that the system of equations has a
unique solution.
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In the language of functions, the question of uniqueness is the question of whether
the function μA : R3 → R3 is one-to-one. Remember that we say f is a one-to-one
function if

whenever a �= b, it must be the case that f (a) �= f (b).

Given some function y = f (x), we might ask if, for a certain value r , we can solve
the equation f (x) = r . When r is in the image of the function, there is at least one
solution. Is the solution unique? If f is a one-to-one function, there can be at most
one solution of the equation f (x) = r .

Next we show that the question of uniqueness we raised earlier can be reduced to one
basic question, which will be crucial to all our future work.

Proposition 3.1. Let v1, . . . , vk ∈ Rn. If the zero vector has a unique expression as a linear
combination of v1, . . . , vk , that is, if

c1v1 + c2v2 + · · · + ckvk = 0 ⇒ c1 = c2 = · · · = ck = 0,

then every vector v ∈ Span (v1, . . . , vk) has a unique expression as a linear combination
of v1, . . . , vk .

Proof. By considering the matrix A whose column vectors are v1, . . . , vk , we can de-
duce this immediately from Proposition 5.4 of Chapter 1. However, we prefer to give a
coordinate-free proof that is typical of many of the arguments we shall be encountering for
a while.

Suppose that for some v ∈ Span (v1, . . . , vk) there are two expressions

v = c1v1 + c2v2 + · · · + ckvk and

v = d1v1 + d2v2 + · · · + dkvk.
Then, subtracting, we obtain

0 = (c1 − d1)v1 + · · · + (ck − dk)vk.
Since the only way to express the zero vector as a linear combination of v1, . . . , vk is
with every coefficient equal to 0, we conclude that c1 − d1 = c2 − d2 = · · · = ck − dk =
0, which means, of course, that c1 = d1, c2 = d2, . . . , ck = dk . That is, v has a unique
expression as a linear combination of v1, . . . , vk .

This discussion leads us to make the following definition.

Definition. The (indexed) set of vectors {v1, . . . , vk} is called linearly independent if

c1v1 + c2v2 + · · · + ckvk = 0 ⇒ c1 = c2 = · · · = ck = 0,

that is, if the only way of expressing the zero vector as a linear combination of v1, . . . , vk
is the trivial linear combination 0v1 + · · · + 0vk .

The set of vectors {v1, . . . , vk} is called linearly dependent if it is not linearly
independent—i.e., if there is some expression

c1v1 + c2v2 + · · · + ckvk = 0, where not all the ci’s are 0.
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The language is problematic here. Many mathematicians—including at least one of
the authors of this text—often say things like “the vectors v1, . . . , vk are linearly
independent.” But linear independence (or dependence) is a property of the whole
collection of vectors, not of the individual vectors. What’s worse, we really should
refer to an ordered list of vectors rather than to a set of vectors. For example, any
list in which some vector, v, appears twice is obviously giving a linearly dependent
collection, but the set {v, v} is indistinguishable from the set {v}. There seems to be
no ideal route out of this morass! Having said all this, we warn the gentle reader that
we may occasionally say, “the vectors v1, . . . , vk are linearly (in)dependent” where it
would be too clumsy to be more pedantic. Just stay alert!!

EXAMPLE 2

We wish to decide whether the vectors

v1 =

⎡
⎢⎢⎢⎢⎣

1

0

1

2

⎤
⎥⎥⎥⎥⎦
, v2 =

⎡
⎢⎢⎢⎢⎣

2

1

1

1

⎤
⎥⎥⎥⎥⎦
, and v3 =

⎡
⎢⎢⎢⎢⎣

1

1

0

−1

⎤
⎥⎥⎥⎥⎦

∈ R4

form a linearly independent set.

Here is a piece of advice: It is virtually always the case that when you are presented
with a set of vectors {v1, . . . , vk} that you are to prove linearly independent, you should
write,

“Suppose c1v1 + c2v2 + · · · + ckvk = 0. I must show that c1 = · · · = ck = 0.”

You then use whatever hypotheses you’re given to arrive at that conclusion.
The definition of linear independence is a particularly subtle one, largely because

of the syntax. Suppose we know that {v1, . . . , vk} is linearly independent. As a result,
we know that if it should happen that c1v1 + c2v2 + · · · + ckvk = 0, then it must be
that c1 = c2 = · · · = ck = 0. But we may never blithely assert that c1v1 + c2v2 +
· · · + ckvk = 0.

Suppose c1v1 + c2v2 + c3v3 = 0, i.e.,

c1

⎡
⎢⎢⎢⎢⎣

1

0

1

2

⎤
⎥⎥⎥⎥⎦

+ c2

⎡
⎢⎢⎢⎢⎣

2

1

1

1

⎤
⎥⎥⎥⎥⎦

+ c3

⎡
⎢⎢⎢⎢⎣

1

1

0

−1

⎤
⎥⎥⎥⎥⎦

= 0.

Can we conclude that c1 = c2 = c3 = 0? We recognize this as a homogeneous system of
linear equations: ⎡

⎢⎢⎢⎢⎣

1 2 1

0 1 1

1 1 0

2 1 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
c1

c2

c3

⎤
⎥⎥⎦ = 0.
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By now we are old hands at solving such systems. We find that the echelon form of the
coefficient matrix is ⎡

⎢⎢⎢⎢⎣

1 2 1

0 1 1

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎦
,

and so our system of equations in fact has infinitely many solutions. For example, we can
take c1 = 1, c2 = −1, and c3 = 1. The vectors therefore form a linearly dependent set.

EXAMPLE 3

Suppose u, v,w ∈ Rn. We show next that if {u, v,w} is linearly independent, then so is
{u + v, v + w, u + w}. Suppose

c1(u + v)+ c2(v + w)+ c3(u + w) = 0.

We must show that c1 = c2 = c3 = 0. We use the distributive property to rewrite our
equation as

(c1 + c3)u + (c1 + c2)v + (c2 + c3)w = 0.

Since {u, v,w} is linearly independent, we may infer that the coefficients of u, v, and w
must each be equal to 0. Thus,

c1 + c3 = 0

c1 + c2 = 0

c2 + c3 = 0 ,

and we leave it to the reader to check that the only solution of this system of equations is,
in fact, c1 = c2 = c3 = 0, as desired.

EXAMPLE 4

Any time one has a list of vectors v1, . . . , vk in which one of the vectors is the zero vector,
say v1 = 0, then the set of vectors must be linearly dependent, because the equation

1v1 = 0

is a nontrivial linear combination of the vectors yielding the zero vector.

EXAMPLE 5

How can two nonzero vectors u and v give rise to a linearly dependent set? By definition,
this means that there is a linear combination

au + bv = 0,

where, to start, either a �= 0 or b �= 0. But if, say, a = 0, then the equation reduces to
bv = 0; since b �= 0, we must have v = 0, which contradicts the hypothesis that the vectors
are nonzero. Thus, in this case, we must have both a and b �= 0. We may write u = − b

a
v,

so u is a scalar multiple of v. Hence two nonzero linearly dependent vectors are parallel
(and vice versa).
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How can a collection of three nonzero vectors be linearly dependent? As before, there
must be a linear combination

au + bv + cw = 0,

where (at least) one of a, b, and c is nonzero. Say a �= 0. This means that we can solve

u = −1

a
(bv + cw) =

(
−b
a

)
v +

(
− c
a

)
w,

so u ∈ Span (v,w). In particular, Span (u, v,w) is either a line (if all three vectors u, v, w
are parallel) or a plane (when v and w are nonparallel). We leave it to the reader to think
about what must happen when a = 0.

The appropriate generalization of the last example is the following useful criterion,
depicted in Figure 3.1.

FIGURE 3.1

v

v1

vk

…
Proposition 3.2. Suppose v1, . . . , vk ∈ Rn form a linearly independent set, and suppose
v ∈ Rn. Then {v1, . . . , vk, v} is linearly independent if and only if v /∈ Span (v1, . . . , vk).

The contrapositive of the statement

“if P , thenQ”

is
“ifQ is false, then P is false.”

One of the fundamental points of logic underlying all of mathematics is that these
statements are equivalent: One is true precisely when the other is. (This is quite
reasonable. For instance, if Q must be true whenever P is true and we know that Q
is false, then P must be false as well, for if not,Q would have had to be true.)

It probably is a bit more convincing to consider a couple of examples:

• If we believe the statement “Whenever it is raining, the ground is wet” (or “if
it is raining, then the ground is wet”), we should equally well grant that “If the
ground is dry, then it is not raining.”

• If we believe the statement “If x = 2, then x2 = 4,” then we should believe that
“if x2 �= 4, then x �= 2.”

It is important not to confuse the contrapositive of a statement with the converse
of the statement. The converse of the statement “if P , thenQ” is

“ifQ, then P .”
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Note that even if we believe our two earlier statements, we do not believe their con-
verses:

• “If the ground is wet, then it is raining”—it may have stopped raining a while
ago, or someone may have washed a car earlier.

• “If x2 = 4, then x = 2”—even though this is a common error, it is an error
nevertheless: x might be −2.

Proof. We will prove the contrapositive: Still supposing that v1, . . . , vk ∈ Rn form a
linearly independent set,

{v1, . . . , vk, v} is linearly dependent if and only if v ∈ Span (v1, . . . , vk).

Suppose that v ∈ Span (v1, . . . , vk). Then v = c1v1 + c2v2 + · · · + ckvk for some scalars
c1, . . . , ck , so

c1v1 + c2v2 + · · · + ckvk + (−1)v = 0,

from which we conclude that {v1, . . . , vk, v} is linearly dependent (since at least one of the
coefficients is nonzero).

Now suppose {v1, . . . , vk, v} is linearly dependent. This means that there are scalars
c1, . . . , ck , and c, not all 0, such that

c1v1 + c2v2 + · · · + ckvk + cv = 0.

Note that we cannot have c = 0: For if c were 0, we’d have c1v1 + c2v2 + · · · + ckvk = 0,
and linear independence of {v1, . . . , vk} implies c1 = · · · = ck = 0, which contradicts our
assumption that {v1, . . . , vk, v} is linearly dependent. Therefore c �= 0, and so

v = −1

c
(c1v1 + c2v2 + · · · + ckvk) =

(
−c1

c

)
v1 +

(
−c2

c

)
v2 + · · · +

(
−ck
c

)
vk,

which tells us that v ∈ Span (v1, . . . , vk), as required.

We now understand that when we have a set of linearly independent vectors, no proper
subset will yield the same span. In other words, we will have an “efficient” set of spanning
vectors (that is, there is no redundancy in the vectors we’ve chosen; no proper subset will
do). This motivates the following definition.

Definition. Let V ⊂ Rn be a subspace. The set of vectors {v1, . . . , vk} is called a basis
for V if

(i) v1, . . . , vk span V , that is, V = Span (v1, . . . , vk), and

(ii) {v1, . . . , vk} is linearly independent.

We comment that the plural of basis is bases.4

EXAMPLE 6

Let e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) ∈ Rn. Then {e1, . . . , en}
is a basis for Rn, called the standard basis. To check this, we must establish that properties
(i) and (ii) above hold for V = Rn. The first is obvious: If x = (x1, . . . , xn) ∈ Rn, then x =

4Pronounced basez, to rhyme with Macy’s.
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x1e1 + x2e2 + · · · + xnen. The second is not much harder. Suppose c1e1 + c2e2 + · · · +
cnen = 0. This means that (c1, c2, . . . , cn) = (0, 0, . . . , 0), and so c1 = c2 = · · · = cn = 0.

EXAMPLE 7

Consider the plane given by V = {x ∈ R3 : x1 − x2 + 2x3 = 0} ⊂ R3. Our algorithms of
Chapter 1 tell us that the vectors

v1 =

⎡
⎢⎢⎣

1

1

0

⎤
⎥⎥⎦ and v2 =

⎡
⎢⎢⎣

−2

0

1

⎤
⎥⎥⎦

span V . Since these vectors are not parallel, it follows from Example 5 that they must be
linearly independent.

For the practice, however, we give a direct argument. Suppose

c1v1 + c2v2 = c1

⎡
⎢⎢⎣

1

1

0

⎤
⎥⎥⎦+ c2

⎡
⎢⎢⎣

−2

0

1

⎤
⎥⎥⎦ = 0.

Writing out the entries explicitly, we obtain
⎡
⎢⎢⎣
c1 − 2c2

c1

c2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0

0

0

⎤
⎥⎥⎦ ,

from which we conclude that c1 = c2 = 0, as required. (For future reference, we note
that this information came from the free variable “slots.”) Therefore, {v1, v2} is linearly
independent and gives a basis for V , as required.

The following observation may prove useful.

Corollary 3.3. Let V ⊂ Rn be a subspace, and let v1, . . . , vk ∈ V . Then {v1, . . . , vk} is a
basis for V if and only if every vector of V can be written uniquely as a linear combination
of v1, . . . , vk .

Proof. This is immediate from Proposition 3.1.

This result is so important that we introduce a bit of terminology.

Definition. When we write v = c1v1 + c2v2 + · · · + ckvk , we refer to c1, . . . , ck as the
coordinates of v with respect to the (ordered) basis {v1, . . . , vk}.

EXAMPLE 8

Consider the three vectors

v1 =

⎡
⎢⎢⎣

1

2

1

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

1

1

2

⎤
⎥⎥⎦ , and v3 =

⎡
⎢⎢⎣

1

0

2

⎤
⎥⎥⎦ .
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Let’s take a general vector b ∈ R3 and ask first of all whether it has a unique expression as
a linear combination of v1, v2, and v3. Forming the augmented matrix and row reducing,
we find ⎡

⎢⎢⎣
1 1 1 b1

2 1 0 b2

1 2 2 b3

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

1 0 0 2b1 − b3

0 1 0 −4b1 + b2 + 2b3

0 0 1 3b1 − b2 − b3

⎤
⎥⎥⎦ .

It follows from Corollary 3.3 that {v1, v2, v3} is a basis for R3, because an arbitrary vector
b ∈ R3 can be written in the form

b = (2b1 − b3)︸ ︷︷ ︸
c1

v1 + (−4b1 + b2 + 2b3)︸ ︷︷ ︸
c2

v2 + (3b1 − b2 − b3)︸ ︷︷ ︸
c3

v3.

And, what’s more,

c1 = 2b1 − b3,

c2 = −4b1 + b2 + 2b3, and

c3 = 3b1 − b2 − b3

give the coordinates of b with respect to the basis {v1, v2, v3}.

Our experience in Example 8 leads us to make the following general observation:

Proposition 3.4. LetA be an n× n matrix. ThenA is nonsingular if and only if its column
vectors form a basis for Rn.

Proof. As usual, let’s denote the column vectors of A by a1, a2, . . . , an. Using Corollary
3.3, we are to prove that A is nonsingular if and only if every vector in Rn can be written
uniquely as a linear combination of a1, a2, . . . , an. But this is exactly what Proposition 5.5
of Chapter 1 tells us.

Somewhat more generally (see Exercise 12), we have the following result.

EXAMPLE 9

Suppose A is a nonsingular n× n matrix and {v1, . . . , vn} is a basis for Rn. Then we wish
to show that {Av1, . . . , Avn} is likewise a basis for Rn.

First, we show that {Av1, . . . , Avn} is linearly independent. Following our ritual, we
start by supposing that

c1(Av1)+ c2(Av2)+ · · · + cn(Avn) = 0,

and we wish to show that c1 = · · · = cn = 0. By linearity properties we have

0 = c1Av1 + c2Av2 + · · · + cnAvn = A(c1v1)+ A(c2v2)+ · · · + A(cnvn)
= A(c1v1 + c2v2 + · · · + cnvn).

Since A is nonsingular, the only solution of Ax = 0 is x = 0, and so we must have c1v1 +
c2v2 + · · · + cnvn = 0. From the linear independence of {v1, . . . , vn} we now conclude
that c1 = c2 = · · · = cn = 0, as required.

Now, why do these vectors span Rn? (The result follows from Exercise 1.5.13, but
we give the argument here.) Given b ∈ Rn, we know from Proposition 5.5 of Chapter 1
that there is a unique x ∈ Rn with Ax = b. Since v1, . . . , vn form a basis for Rn, we can
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write x = c1v1 + c2v2 + · · · + cnvn for some scalars c1, . . . , cn. Then, again by linearity
properties, we have

b = Ax = A(c1v1 + c2v2 + · · · + cnvn) = A(c1v1)+ A(c2v2)+ · · · + A(cnvn)
= c1(Av1)+ c2(Av2)+ · · · + cn(Avn),

as required.

Given a subspace V ⊂ Rn, how do we know there is some basis for it? This is a
consequence of Proposition 3.2 as well.

Theorem 3.5. Any subspace V ⊂ Rn other than the trivial subspace has a basis.

Proof. Because V �= {0}, we can choose a nonzero vector v1 ∈ V . If v1 spans V , then we
know {v1} will constitute a basis for V . If not, choose v2 /∈ Span (v1). From Proposition
3.2 we infer that {v1, v2} is linearly independent. If v1, v2 span V , then {v1, v2} will be a
basis for V . If not, choose v3 /∈ Span (v1, v2). Once again, we know that {v1, v2, v3} will
be linearly independent and hence will form a basis for V if the three vectors span V . We
continue in this fashion, and we are guaranteed that the process will terminate in at most n
steps: Once we have n+ 1 vectors in Rn, they must form a linearly dependent set, because
an n× (n+ 1) matrix has rank at most n (see Exercise 15).

From this fact it follows that every subspace V ⊂ Rn can be expressed as the row space
(or column space) of a matrix. This settles the issue raised in the footnote on p. 137. As an
application, we can now follow through on the substance of the remark on p. 140.

Proposition 3.6. Let V ⊂ Rn be a subspace. Then (V ⊥)⊥ = V .

Proof. Choose a basis {v1, . . . , vk} for V , and consider the k × n matrix A whose rows
are v1, . . . , vk . By construction, V = R(A). By Theorem 2.5, V ⊥ = R(A)⊥ = N(A), and
N(A)⊥ = R(A), so (V ⊥)⊥ = V .

We conclude this section with the problem of determining bases for each of the four
fundamental subspaces of a matrix.

EXAMPLE 10

Let

A =

⎡
⎢⎢⎢⎢⎣

1 1 0 1 4

1 2 1 1 6

0 1 1 1 3

2 2 0 1 7

⎤
⎥⎥⎥⎥⎦
.

Gaussian elimination gives us the reduced echelon form R:

R =

⎡
⎢⎢⎢⎢⎣

1 0 −1 0

−1 1 0 0

1 −1 1 0

−1 −1 1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 0 1 4

1 2 1 1 6

0 1 1 1 3

2 2 0 1 7

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 −1 0 1

0 1 1 0 2

0 0 0 1 1

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
.

From this information, we wish to find bases for R(A), N(A), C(A), and N(AT).
Since any row of R is a linear combination of rows of A and vice versa, it is easy to

see that R(A) = R(R) (see Exercise 3.2.1), so we concentrate on the rows of R. We may
as well use only the nonzero rows of R; now we need only check that they form a linearly
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independent set. We keep an eye on the pivot “slots”: Suppose

c1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�1
0

−1

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ c2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
�1

1

0

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ c3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0
�1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

This means that
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

−c1 + c2

c3

c1 + 2c2 + c3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

and so c1 = c2 = c3 = 0, as promised.
From the reduced echelon formR, we read off the vectors that span N(A): The general

solution of Ax = 0 is

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x3− x5

−x3−2x5

x3

− x5

x5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= x3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ x5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1

−2

0

−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

so ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1

−2

0

−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

span N(A). On the other hand, these vectors are linearly independent, because if we take a
linear combination

x3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ x5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1

−2

0

−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

we infer (from the free variable slots) that x3 = x5 = 0.
Obviously, C(A) is spanned by the five column vectors of A. But these vectors cannot

be linearly independent—that’s what vectors in the nullspace ofA tell us. From our vectors
spanning N(A), we know that

(∗) a1 − a2 + a3 = 0 and −a1 − 2a2 − a4 + a5 = 0.

These equations tell us that a3 and a5 can be written as linear combinations of a1, a2, and
a4. If we can check that {a1, a2, a4} is linearly independent, we’ll be finished. So we form
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a matrix A′ with these columns (easier: cross out the third and fifth columns of A), and
reduce it to echelon form (easier yet: cross out the third and fifth columns of R). Well, we
have

A′ =

⎡
⎢⎢⎢⎢⎣

1 1 1

1 2 1

0 1 1

2 2 1

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎦

= R′,

and so only the trivial linear combination of the columns of A′ will yield the zero vector.
In conclusion, the vectors

a1 =

⎡
⎢⎢⎢⎢⎣

1

1

0

2

⎤
⎥⎥⎥⎥⎦
, a2 =

⎡
⎢⎢⎢⎢⎣

1

2

1

2

⎤
⎥⎥⎥⎥⎦
, and a4 =

⎡
⎢⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎥⎦

give a basis for C(A).

Remark. The puzzled reader may wonder why, looking at the equations (∗), we chose to
use the vectors a1, a2, and a4 and discard the vectors a3 and a5. These are the columns in
which pivots appear in the echelon form; the subsequent reasoning establishes their linear
independence. There might in any specific case be other viable choices for vectors to
discard, but then the proof that the remaining vectors form a linearly independent set may
be less straightforward.

What about the left nullspace? The only row of 0’s inR arises as the linear combination

−A1 − A2 + A3 + A4 = 0

of the rows of A, so we expect the vector

v =

⎡
⎢⎢⎢⎢⎣

−1

−1

1

1

⎤
⎥⎥⎥⎥⎦

to give a basis for N(AT). As a check, we note it is orthogonal to the basis vectors a1, a2,
and a4 for C(A). Could there be any vectors in C(A)⊥ besides multiples of v?

What is lurking in the background here is a notion of dimension, and we turn to this
important topic in the next section.

Exercises 3.3

1. Let v1 = (1, 2, 3), v2 = (2, 4, 5), and v3 = (2, 4, 6) ∈ R3. Is each of the following
statements correct or incorrect? Explain.
a. The set {v1, v2, v3} is linearly dependent.

b. Each of the vectors v1, v2, and v3 can be written as a linear combination of the
others.
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2.∗ Decide whether each of the following sets of vectors is linearly independent.
a. {(1, 4), (2, 9)} ⊂ R2

b. {(1, 4, 0), (2, 9, 0)} ⊂ R3

c. {(1, 4, 0), (2, 9, 0), (3,−2, 0)} ⊂ R3

d. {(1, 1, 1), (2, 3, 3), (0, 1, 2)} ⊂ R3

e. {(1, 1, 1, 3), (1, 1, 3, 1), (1, 3, 1, 1), (3, 1, 1, 1)} ⊂ R4

f. {(1, 1, 1,−3), (1, 1,−3, 1), (1,−3, 1, 1), (−3, 1, 1, 1)} ⊂ R4

3.∗ Decide whether the following sets of vectors give a basis for the indicated space.
a. {(1, 2, 1), (2, 4, 5), (1, 2, 3)}; R3

b. {(1, 0, 1), (1, 2, 4), (2, 2, 5), (2, 2,−1)}; R3

c. {(1, 0, 2, 3), (0, 1, 1, 1), (1, 1, 4, 4)}; R4

d. {(1, 0, 2, 3), (0, 1, 1, 1), (1, 1, 4, 4), (2,−2, 1, 2)}; R4

4. In each case, check that {v1, . . . , vn} is a basis for Rn and give the coordinates of the
given vector b ∈ Rn with respect to that basis.

a. v1 =
[

2

3

]
, v2 =

[
3

5

]
; b =

[
3

4

]

b.∗ v1 =
⎡
⎢⎣

1

0

3

⎤
⎥⎦, v2 =

⎡
⎢⎣

1

2

2

⎤
⎥⎦, v3 =

⎡
⎢⎣

1

3

2

⎤
⎥⎦; b =

⎡
⎢⎣

1

1

2

⎤
⎥⎦

c. v1 =
⎡
⎢⎣

1

0

1

⎤
⎥⎦, v2 =

⎡
⎢⎣

1

1

2

⎤
⎥⎦, v3 =

⎡
⎢⎣

1

1

1

⎤
⎥⎦; b =

⎡
⎢⎣

3

0

1

⎤
⎥⎦

d.∗ v1 =

⎡
⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎦, v2 =

⎡
⎢⎢⎢⎣

1

1

0

0

⎤
⎥⎥⎥⎦, v3 =

⎡
⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎦, v4 =

⎡
⎢⎢⎢⎣

1

1

3

4

⎤
⎥⎥⎥⎦; b =

⎡
⎢⎢⎢⎣

2

0

1

1

⎤
⎥⎥⎥⎦

5. Following Example 10, for each of the following matrices A, give a basis for each of
the subspaces R(A), C(A), N(A), and N(AT).

a.∗ A =
⎡
⎢⎣

3 −1

6 −2

−9 3

⎤
⎥⎦

b. A =
⎡
⎢⎣

1 1 0

2 1 1

1 −1 2

⎤
⎥⎦

c.∗ A =

⎡
⎢⎢⎢⎣

1 1 1

1 2 0

1 1 1

1 0 2

⎤
⎥⎥⎥⎦

d. A =
[

1 2 −1 0

2 4 −1 −1

]

6.∗ Give a basis for the orthogonal complement of the subspace W ⊂ R4 spanned by
(1, 1, 1, 2) and (1,−1, 5, 2).

7. Let V ⊂ R5 be spanned by (1, 0, 1, 1, 1) and (0, 1,−1, 0, 2). By finding the left
nullspace of an appropriate matrix, give a homogeneous system of equations having V
as its solution set. Explain how you are using Proposition 3.6.

8. Suppose v,w ∈ Rn and {v,w} is linearly independent. Prove that {v − w, 2v + w} is
linearly independent as well.

9. Suppose u, v,w ∈ Rn form a linearly independent set. Prove that u + v, v + 2w, and
−u + v + w likewise form a linearly independent set.
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10.� Suppose v1, . . . , vk are nonzero vectors with the property that vi · vj = 0 whenever
i �= j . Prove that {v1, . . . , vk} is linearly independent. (Hint: “Suppose c1v1 + c2v2 +
· · · + ckvk = 0.” Start by showing c1 = 0.)

11.� Suppose v1, . . . , vn are nonzero, mutually orthogonal vectors in Rn.
a. Prove that they form a basis for Rn. (Use Exercise 10.)

b. Given any x ∈ Rn, give an explicit formula for the coordinates of x with respect to
the basis {v1, . . . , vn}.

c. Deduce from your answer to part b that x =
n∑
i=1

projvix.

12. Give an alternative proof of Example 9 by applying Proposition 3.4 and Exercise 2.1.10.

13.∗ Prove that if {v1, . . . , vk} is linearly dependent, then every vector v ∈ Span (v1, . . . , vk)
can be written as a linear combination of v1, . . . , vk infinitely many ways.

14.�∗ Suppose v1, . . . , vk ∈ Rn form a linearly independent set. Show that for any 1 ≤ � < k,
the set {v1, . . . , v�} is linearly independent as well.

15.� Suppose k > n. Prove that any k vectors in Rn must form a linearly dependent set. (So
what can you conclude if you have k linearly independent vectors in Rn?)

16. Suppose v1, . . . , vk ∈ Rn form a linearly dependent set. Prove that for some j between
1 and k we have vj ∈ Span (v1, . . . , vj−1, vj+1, . . . , vk). That is, one of the vectors
v1, . . . , vk can be written as a linear combination of the remaining vectors.

17. Suppose v1, . . . , vk ∈ Rn form a linearly dependent set. Prove that either v1 = 0 or
vi ∈ Span (v1, . . . , vi−1) for some i = 2, 3, . . . , k. (Hint: There is a relation c1v1 +
c2v2 + · · · + ckvk = 0 with at least one cj �= 0. Consider the largest such j .)

18. Let A be an m× n matrix and suppose v1, . . . , vk ∈ Rn. Prove that if {Av1, . . . , Avk}
is linearly independent, then {v1, . . . , vk} must be linearly independent.

19. Let A be an n× n matrix. Prove that if A is nonsingular and {v1, . . . , vk} is linearly
independent, then {Av1, Av2, . . . , Avk} is likewise linearly independent. Give an ex-
ample to show that the result is false if A is singular.

20. SupposeU and V are subspaces of Rn. Prove that (U ∩ V )⊥ = U⊥ + V ⊥. (Hint: Use
Exercise 3.1.18 and Proposition 3.6.)

21.� Let A be an m× n matrix of rank n. Suppose v1, . . . , vk ∈ Rn and {v1, . . . , vk} is lin-
early independent. Prove that {Av1, . . . , Avk} ⊂ Rm is likewise linearly independent.
(N.B.: If you did not explicitly make use of the assumption that rank(A) = n, your
proof cannot be correct. Why?)

22. Let A be an n× n matrix and suppose v1, v2, v3 ∈ Rn are nonzero vectors that satisfy

Av1 = v1

Av2 = 2v2

Av3 = 3v3.

Prove that {v1, v2, v3} is linearly independent. (Hint: Start by showing that {v1, v2}
must be linearly independent.)

23.∗ Suppose U and V are subspaces of Rn with U ∩ V = {0}. If {u1, . . . ,uk} is a basis for
U and {v1, . . . , v�} is a basis for V , prove that {u1, . . . ,uk, v1, . . . , v�} is a basis for
U + V .
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4 Dimension and Its Consequences

Once we realize that every subspace V ⊂ Rn has some basis, we are confronted with the
problem that it has many of them. For example, Proposition 3.4 gives us a way of finding
zillions of bases for Rn. As we shall now show, all bases for a given subspace have one
thing in common: They all consist of the same number of elements. To establish this, we
begin by proving an appropriate generalization of Exercise 3.3.15.

Proposition 4.1. Let V ⊂ Rn be a subspace, let {v1, . . . , vk} be a basis for V , and let
w1, . . . ,w� ∈ V . If � > k, then {w1, . . . ,w�} must be linearly dependent.

Proof. Each vector in V can be written uniquely as a linear combination of v1, . . . , vk . So
let’s write each vector w1, . . . ,w� as such:

w1 = a11v1 + a21v2 + · · · + ak1vk
w2 = a12v1 + a22v2 + · · · + ak2vk

...

w� = a1�v1 + a2�v2 + · · · + ak�vk.
Then we can write

(∗)

⎡
⎢⎢⎢⎣

|
w1

|
· · ·

|
wj

|
· · ·

|
w�

|

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

|
v1

|

|
v2

|
· · ·

|
vk

|

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a11

a21

...

ak1

. . .

a1j

a2j

...

akj

. . .

a1�

a2�

...

ak�

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

,

where the j th column of the k × �matrixA = [
aij
]

consists of the coordinates of the vector
wj with respect to the basis {v1, . . . , vk}. We can rewrite (∗) as

(∗∗)

⎡
⎢⎢⎣

|
w1

|

|
w2

|
· · ·

|
w�

|

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

|
v1

|

|
v2

|
· · ·

|
vk

|

⎤
⎥⎥⎦A.

Since � > k, there cannot be a pivot in every column of A, and so there is a nonzero
vector c satisfying

A

⎡
⎢⎢⎢⎢⎢⎣

c1

c2

...

c�

⎤
⎥⎥⎥⎥⎥⎦

= 0.
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Using (∗∗) and associativity, we have

⎡
⎢⎢⎣

|
w1

|

|
w2

|
· · ·

|
w�

|

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c1

c2

...

c�

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

|
v1

|

|
v2

|
· · ·

|
vk

|

⎤
⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝
A

⎡
⎢⎢⎢⎢⎢⎣

c1

c2

...

c�

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

= 0.

That is, we have found a nontrivial linear combination

c1w1 + · · · + c�w� = 0,

which means that {w1, . . . ,w�} is linearly dependent, as was claimed.

(See Exercise 15 for an analogous result related to spanning sets.)
Proposition 4.1 leads directly to our main result.

Theorem 4.2. Let V ⊂ Rn be a subspace, and let {v1, . . . , vk} and {w1, . . . ,w�} be two
bases for V . Then we have k = �.

Proof. Because {v1, . . . , vk} forms a basis for V and {w1, . . . ,w�} is known to be lin-
early independent, we use Proposition 4.1 to conclude that � ≤ k. Now here’s the trick:
{w1, . . . ,w�} is likewise a basis forV , and {v1, . . . , vk} is known to be linearly independent,
so we infer from Proposition 4.1 that k ≤ �. The only way both inequalities can hold is for
k and � to be equal, as we wished to show.

This is the numerical analogue of our common practice of proving two sets are equal
by showing that each is a subset of the other. Here we show two numbers are equal
by showing that each is less than or equal to the other.

We now make the official definition.

Definition. The dimension of a subspace V ⊂ Rn is the number of vectors in any basis
for V . We denote the dimension of V by dim V . By convention, dim{0} = 0.

EXAMPLE 1

By virtue of Example 6 in Section 3, the dimension of Rn itself is n. A line through the
origin is a one-dimensional subspace, and a plane through the origin is a two-dimensional
subspace.

As we shall see in our applications, dimension is a powerful tool. Here is the first
instance.

Proposition 4.3. Suppose V andW are subspaces of Rn with the property thatW ⊂ V . If
dim V = dimW , then V = W .

Proof. Let dimW = k and let {v1, . . . , vk} be a basis forW . IfW � V , then there must be
a vector v ∈ V with v /∈ W . From Proposition 3.2 we infer that {v1, . . . , vk, v} is linearly
independent, so dim V ≥ k + 1. This is a contradiction. Therefore, V = W .

The next result is also quite useful.

Proposition 4.4. Let V ⊂ Rn be a k-dimensional subspace. Then any k vectors that span
V must be linearly independent, and any k linearly independent vectors in V must span V .
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Proof. Left to the reader in Exercise 16.

We now turn to a few explicit examples of finding bases for subspaces.

EXAMPLE 2

Let V = Span (v1, v2, v3, v4) ⊂ R3, where

v1 =

⎡
⎢⎢⎣

1

1

2

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

2

2

4

⎤
⎥⎥⎦ , v3 =

⎡
⎢⎢⎣

0

1

1

⎤
⎥⎥⎦ , and v4 =

⎡
⎢⎢⎣

3

4

7

⎤
⎥⎥⎦ .

We would like to determine whether some subset of {v1, v2, v3, v4} gives a basis for V . Of
course, this set of four vectors must be linearly dependent, since V ⊂ R3 and R3 is only
three-dimensional. Now let’s examine the solutions of

c1v1 + c2v2 + c3v3 + c4v4 = 0,

or, in matrix form,

⎡
⎢⎢⎣

1 2 0 3

1 2 1 4

2 4 1 7

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

c1

c2

c3

c4

⎤
⎥⎥⎥⎥⎦

= 0.

As usual, we proceed to reduced echelon form:

R =

⎡
⎢⎢⎣

1 2 0 3

0 0 1 1

0 0 0 0

⎤
⎥⎥⎦ ,

from which we find that the vectors⎡
⎢⎢⎢⎢⎣

−2

1

0

0

⎤
⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎣

−3

0

−1

1

⎤
⎥⎥⎥⎥⎦

span the space of solutions. In particular, this tells us that

−2v1 + v2 = 0 and −3v1 − v3 + v4 = 0,

and so the vectors v2 and v4 can be expressed as linear combinations of the vectors v1 and
v3. On the other hand, {v1, v3} is linearly independent (why?), so this gives a basis for V .

EXAMPLE 3

Given linearly independent vectors

v1 =

⎡
⎢⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎥⎦

and v2 =

⎡
⎢⎢⎢⎢⎣

0

1

3

−1

⎤
⎥⎥⎥⎥⎦

∈ R4,
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we wish to find additional vectors v3, v4, . . . to make up a basis for R4 (as we shall see
in Exercise 17, this is always possible). First of all, since dim R4 = 4, we know that only
two further vectors will be required. How should we find them? We might try guessing; a
more methodical approach is suggested in Exercise 2. But here we try a more geometric
solution.

Let’s find a basis for the orthogonal complement of the subspace V spanned by v1 and
v2. We consider the matrix A whose row vectors are v1 and v2:

A =
[

1 1 1 1

0 1 3 −1

]
�
[

1 0 −2 2

0 1 3 −1

]
.

The vectors

v3 =

⎡
⎢⎢⎢⎢⎣

2

−3

1

0

⎤
⎥⎥⎥⎥⎦

and v4 =

⎡
⎢⎢⎢⎢⎣

−2

1

0

1

⎤
⎥⎥⎥⎥⎦

span N(A) (and therefore form a basis for N(A)—why?). By Proposition 2.2, {v3, v4} gives
a basis for R(A)⊥ = V ⊥. We now give a geometric argument that {v1, v2, v3, v4} forms a
basis for R4. (Alternatively, the reader could just check this in a straightforward numerical
fashion.)

By Proposition 4.4, we need only check that {v1, v2, v3, v4} is linearly independent.
Suppose, as usual, that

c1v1 + c2v2 + c3v3 + c4v4 = 0.

This means that

c1v1 + c2v2 = −(c3v3 + c4v4),

but the vector on the left hand side is in V and the vector on the right hand side is in V ⊥.
By Exercise 3.1.10, only 0 can lie in both V and V ⊥, and so we conclude that

c1v1 + c2v2 = 0 and c3v3 + c4v4 = 0.

Now from the fact that {v1, v2} is linearly independent, we infer that c1 = c2 = 0, and
from the fact that {v3, v4} is linearly independent, we infer that c3 = c4 = 0. In sum,
{v1, v2, v3, v4} is linearly independent and therefore gives a basis for R4.

4.1 Back to the Four Fundamental Subspaces
We now return to the four fundamental subspaces associated to any matrix. We specify a
procedure for giving a basis for each of R(A), N(A), C(A), and N(AT). Their dimensions
will follow immediately. It may help the reader to compare this discussion with Example
10 in Section 3; indeed, the theorem is best understood by working several examples.

Theorem 4.5. Let A be an m× n matrix. Let U and R, respectively, denote the echelon
and reduced echelon form, respectively, of A, and write EA = U (so E is the product of
the elementary matrices by which we reduce A to some echelon form).

1. The (transposes of the) nonzero rows of U (or of R) give a basis for R(A).

2. The vectors obtained by setting each free variable equal to 1 and the remaining
free variables equal to 0 in the general solution ofAx = 0 (which we read off from
Rx = 0) give a basis for N(A).
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3. The pivot columns of A (i.e., the columns of the original matrix A corresponding
to the pivots in U ) give a basis for C(A).

4. The (transposes of the) rows of E that correspond to the zero rows of U give a
basis for N(AT). (The same works with E′ if we write E′A = R.)

Proof. For simplicity of exposition, let’s assume that the reduced echelon form takes the
shape

R =
r

⎧⎪⎪⎨
⎪⎪⎩

m−r
{

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 b1,r+1 b1,r+2 · · · b1n

. . .
...

...
. . .

...

1 br,r+1 br,r+2 · · · brn

O O

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

1. Since row operations are invertible, R(A) = R(U) (see Exercise 3.2.1). Clearly
the nonzero rows of U span R(U). Moreover, they are linearly independent
because of the pivots. Let U1, . . . ,Ur denote the nonzero rows of U ; because of
our simplifying assumption on R, we know that the pivots of U occur in the first
r columns as well. Suppose now that

c1U1 + · · · + crUr = 0.

The first entry of the left-hand side is c1u11 (since the first entry of the vectors
U2, . . . ,Ur is 0 by definition of echelon form). Because u11 �= 0 by definition of
pivot, we must have c1 = 0. Continuing in this fashion, we find that c1 = c2 =
· · · = cr = 0. In conclusion, {U1, . . . ,Ur} forms a basis for R(U) and hence for
R(A).

2. Ax = 0 if and only if Rx = 0, which means that

x1 + b1,r+1xr+1 + b1,r+2xr+2 + · · · + b1nxn = 0

x2 + b2,r+1xr+1 + b2,r+2xr+2 + · · · + b2nxn = 0
. . .

...
...

...
...

xr + br,r+1xr+1 + br,r+2xr+2 + · · · + brnxn = 0 .

Thus, an arbitrary element of N(A) can be written in the form

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

...

xr

xr+1

xr+2

...

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= xr+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1,r+1

...

−br,r+1

1

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ xr+2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1,r+2

...

−br,r+2

0

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ · · · + xn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1n

...

−brn
0

0
...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The assertion is then that the vectors
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1,r+1

...

−br,r+1

1

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1,r+2

...

−br,r+2

0

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . ,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1n

...

−brn
0

0
...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

give a basis for N(A). They obviously span N(A), because every vector in N(A)
can be expressed as a linear combination of them. We need to check linear in-
dependence: The key is the pattern of 1’s and 0’s in the free-variable “slots.”
Suppose

0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= xr+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1,r+1

...

−br,r+1

1

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ xr+2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1,r+2

...

−br,r+2

0

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ · · · + xn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1n

...

−brn
0

0
...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then we get xr+1 = xr+2 = · · · = xn = 0, as required.

3. Let’s continue with the notational simplification that the pivots occur in the first r
columns. Then we need to establish the fact that the first r column vectors of the
original matrixA give a basis for C(A). These vectors form a linearly independent
set, since the only solution of

c1a1 + · · · + crar = 0

is c1 = c2 = · · · = cr = 0 (look only at the first r columns of A and the first r
columns of R). It is more interesting to understand why a1, . . . , ar span C(A).
Consider each of the basis vectors for N(A) given above: Each one gives us a
linear combination of the column vectors of A that results in the zero vector. In
particular, we find that

−b1,r+1a1 − · · · − br,r+1ar + ar+1 = 0

−b1,r+2a1 − · · · − br,r+2ar + ar+2 = 0
...

...
. . .

...

−b1na1 − · · · − brnar + an = 0 ,

from which we conclude that the vectors ar+1, . . . , an are all linear combinations
of a1, . . . , ar . It follows that C(A) is spanned by a1, . . . , ar , as required.

4. Recall that vectors in N(AT) correspond to ways of expressing the zero vector
as linear combinations of the rows of A. The first r rows of the echelon matrix
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U form a linearly independent set, whereas the last m− r rows of U consist just
of 0. Thus, we conclude from EA = U that the (transposes of the) last m− r
rows of E span N(AT).5 But these vectors are linearly independent, because E is
nonsingular. Thus, the vectors Er+1, . . . ,Em give a basis for N(AT).

Remark. Referring to our earlier discussion of (†) on p. 114 and our discussion in Sections
2 and 3 of this chapter, we finally know that finding the constraint equations for C(A) will
give a basis for N(AT). It is also worth noting that to find bases for the four fundamental
subspaces of the matrix A, we need only find the echelon form of A to deal with R(A)
and C(A), the reduced echelon form of A to deal with N(A), and the echelon form of the
augmented matrix [A | b ] to deal with N(AT).

EXAMPLE 4

We want bases for R(A), N(A), C(A), and N(AT), given the matrix

A =

⎡
⎢⎢⎢⎢⎣

1 1 2 0 0

0 1 1 −1 −1

1 1 2 1 2

2 1 3 −1 −3

⎤
⎥⎥⎥⎥⎦
.

We leave it to the reader to check that the reduced echelon form of A is

R =

⎡
⎢⎢⎢⎢⎣

1 0 1 0 −1

0 1 1 0 1

0 0 0 1 2

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

and that EA = U , where

E =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

−1 0 1 0

−4 1 2 1

⎤
⎥⎥⎥⎥⎦

and U =

⎡
⎢⎢⎢⎢⎣

1 1 2 0 0

0 1 1 −1 −1

0 0 0 1 2

0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
.

Alternatively, the echelon form of the augmented matrix [A | b ] is

[EA | Eb ] =

⎡
⎢⎢⎢⎢⎣

1 1 2 0 0 b1

0 1 1 −1 −1 b2

0 0 0 1 2 −b1 + b3

0 0 0 0 0 −4b1 + b2 + 2b3 + b4

⎤
⎥⎥⎥⎥⎦
.

5A vector not in their span would then give rise to a relation among the nonzero rows of U , which we know
to be linearly independent. A formal argument comes from writing A = E−1U , so ATx = 0 if and only if
UT

(
(ET)−1x

) = 0, and this happens if and only if x = ETy for some y ∈ N(UT). Since N(UT) is spanned by
the last m− r standard basis vectors for Rm, our claim follows.
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Applying Theorem 4.5, we obtain the following bases for the respective subspaces:

R(A):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

1

2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1

1

−1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(using U )

N(A):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1

−1

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

0

−2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(using R as in Chapter 1)

C(A):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1

0

1

2

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

0

−1

1

−1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(using the pivot columns of A)

N(AT):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

−4

1

2

1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(using the bottom row of E)

The reader should check these all carefully. Note that we have dim R(A) = dim C(A) = 3,
dim N(A) = 2, and dim N(AT) = 1.

4.2 Important Consequences
We now deduce the following results on dimension. Recall that the rank of a matrix is the
number of pivots in its echelon form.

Theorem 4.6. Let A be an m× n matrix of rank r . Then

1. dim R(A) = dim C(A) = r .

2. dim N(A) = n− r .
3. dim N(AT) = m− r .

Proof. There are r pivots and a pivot in each nonzero row ofU , so dim R(A) = r . Similarly,
we have a basis vector for C(A) for every pivot, so dim C(A) = r , as well. We see that
dim N(A) is equal to the number of free variables, and this is the difference between the
total number of variables, n, and the number of pivot variables, r . Last, the number of zero
rows inU is the difference between the total number of rows,m, and the number of nonzero
rows, r , so dim N(AT) = m− r .

An immediate corollary of Theorem 4.6 is the following. The dimension of the
nullspace of A is often called the nullity of A, which is denoted null (A).
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Corollary 4.7 (Nullity-Rank Theorem). Let A be an m× n matrix. Then

null (A)+ rank(A) = n.

Now we are in a position to complete our discussion of orthogonal complements.

Proposition 4.8. Let V ⊂ Rn be a k-dimensional subspace. Then dim V ⊥ = n− k.

Proof. Choose a basis {v1, . . . , vk} for V , and let these be the rows of a k × n matrix A.
By construction, we have R(A) = V . Notice also that rank(A) = dim R(A) = dim V = k.
By Proposition 2.2, we have V ⊥ = N(A), so dim V ⊥ = dim N(A) = n− k.

As a consequence, we can prove a statement that should have been quite plausible all
along (see Figure 4.1).

FIGURE 4.1

V x

V⊥

Theorem 4.9. Let V ⊂ Rn be a subspace. Then every vector in Rn can be written uniquely
as the sum of a vector in V and a vector in V ⊥. In particular, we have Rn = V + V ⊥.

Proof. Let {v1, . . . , vk} be a basis for V and {vk+1, . . . , vn} be a basis for V ⊥; note that
we are using the result of Proposition 4.8 here. Then we claim that the set {v1, . . . , vn} is
linearly independent. For suppose that

c1v1 + c2v2 + · · · + cnvn = 0.

Then we have

c1v1 + c2v2 + · · · + ckvk︸ ︷︷ ︸
element of V

= −(ck+1vk+1 + · · · + cnvn)︸ ︷︷ ︸
element of V ⊥

.

Because only the zero vector can be in both V and V ⊥ (for any such vector must be
orthogonal to itself and therefore have length 0), we have

c1v1 + c2v2 + · · · + ckvk = 0 and ck+1vk+1 + · · · + cnvn = 0.

Since each of the sets {v1, . . . , vk} and {vk+1, . . . , vn} is linearly independent, we conclude
that c1 = · · · = ck = ck+1 = · · · = cn = 0, as required.

It now follows that {v1, . . . , vn} gives a basis for an n-dimensional subspace of Rn,
which by Proposition 4.3 must be all of Rn. Thus, every vector x ∈ Rn can be written
uniquely in the form

x = (c1v1 + c2v2 + · · · + ckvk)︸ ︷︷ ︸
element of V

+ (ck+1vk+1 + · · · + cnvn)︸ ︷︷ ︸
element of V ⊥

,

as desired.

Although in Chapter 4 we shall learn a better way to so decompose a vector, an example
is instructive.
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EXAMPLE 5

Let V = Span (v1, v2) ⊂ R4, where

v1 =

⎡
⎢⎢⎢⎢⎣

1

0

1

−1

⎤
⎥⎥⎥⎥⎦

and v2 =

⎡
⎢⎢⎢⎢⎣

0

1

1

1

⎤
⎥⎥⎥⎥⎦
.

Given an arbitrary b ∈ R4, we wish to express b as the sum of a vector in V and a vector
in V ⊥. Letting

A =
[

1 0 1 −1

0 1 1 1

]
,

we see that V = R(A), and so, by Proposition 2.2, we have V ⊥ = N(A), for which the
vectors

v3 =

⎡
⎢⎢⎢⎢⎣

−1

−1

1

0

⎤
⎥⎥⎥⎥⎦

and v4 =

⎡
⎢⎢⎢⎢⎣

1

−1

0

1

⎤
⎥⎥⎥⎥⎦

give a basis.
To give the coordinates of b ∈ R4 with respect to the basis, we can use Gaussian

elimination:
⎡
⎢⎢⎢⎢⎣

1 0 −1 1 b1

0 1 −1 −1 b2

1 1 1 0 b3

−1 1 0 1 b4

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

1 0 0 0 1
3 (b1 − b3 + b4)

0 1 0 0 1
3 (b2 + b3 + b4)

0 0 1 0 1
3 (−b1 − b2 + b3)

0 0 0 1 1
3 (b1 − b2 + b4)

⎤
⎥⎥⎥⎥⎦
.

Thus,

b = 1
3 (b1 − b3 + b4)v1 + 1

3 (b2 + b3 + b4)v2︸ ︷︷ ︸
∈V

+ 1
3 (−b1 − b2 + b3)v3 + 1

3 (b1 − b2 + b4)v4︸ ︷︷ ︸
∈V ⊥

,

as required. (In this case, there is a foxier way to arrive at the answer. Because v1, . . . , v4

are mutually orthogonal, if b = c1v1 + c2v2 + c3v3 + c4v4, then we can dot this equation
with vi to obtain ci = b · vi/‖vi‖2.)

To close our discussion now, we recall in Figure 4.2 the schematic diagram given
in Section 3 summarizing the geometric relation among our four fundamental subspaces.
It follows from Theorem 2.5 and Theorem 4.9 that for any m× n matrix A, we have
R(A)+ N(A) = Rn and C(A)+ N(AT) = Rm. Now we will elaborate by considering the
roles of the linear maps μA and μAT . Recall that we have

μA : Rn → Rm, μA(x) = Ax

μAT : Rm → Rn, μAT(y) = ATy.

μA sends all of N(A) to 0 ∈ Rm and μAT sends all of N(AT) to 0 ∈ Rn. Now, the column
space of A consists of all vectors of the form Ax for some x ∈ Rn; that is, it is the image
of the function μA. Since dim R(A) = dim C(A), this suggests that μA maps the subspace
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N(A)

R(A)

C(A)
Rn Rm

μA

μA�

N(A�)

FIGURE 4.2

R(A) one-to-one and onto C(A). (And, symmetrically, μAT maps C(A) one-to-one and
onto R(A).6)

Proposition 4.10. For each b ∈ C(A), there is a unique vector x0 ∈ R(A) such that
Ax0 = b.

Proof. Let {v1, . . . , vr} be a basis for R(A). Then Av1, . . . , Avr are r vectors in C(A).
They are linearly independent (by a modification of the proof of Exercise 3.3.21 that
we leave to the reader). Therefore, by Proposition 4.4, these vectors must span C(A).
This tells us that every vector b ∈ C(A) is of the form b = Ax0 for some x0 ∈ R(A)
(why?). And there can be only one such vector x0 because R(A) ∩ N(A) = {0} (See
Figure 4.3.)

FIGURE 4.3 N(A) = {x : Ax = 0}

{x : Ax = b}

R(A)

Remark. There is a further geometric interpretation of the vector x0 ∈ R(A) that arises in
the preceding proposition. Of all the solutions of Ax = b, the vector x0 is the one of least
length. Why?

Exercises 3.4

1. Find a basis for each of the given subspaces and determine its dimension.
a.∗ V = Span

(
(1, 2, 3), (3, 4, 7), (5,−2, 3)

) ⊂ R3

b. V = {x ∈ R4 : x1 + x2 + x3 + x4 = 0, x2 + x4 = 0} ⊂ R4

c. V = (
Span

(
(1, 2, 3)

))⊥ ⊂ R3

d. V = {x ∈ R5 : x1 = x2, x3 = x4} ⊂ R5

6These are, however, generally not inverse functions. Why? See Exercise 25.
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2. In Example 3, we were given v1 =

⎡
⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎦ , v2 =

⎡
⎢⎢⎢⎣

0

1

3

−1

⎤
⎥⎥⎥⎦ ∈ R4 and constructed v3, v4 so

that {v1, v2, v3, v4} gives a basis for R4. Here is an alternative construction: Consider
the collection of vectors v1, v2, e1, e2, e3, e4; these certainly span R4. Now use the
approach of Example 2 to find a basis {v1, v2, . . . }.

3. For each of the following matrices A, give bases for R(A), N(A), C(A), and N(AT).
Check dimensions and orthogonality.

a. A =
[

1 2 3

2 4 6

]

b. A =
⎡
⎢⎣

2 1 3

4 3 5

3 3 3

⎤
⎥⎦

c. A =
[

1 −2 1 0

2 −4 3 −1

]

d. A =

⎡
⎢⎢⎢⎣

1 −1 1 1 0

1 0 2 1 1

0 2 2 2 0

−1 1 −1 0 −1

⎤
⎥⎥⎥⎦

e. A =

⎡
⎢⎢⎢⎣

1 1 0 1 −1

1 1 2 −1 1

2 2 2 0 0

−1 −1 2 −3 3

⎤
⎥⎥⎥⎦

f.∗ A =

⎡
⎢⎢⎢⎣

1 1 0 5 0 −1

0 1 1 3 −2 0

−1 2 3 4 1 −6

0 4 4 12 −1 −7

⎤
⎥⎥⎥⎦

4. Find a basis for the intersection of the subspaces

V = Span
(
(1, 0, 1, 1), (2, 1, 1, 2)

)
and W = Span

(
(0, 1, 1, 0), (2, 0, 1, 2)

) ⊂ R4.

5.∗ Give a basis for the orthogonal complement of each of the following subspaces of R4.
a. V = Span

(
(1, 0, 3, 4), (0, 1, 2,−5)

)
b. W = {x ∈ R4 : x1 + 3x3 + 4x4 = 0, x2 + 2x3 − 5x4 = 0}

6. a. Give a basis for the orthogonal complement of the subspace V ⊂ R4 given by

V = {x ∈ R4 : x1 + x2 − 2x4 = 0, x1 − x2 − x3 + 6x4 = 0, x2 + x3 − 4x4 = 0}.
b. Give a basis for the orthogonal complement of the subspace W ⊂ R4 spanned by
(1, 1, 0,−2), (1,−1,−1, 6), and (0, 1, 1,−4).

c. Give a matrix B so that the subspaceW defined in part b can be written in the form
W = N(B).

7. We saw in Exercise 2.5.13 that if them× nmatrixA has rank 1, then there are nonzero
vectors u ∈ Rm and v ∈ Rn such that A = uvT. Describe the four fundamental sub-
spaces of A in terms of u and v. (Hint: What are the columns of uvT?)

8. In each case, construct a matrix with the requisite properties or explain why no such
matrix exists.

a.∗ The column space has basis

⎡
⎢⎣

1

0

1

⎤
⎥⎦, and the nullspace contains

⎡
⎢⎣

1

2

0

⎤
⎥⎦.

b. The nullspace contains

⎡
⎢⎣

1

0

1

⎤
⎥⎦,

⎡
⎢⎣

−1

2

1

⎤
⎥⎦, and the row space contains

⎡
⎢⎣

1

1

−1

⎤
⎥⎦.
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c.∗ The column space has basis

⎡
⎢⎣

1

0

1

⎤
⎥⎦,

⎡
⎢⎣

0

1

1

⎤
⎥⎦, and the row space has basis

⎡
⎢⎣

1

1

1

⎤
⎥⎦,

⎡
⎢⎣

2

0

1

⎤
⎥⎦.

d. The column space and the nullspace both have basis

[
1

0

]
.

e. The column space and the nullspace both have basis

⎡
⎢⎣

1

0

0

⎤
⎥⎦.

9. Given theLU decompositions of the following matricesA, give bases for R(A), N(A),
C(A), and N(AT). (Do not multiply out!) Check dimensions and orthogonality.

a. A =
[

1 0

2 1

][
2 2 4

0 1 −1

]

b.∗ A =
⎡
⎢⎣

1 0 0

1 1 0

−2 0 1

⎤
⎥⎦

⎡
⎢⎣

1 1 2 1

0 0 2 −1

0 0 0 0

⎤
⎥⎦

c. A =

⎡
⎢⎢⎢⎣

1 0 0 0

−1 1 0 0

0 2 1 0

3 0 1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

2 4 −2

0 0 3

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

10. According to Proposition 4.10, if A is an m× n matrix, then for each b ∈ C(A), there
is a unique x ∈ R(A) with Ax = b. In each case, give a formula for that x.

a. A =
[

1 2 3

1 2 3

]
b.∗ A =

[
1 1 1

0 1 −1

]

11. Let A =
[

1 −1 0 0

0 0 1 −1

]
.

a. Given any x ∈ R4, find u ∈ R(A) and v ∈ N(A) so that x = u + v.

b. Given b ∈ R2, give the unique element x ∈ R(A) so that Ax = b.

12. Let A be an n× n matrix. Prove that A is singular if and only if AT is singular.

13.∗ LetA be anm× nmatrix with rank r . SupposeA = BU , where U is in echelon form.
Show that the first r columns of B give a basis for C(A). (In particular, if EA = U ,
whereU is the echelon form ofA andE is the product of elementary matrices by which
we reduce A to U , then the first r columns of E−1 give a basis for C(A).)

14. Recall from Exercise 3.1.13 that for any subspace V ⊂ Rn we have V ⊂ (V ⊥)⊥. Give
alternative proofs of Proposition 3.6
a.∗ by applying Proposition 4.3;

b. by applying Theorem 4.9 to prove that if x ∈ (V ⊥)⊥, then x ∈ V .

15. Let V ⊂ Rn be a subspace, let {v1, . . . , vk} be a basis for V , and let w1, . . . ,w� ∈ V
be vectors such that Span (w1, . . . ,w�) = V . Prove that � ≥ k.

16. Prove Proposition 4.4. (Hint: Exercise 15 and Proposition 4.3 may be useful.)

17.� LetV ⊂ Rn be a subspace, and suppose you are given a linearly independent set of vec-
tors {v1, . . . , vk} ⊂ V . Show that if dim V > k, then there are vectors vk+1, . . . , v� ∈ V
so that {v1, . . . , v�} forms a basis for V .
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18. SupposeV andW are subspaces of Rn andW ⊂ V . Prove that dimW ≤ dim V . (Hint:
Start with a basis forW and apply Exercise 17.)

19. Suppose A is an n× n matrix, and let v1, . . . , vn ∈ Rn. Suppose {Av1, . . . , Avn} is
linearly independent. Prove that A is nonsingular.

20. Continuing Exercise 3.3.23: Let U and V be subspaces of Rn. Prove that if U ∩ V =
{0}, then dim(U + V ) = dimU + dim V .

21. Let U and V be subspaces of Rn. Prove that dim(U + V ) = dimU + dim V −
dim(U ∩ V ). (Hint: This is a generalization of Exercise 20. Start with a basis for
U ∩ V , and use Exercise 17.)

22. Continuing Exercise 3.2.10: Let A be an m× n matrix, and let B be an n× p matrix.
a. Prove that rank(AB) ≤ rank(A). (Hint: Look at part b of Exercise 3.2.10.)

b. Prove that if n = p and B is nonsingular, then rank(AB) = rank(A).

c. Prove that rank(AB) ≤ rank(B). (Hint: Use part a of Exercise 3.2.10 and Theorem
4.6.)

d. Prove that if m = n and A is nonsingular, then rank(AB) = rank(B).

e. Prove that if rank(AB) = n, then rank(A) = rank(B) = n.

23. a. LetA be anm× nmatrix, and let B be an n× p matrix. Show thatAB = O ⇐⇒
C(B) ⊂ N(A).

b. Suppose A and B are 3 × 3 matrices of rank 2. Show that AB �= O.

c. Give examples of 3 × 3 matrices A and B of rank 2 so that AB has each possible
rank.

24.� Continuing Exercise 3.2.10: Let A be an m× n matrix.
a. Use Theorem 2.5 to prove that N(ATA) = N(A). (Hint: If x ∈ N(ATA), then
Ax ∈ C(A) ∩ N(AT).)

b. Prove that rank(A) = rank(ATA).

c. Prove that C(ATA) = C(AT).

25. In this exercise, we investigate the composition of functions μAT◦μA mapping R(A)
to R(A), pursuing the discussion on p. 167.
a. Suppose A is an m× n matrix. Show that ATA = In if and only if the column

vectors a1, . . . , an ∈ Rm are mutually orthogonal unit vectors.

b. SupposeA is anm× nmatrix of rank 1. Using the notation of Exercise 7, show that
ATAx = x for each x ∈ R(A) if and only if ‖u‖‖v‖ = 1. Use this fact to show that
we can write A = ûv̂T, where ‖û‖ = ‖v̂‖ = 1. Interpret μA geometrically. (See
Exercise 4.4.22 for a generalization.)

26. Generalizing Exercise 3.2.13: Suppose A is an n× n matrix with the property that
rank(A) = rank(A2).
a. Show that N(A2) = N(A).
b. Prove that C(A) ∩ N(A) = {0}.
c. Conclude that C(A)+ N(A) = Rn. (Hint: Use Exercise 20.)

5 A Graphic Example

In this brief section we show how the four fundamental subspaces (and their orthogonality
relations) have a natural interpretation in elementary graph theory, a subject that has many
applications in computer science, electronics, applied mathematics, and topology. We also
reinterpret Kirchhoff’s laws from Section 6.3 of Chapter 1.
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A directed graph consists of finitely many nodes (vertices) and directed edges, where
the direction is indicated by an arrow on the edge. Each edge begins at one node and ends
at a different node; moreover, edges can meet only at nodes. Of course, given a directed
graph, we can forget about the arrows and consider the associated undirected graph. A path
in a graph is a (finite) sequence of nodes, v1, v2, . . . , vk , along with the choice, for each
j = 1, . . . , k − 1, of some edge with endpoints at vj and vj+1. (Note that if we wish to
make the path a directed path, then we must require, in addition, that the respective edges
begin at vj and end at vj+1.) The path is called a loop if v1 = vk . An undirected graph is
called connected if there is a path from any node to any other node. It is called complete if
there is a single edge joining every pair of nodes.

Given a directed graph with m edges and n nodes, we start by numbering the edges
1 through m and the nodes 1 through n. Then there is an obvious m× n matrix for us to
write down, called the incidence matrix of the graph. Define A = [

aij
]

by the rule

aij =

⎧⎪⎨
⎪⎩

−1, if edge i starts at node j

+1, if edge i ends at node j

0, otherwise.

Notice that each row of this matrix contains exactly one +1 and exactly one −1 (and all
other entries are 0), because each edge starts at precisely one node and ends at precisely
one node. For the graphs in Figure 5.1
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we have the respective incidence matrices

A =

⎡
⎢⎢⎣

−1 1 0

0 −1 1

1 0 −1

⎤
⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1

−1 1 0 0

−1 0 1 0

0 −1 1 0

0 −1 0 1

0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We offer a few possible interpretations of the vector equation Ax = y. If x1, . . . , xn
are the electric potentials at the n nodes, then y1, . . . , ym are the potential differences
(voltages) across the m edges (wires); these result in current flow, as we shall soon see. If
the nodes represent scenic sites along a mountain road, we can take x1, . . . , xn to be their
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elevations, and then y1, . . . , ym give the change in elevation along the edges (roadways).
If the edges represent pipes and the nodes are joints, then we might let x1, . . . , xn represent
water pressure at the respective joints, and then y1, . . . , ym will be the pressure differences
across the pipes (which ultimately result in water flow).

The transpose matrix AT also has a nice geometric interpretation. Given a path in the
directed graph, define a vector z = (z1, . . . , zm) as follows: Let zi be the net number of
times that edge i is traversed as directed, i.e., the difference between the number of times it
is traversed forward and the number of times it is traversed backward. Since the columns
of AT are the rows of A, the vector ATz gives a linear combination of the rows of A,
each corresponding to an edge. Thus, ATz will be a vector whose coefficients indicate the
starting and ending nodes of the path. For example, in the second graph in Figure 5.1, the
path from node 1 to node 2 to node 4 to node 3 is represented by the vector

z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and ATz =

⎡
⎢⎢⎢⎢⎣

1 −1 −1 0 0 0

0 1 0 −1 −1 0

0 0 1 1 0 −1

−1 0 0 0 1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

−1

0

1

0

⎤
⎥⎥⎥⎥⎦

indicates that the path starts at node 1 and ends at node 3 (in other words, that the boundary
of the path is “node 3 − node 1”). Note that the path represented by the vector z is a loop
whenATz = 0. For these reasons,AT is called the boundary matrix associated to the graph.
Thus, vectors in N(AT) (at least those with integer entries) tell us the loops in the graph,
or, equivalently, which linear combinations of the row vectors of A give 0. It is not hard to
see that in the case of the first graph in Figure 5.1,

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

gives a basis for N(AT), as does
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

1

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

−1

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

in the case of the second graph.
When we consider elements of R(A) = C(AT) with integer entries, we’re asking for

all of the possible vectors that arise as boundaries of paths (or as boundaries of “sums” of
paths). For example, in the case of the first graph in Figure 5.1,

⎡
⎢⎢⎣

2

−1

−1

⎤
⎥⎥⎦
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is the boundary of the “path” that traverses edge 2 once and edge 3 twice, but
⎡
⎢⎢⎣

1

−1

−1

⎤
⎥⎥⎦

cannot be a boundary. The reason, intuitively, is that when we traverse an edge, its endpoints
must “cancel” in sign, so when we form a path, the total number of +1’s and the total
number of −1’s must be equal. To give a more precise argument, we should use the result
of Theorem 2.5 that R(A) = N(A)⊥, to which end we examine N(A) next.

Now, x ∈ N(A) if and only if Ax = 0, which tells us that the voltage (potential differ-
ence) across each edge is 0. In other words, if we specify the potential x1 at the first node,
then any node that is joined to the first node by an edge must have the same potential. This
means that when the graph is connected—that is, when there is a path joining any pair of
its nodes—the vector

a =

⎡
⎢⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎥⎦

must span N(A). (In general, dim N(A) equals the number of connected “pieces.”) More
conceptually, suppose the graph is connected and we know the voltages in all the edges.
Can we compute the potentials at the nodes? Only once we “ground” one of the nodes, i.e.,
specify that it has potential 0. (See Theorem 5.3 of Chapter 1. This is rather like adding
the constant of integration in calculus. But we’ll see why in the next chapter!)

Suppose now that the graph is connected. Since R(A)⊥ is spanned by the vector a
above, we conclude that

w ∈ R(A) ⇐⇒ w1 + w2 + · · · + wn = 0,

which agrees with our intuitive discussion earlier. Indeed, in general, we see that the same
cancellation principle must hold in every connected piece of our graph, so there is one such
constraint for every piece.

What is the column space of A? For what vectors y can we solve Ax = y? That is, for
what voltages (along the edges) can we arrange potentials (at the nodes) with the correct
differences? We know from Theorem 2.5 that C(A) = N(AT)⊥, so y ∈ C(A) if and only
if v · y = 0 for every v ∈ N(AT). In the case of our examples, this says that in the first
example, y must satisfy the constraint equation

y1 + y2 + y3 = 0;
and in the second example, y must satisfy the constraint equations

y1 + y3 + y6 = 0

y2 − y3 + y4 = 0

y1 + y2 + y5 = 0 .

Since elements of N(AT) correspond to loops in the circuit, we recognize Kirchhoff’s second
law from Section 6.3 of Chapter 1: The net voltage drop around any loop in the circuit must
be 0. We now know that this condition is sufficient to solve for the voltages in the wires.

To complete the discussion of electric circuits in our present setting, we need to intro-
duce the vector of currents. Given a circuit with m edges (wires), let zi denote the current
in the i th wire, and set z = (z1, . . . , zm). Then Kirchhoff’s first law, which states that the
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total current coming into a node equals the total current leaving the node, can be rephrased
very simply as

ATz = 0.

In the case of the first example, we have

−z1 + z3 = 0

z1 − z2 = 0

z2 − z3 = 0 ,

and there are four equations, correspondingly, in the second:

z1 − z2 − z3 = 0

z2 − z4 − z5 = 0

z3 + z4 − z6 = 0

−z1 + z5 + z6 = 0 ,

just as we obtained earlier in Chapter 1.
If the reader is interested in pursuing the discussion of Ohm’s law and Kirchhoff’s

second law further, we highly recommend Exercise 5.

Exercises 3.5

1.∗ Give the dimensions of the four fundamental subspaces of the incidence matrix A of
the graph in Figure 5.2. Explain your answer in each case. Also compute ATA and
interpret its entries in terms of properties of the graph.
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2. Let A denote the incidence matrix of the disconnected graph shown in Figure 5.3. Use
the geometry of the graph to answer the following.
a. Give a basis for N(AT).

b. Give a basis for N(A).
c. Give the equations y must satisfy if y = Ax for some x.

3.∗ Give the dimensions of the four fundamental subspaces of the incidence matrix A of
the complete graph shown in Figure 5.4. Explain your answer geometrically in each
case. (What happens in the case of a complete graph with n nodes?)
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FIGURE 5.3
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4. a. Show that in a graph with n nodes and n edges, there must be a loop.

b. A graph is called a tree if it contains no loops. Show that if a graph is a tree with n
nodes, then it has at most n− 1 edges. (Thus, a tree with n nodes and n− 1 edges
is called a maximal tree.)

c. Give an example of an incidence matrix A with dim N(A) > 1. Draw a picture of
the graph corresponding to your matrix and explain.

5. Ohm’s Law says thatV = IR; that is, voltage (in volts) = current (in amps) × resistance
(in ohms). Given an electric circuit with m wires, let Ri denote the resistance in the
i th wire, and let yi and zi denote, respectively, the voltage drop across and current in
the i th wire, as in the text. Let E = (E1, . . . , Em), where Ei is the external voltage
source in the i th wire, and let C be the diagonal m×m matrix whose ii-entry is Ri ,
i = 1, . . . , m; we assume that all Ri > 0. Then we have y + E = Cz. Let A denote
the incidence matrix for this circuit.
a. Prove that for every v ∈ N(AT), we have v · Cz = v · E, and compare this with the

statement of Kirchhoff’s second law in Section 6.3 of Chapter 1.

b. Assume the network is connected, so that rank(A) = n− 1; delete a column of A
(say the last) and call the resulting matrix Ã. This amounts to grounding the last
node. Generalize the result of Exercise 3.4.24 to prove that ÃTC−1Ã is nonsingular.
(Hint: Write C = D2 = DDT, where D is the diagonal matrix with entries

√
Ri .)

c. Deduce that for any external voltage sources E, there is a unique solution of the
equation (ÃTC−1Ã)x = ÃTC−1E.

d. Deduce that for any external voltage sources E, the currents in the network are
uniquely determined.

6. Use the approach of Exercise 5 to obtain the answer to Example 5 in Section 6.3 of
Chapter 1.
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6 Abstract Vector Spaces

We have seen throughout this chapter that subspaces of Rn behave algebraically much the
same way as Rn itself. They are endowed with two operations: vector addition and scalar
multiplication. But there are lots of other interesting collections of objects—which do not in
any obvious way live in some Euclidean space Rn—that have the same algebraic properties.
In order to study some of these collections and see some of their applications, we first make
the following general definition.

Definition.A (real) vector space V is a set that is equipped with two operations, vector
addition and scalar multiplication, which satisfy the following properties:

1. For all u, v ∈ V , u + v = v + u.

2. For all u, v,w ∈ V , (u + v)+ w = u + (v + w).

3. There is a vector 0 ∈ V (the zero vector) such that 0 + u = u for all u ∈ V .

4. For each u ∈ V , there is a vector −u ∈ V such that u + (−u) = 0.

5. For all c, d ∈ R and u ∈ V , c(du) = (cd)u.

6. For all c ∈ R and u, v ∈ V , c(u + v) = cu + cv.

7. For all c, d ∈ R and u ∈ V , (c + d)u = cu + du.

8. For all u ∈ V , 1u = u.

EXAMPLE 1

(a) Rn is, of course, a vector space, as is any subspace of Rn.

(b) The empty set is not a vector space, since it does not satisfy condition (3) of the
definition. All the remaining criteria are satisfied “by default.”

(c) Let Mm×n denote the set of all m× n matrices. As we’ve seen in Proposition 1.1 of
Chapter 2, Mm×n is a vector space, using the operations of matrix addition and scalar
multiplication we’ve already defined. The zero “vector” is the zero matrix O.

(d) Let F(I) denote the collection of all real-valued functions defined on some interval
I ⊂ R. If f ∈ F(I) and c ∈ R, then we can define a new function cf ∈ F(I) by
multiplying the value of f at each point by the scalar c:

(cf )(t) = c f (t) for each t ∈ I.
Similarly, iff, g ∈ F(I), then we can define the new functionf + g ∈ F(I) by adding
the values of f and g at each point:

(f + g)(t) = f (t)+ g(t) for each t ∈ I.
By these formulas we define scalar multiplication and vector addition in F(I). The
zero “vector” in F(I) is the zero function, whose value at each point is 0:

0(t) = 0 for each t ∈ I.
The various properties of a vector space follow from the corresponding properties of
the real numbers (because everything is defined in terms of the values of the function
at every point t). Since an element of F(I) is a function, F(I) is often called a function
space.
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(e) Let Rω denote the collection of all infinite sequences of real numbers. That is, an
element of Rω looks like

x = (x1, x2, x3, . . . ),

where all the xi’s are real numbers. Operations are defined in the obvious way: If
c ∈ R, then

cx = (cx1, cx2, cx3, . . . ),

and if y = (y1, y2, y3, . . . ) ∈ Rω, we define addition by

x + y = (x1 + y1, x2 + y2, x3 + y3, . . . ).

As we did with Rn, we can define subspaces of a general vector space, and they too
can be considered as vector spaces in their own right.

Definition. Let V be a vector space. We sayW ⊂ V is a subspace if

1. 0 ∈ W (the zero vector belongs toW );

2. whenever v ∈ W and c ∈ R, we have cv ∈ W (W is closed under scalar mul-
tiplication);

3. whenever v,w ∈ W , we have v + w ∈ W (W is closed under addition).

Proposition 6.1. If V is a vector space andW ⊂ V is a subspace, thenW is also a vector
space.

Proof. We need to check that W satisfies the eight properties in the definition. The
crucial point is that the definition of subspace ensures that when we perform vector addition
or scalar multiplication starting with vector(s) in W , the result again lies in W . All the
algebraic properties hold in W because they already hold in V . Only one subtle point
should be checked: Given w ∈ W , we know w has an additive inverse −w in V , but why
must this vector lie inW? We leave this to the reader to check (but, for a hint, see part b of
Exercise 1).

EXAMPLE 2

Consider the vector space Mn×n of square matrices. Then the following are subspaces:

U = {upper triangular matrices}
D = {diagonal matrices}
L = {lower triangular matrices}.

We ask the reader to check the details in Exercise 5.

EXAMPLE 3

Fix an n× nmatrixM and letW = {A ∈ Mn×n : AM = MA}. This is the set of matrices
that commute withM . We ask whetherW is a subspace of Mn×n. Since OM = O = MO,
it follows that O ∈ W . If c is a scalar and A ∈ W , then (cA)M = c(AM) = c(MA) =
M(cA), so cA ∈ W as well. Last, suppose A,B ∈ W . Then (A+ B)M = AM + BM =
MA+MB = M(A+ B), so A+ B ∈ W , as we needed. This completes the verification
thatW is a subspace of Mn×n.
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EXAMPLE 4

There are many interesting—and extremely important—subspaces of F(I). The space
C0(I) of continuous functions on I is a subspace because of the important result from
calculus that states: If f is a continuous function, then so is cf for any c ∈ R; and if f and
g are continuous functions, then so is f + g. In addition, the zero function is continuous.

The space D(I) of differentiable functions is a subspace of C0(I). First, every differ-
entiable function is continuous. Next, we have an analogous result from calculus that states:
If f is a differentiable function, then so is cf for any c ∈ R; and if f and g are differentiable
functions, then so is f + g. Likewise, the zero function is differentiable. Indeed, we know
more from our calculus class. We have formulas for the relevant derivatives:

(cf )′ = cf ′ and (f + g)′ = f ′ + g′,

which will be important in Chapter 4.
Mathematicians tend to concentrate on the subspace C1(I) ⊂ D(I) of continuously

differentiable functions. (A function f is continuously differentiable if its derivative f ′ is
a continuous function.) They then move down the hierarchy:

C0(I) ⊃ C1(I) ⊃ C2(I) ⊃ C3(I) ⊃ · · · ⊃ Ck(I) ⊃ Ck+1(I) ⊃ · · · ⊃ C∞(I),
where Ck(I) is the collection of functions on I that are (at least) k times continuously
differentiable and C∞(I) is the collection of functions on I that are infinitely differentiable.
The reader who’s had some experience with mathematical induction can easily prove these
are all subspaces.

EXAMPLE 5

LetW ⊂ Rω denote the set of all sequences that are eventually 0. That is, let

W = {x ∈ Rω : there is a positive integer n such that xk = 0 for all k > n}.
Then we claim thatW is a subspace of Rω.

Clearly, 0 ∈ W . If x ∈ W , then there is an integer n such that xk = 0 for all k > n, so,
for any scalar c, we know that cxk = 0 for all k > n. Therefore, the kth coordinate of cx is
0 for all k > n and so cx ∈ W as well. Now, suppose x and y ∈ W . Then there are integers
n and p such that xk = 0 for all k > n and yk = 0 for all k > p. It follows that xk + yk = 0
for all k larger than both n and p. (Officially, we write this as k > max(n, p).) Therefore,
x + y ∈ W .

Of particular importance to us here is the vector space P of polynomials. Recall that
a polynomial p of degree k is a function of the form

p(t) = akt
k + ak−1t

k−1 + · · · + a1t + a0,

where a0, a1, . . . , ak are real numbers and ak �= 0. If c ∈ R, then the scalar multiple cp is
given by the formula

(cp)(t) = cakt
k + cak−1t

k−1 + · · · + ca1t + ca0.

If q is another polynomial of degree k, say

q(t) = bkt
k + bk−1t

k−1 + · · · + b1t + b0,

then the sum p + q is again a polynomial:

(p + q)(t) = (ak + bk)tk + (ak−1 + bk−1)t
k−1 + · · · + (a1 + b1)t + (a0 + b0).
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But be careful! The sum of two polynomials of degree k may well have lesser degree.
(For example, let p(t) = t2 − 2t + 3 and q(t) = −t2 + t − 1.) Thus, it is also natural to
consider the subspacesPk of polynomials of degree at most k, including the zero polynomial.
We will return to study the spaces Pk shortly.

It is easy to extend the notions of span, linear independence, basis, and dimension to
the setting of general vector spaces. We briefly restate the definitions here to be sure.

Definition. Let V be a vector space and let v1, . . . , vk ∈ V . Then the span of v1, . . . , vk
is the set

Span (v1, . . . , vk) = {c1v1 + c2v2 + · · · + ckvk : c1, c2, . . . , ck ∈ R}.
We say {v1, . . . , vk} is linearly independent if

c1v1 + c2v2 + · · · + ckvk = 0 only when c1 = c2 = · · · = ck = 0.

Otherwise, we say {v1, . . . , vk} is linearly dependent.
We say {v1, . . . , vk} is a basis for V if

(i) v1, . . . , vk span V , i.e., V = Span (v1, . . . , vk), and

(ii) {v1, . . . , vk} is linearly independent.

EXAMPLE 6

Consider the polynomials p1(t) = t + 1, p2(t) = t2 + 2, and p3(t) = t2 − t . We want to
decide whether {p1, p2, p3} ⊂ P is a linearly independent set of vectors. Suppose c1p1 +
c2p2 + c3p3 = 0. This means

c1(t + 1)+ c2(t
2 + 2)+ c3(t

2 − t) = 0 for all t.

By specifying different values of t , we may obtain a homogeneous system of linear equations
in the variables c1, c2, and c3:

t = −1 : 3c2 + 2c3 = 0

t = 0 : c1 + 2c2 = 0

t = 1 : 2c1 + 3c2 = 0 .

We leave it to the reader to check that the only solution is c1 = c2 = c3 = 0, and so the
functions p1, p2, and p3 do indeed form a linearly independent set.

At this point, we stop to make one new definition.

Definition. Let V be a vector space. We say V is finite-dimensional if there are an
integer k and vectors v1, . . . , vk that form a basis for V . A vector space that is not
finite-dimensional is called infinite-dimensional.

EXAMPLE 7

Observe that for any positive integer n, Rn is naturally a subspace of Rω: Given a vec-
tor (x1, . . . , xn) ∈ Rn, merely consider the corresponding vector (x1, . . . , xn, 0, . . . ) ∈ Rω.
Since Rn is a subspace of Rω for every positive integer n, Rω contains an n-dimensional
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subspace for every positive integer n. It follows that Rω is infinite-dimensional. What
about the subspaceW of sequences that are eventually 0, defined in Example 5? Well, the
same argument is valid, since every Rn is also a subspace ofW .

The reader should check that all the results of Sections 1, 2, 3, and 4 that applied to
subspaces of Rn apply to any finite-dimensional vector space. The one argument that truly
relied on coordinates was the proof of Proposition 4.1, which allowed us to conclude that
dimension is well-defined. We now give a proof that works in general.

Proposition 6.2. Let V be a finite-dimensional vector space and suppose {v1, . . . , vk} is a
basis for V . If w1, . . . ,w� ∈ V and � > k, then {w1, . . . ,w�} must be linearly dependent.

Proof. As in the proof of Proposition 4.1, we write

w1 = a11v1 + a21v2 + · · · + ak1vk
w2 = a12v1 + a22v2 + · · · + ak2vk

...

w� = a1�v1 + a2�v2 + · · · + ak�vk
and form the k × � matrix A = [

aij
]
. As before, since � > k, there is a nonzero vector

c ∈ N(A), and

�∑
j=1

cjwj =
�∑
j=1

cj

( k∑
i=1

aijvi

)
=

k∑
i=1

( �∑
j=1

aij cj

)
vi = 0.

Consequently, there is a nontrivial relation among w1, . . . ,w�, as we were to show.

Now Theorem 4.2 follows just as before, and we see that the notion of dimension makes
sense in arbitrary vector spaces. We will see in a moment that we’ve already encountered
several infinite-dimensional vector spaces.

We next consider the dimension of Pk , the vector space of polynomials of degree
at most k. Let f0(t) = 1, f1(t) = t , f2(t) = t2, . . . , fk(t) = tk .

Proposition 6.3. The set {f0, f1, . . . , fk} is a basis for Pk . Thus, Pk is a (k + 1)-
dimensional vector space.

Proof. We first check that f0, . . . , fk span Pk . Suppose p ∈ Pk; then for appropriate
a0, a1, . . . , ak ∈ R, we have

p(t) = akt
k + ak−1t

k−1 + · · · + a1t + a0

= akfk(t)+ ak−1fk−1(t)+ · · · + a1f1(t)+ a0f0(t),

so
p = akfk + ak−1fk−1 + · · · + a1f1 + a0f0

is a linear combination of f0, f1, . . . , fk , as required.
How do we see that the functions f0, f1, . . . , fk form a linearly independent set?

Suppose c0f0 + c1f1 + · · · + ckfk = 0. This means that

p(t) = c0 + c1t + c2t
2 + · · · + cktk = 0 for every t ∈ R.

Now, it is a fact from basic algebra (see Exercise 11) that a polynomial of degree ≤ k can
have at most k roots, unless it is the zero polynomial. Since p(t) = 0 for all t ∈ R, p must
be the zero polynomial; i.e., c0 = c1 = · · · = ck = 0, as required.

Here is an example that indicates an alternative proof of the linear independence.
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EXAMPLE 8

We will show directly that {f0, f1, f2, f3} is linearly independent. Suppose c0f0 + c1f1 +
c2f2 + c3f3 = 0. We must show that c0 = c1 = c2 = c3 = 0. Let

p(t) = c0f0(t)+ c1f1(t)+ c2f2(t)+ c3f3(t) = c0 + c1t + c2t
2 + c3t

3.

Since p(t) = 0 for all t , it follows that p(0) = 0, so c0 = 0. Since polynomials are (in-
finitely) differentiable, and since the derivative of the zero function is the zero function, we
obtain

p′(t) = c1 + 2c2t + 3c3t
2 = 0 for all t.

Once again, we have p′(0) = 0, and so c1 = 0. Similarly,

p′′(t) = 2c2 + 6c3t = 0 for all t and p′′′(t) = 6c3 = 0 for all t,

and so, evaluating at 0 once again, we have c2 = c3 = 0. We conclude that c0 = c1 = c2 =
c3 = 0, so {f0, f1, f2, f3} is linearly independent.

Since dim Pk = k + 1 for each nonnegative integer k, we see from the relations

P0 � P1 � P2 � · · · � Pk � · · · � P � C∞(R) � · · · � C2(R) � C1(R) � C0(R),

that P , C∞(R), and Ck(R) all contain subspaces of arbitrarily large dimension. This means
that P must be infinite-dimensional, and hence so must C∞(R) and Ck(R) for every k ≥ 0.

EXAMPLE 9

Let V = {f ∈ C1(R) : f ′(t) = f (t) for all t ∈ R}. V is a subspace of C1(R), since

1. the zero function clearly has this property;

2. if f ∈ V and c ∈ R, then (cf )′(t) = cf ′(t) = cf (t) = (cf )(t), so cf ∈ V ;

3. iff, g ∈ V , then (f + g)′(t) = f ′(t)+ g′(t) = f (t)+ g(t) = (f + g)(t), sof +
g ∈ V .

A rather obvious element of V is the function f1(t) = et . We claim that f1 spans V and
hence provides a basis for V . To see this, let f be an arbitrary element of V and consider
the function g(t) = f (t)e−t . Then, differentiating, we have

g′(t) = f ′(t)e−t − f (t)e−t = (f ′(t)− f (t))e−t = 0 for all t ∈ R,

and so, by the Mean Value Theorem in differential calculus, g(t) = c for some c ∈ R. Thus,
f (t)e−t = c and so f (t) = cet , as required.

We will explore the relation between linear algebra and differential equations further in
Section 3 of Chapter 7.

We have not yet mentioned the dot product in the setting of abstract vector spaces.

Definition. Let V be a real vector space. We say V is an inner product space if for
every pair of elements u, v ∈ V there is a real number 〈u, v〉, called the inner product
of u and v, such that:

1. 〈u, v〉 = 〈v, u〉 for all u, v ∈ V ;

2. 〈cu, v〉 = c〈u, v〉 for all u, v ∈ V and scalars c;

3. 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉 for all u, v,w ∈ V ;

4. 〈v, v〉 ≥ 0 for all v ∈ V and 〈v, v〉 = 0 only if v = 0.
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EXAMPLE 10

(a) Our usual dot product on Rn is, of course, an inner product.

(b) Fix k + 1 distinct real numbers t1, t2, . . . , tk+1 and define an inner product on Pk by
the formula

〈p, q〉 =
k+1∑
i=1

p(ti)q(ti), p, q ∈ Pk.

All the properties of an inner product are obvious except for the very last. If 〈p, p〉 = 0,

then
k+1∑
i=1
p(ti)

2 = 0, and so we must have p(t1) = p(t2) = · · · = p(tk+1) = 0. But,

as we observed in the proof of Proposition 6.3, if a polynomial of degree ≤ k has (at
least) k + 1 roots, then it must be the zero polynomial (see Exercise 11).

(c) Let C0([a, b]) denote the vector space of continuous functions on the interval [a, b].
If f, g ∈ C0([a, b]), define

〈f, g〉 =
∫ b

a

f (t)g(t) dt.

We verify that the defining properties hold.

1. 〈f, g〉 = ∫ b
a
f (t)g(t) dt = ∫ b

a
g(t)f (t) dt = 〈g, f 〉.

2. 〈cf, g〉 = ∫ b
a
(cf )(t)g(t) dt = ∫ b

a
cf (t)g(t) dt = c

∫ b
a
f (t)g(t) dt = c〈f, g〉 .

3. 〈f + g, h〉 = ∫ b
a
(f + g)(t)h(t) dt = ∫ b

a

(
f (t)+ g(t))h(t) dt

= ∫ b
a

(
f (t)h(t)+ g(t)h(t)) dt = ∫ b

a
f (t)h(t) dt + ∫ b

a
g(t)h(t) dt

= 〈f, h〉 + 〈g, h〉.
4. 〈f, f 〉 = ∫ b

a
f (t)2 dt ≥ 0 since f (t)2 ≥ 0 for all t . On the other hand, if 〈f, f 〉 =∫ b

a

(
f (t)

)2
dt = 0, then since f is continuous and f 2 ≥ 0, it must be the case

that f = 0. (If not, we would have f (t0) �= 0 for some t0, and then f (t)2

would be positive on some small interval containing t0; it would then follow
that

∫ b
a
f (t)2 dt > 0.)

The same inner product can be defined on subspaces of C0([a, b]), e.g., Pk .
(d) We define an inner product on Mn×n in Exercise 9.

If V is an inner product space, we define length, orthogonality, and the angle between
vectors just as we did in Rn. If v ∈ V , we define its length to be ‖v‖ = √〈v, v〉. We
say v and w are orthogonal if 〈v,w〉 = 0. Since the Cauchy-Schwarz Inequality can be
established in general by following the proof of Proposition 2.3 of Chapter 1 verbatim, we
can define the angle θ between v and w by the equation

cos θ = 〈v,w〉
‖v‖‖w‖ .

And we can define orthogonal subspaces and orthogonal complements analogously.

EXAMPLE 11

Let V = C0([−1, 1]) with the inner product 〈f, g〉 = ∫ 1
−1 f (t)g(t) dt . Let U ⊂ V be the

subset of even functions, and letW ⊂ V be the subset of odd functions. That is,

U = {f ∈ V : f (−t) = f (t) for all t ∈ [−1, 1]}
W = {f ∈ V : f (−t) = −f (t) for all t ∈ [−1, 1]}.
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We claim first thatU andW are orthogonal subspaces of V . For suppose g ∈ U and h ∈ W .
Then

〈g, h〉 =
∫ 1

−1
g(t)h(t) dt =

∫ 0

−1
g(t)h(t) dt +

∫ 1

0
g(t)h(t) dt

(making the change of variables s = −t in the first integral)

=
∫ 1

0
g(−s)h(−s) ds +

∫ 1

0
g(t)h(t) dt

= −
∫ 1

0
g(s)h(s) ds +

∫ 1

0
g(t)h(t) dt = 0,

as required.
Now, more is true. Every function can be written as the sum of an even and an odd

function, to wit,
f (t) = 1

2

(
f (t)+ f (−t))︸ ︷︷ ︸

even

+ 1
2

(
f (t)− f (−t))︸ ︷︷ ︸

odd

.

Therefore, we have V = U +W . We can now infer that W = U⊥ and U = W⊥. We just
check the former. We’ve already established thatW ⊂ U⊥, so it remains only to show that
if f ∈ U⊥, then f ∈ W . Write f = f1 + f2, where f1 ∈ U and f2 ∈ W . Then we have

0 = 〈f, f1〉 = 〈f1 + f2, f1〉 = 〈f1, f1〉 + 〈f2, f1〉 = 〈f1, f1〉,
since we’ve already shown that even and odd functions are orthogonal. Thus, f1 = 0
and f ∈ W , as we needed to show. (This means that (U⊥)⊥ = U in this instance.7 See
Exercise 21 for an infinite-dimensional example in which this equality fails.)

We can use the inner product defined in Example 10(b) to prove the following important
result about curve fitting (see the discussion in Section 6.1 of Chapter 1).

Theorem 6.4 (Lagrange Interpolation Formula). Given k + 1 points

(t1, b1), (t2, b2), . . . , (tk+1, bk+1)

in the plane with t1, t2, . . . , tk+1 distinct, there is exactly one polynomial p ∈ Pk whose
graph passes through the points.

Proof. We begin by explicitly constructing a basis for Pk consisting of mutually orthogonal
vectors of length 1 with respect to the inner product defined in Example 10(b). That is, to
start, we seek a polynomial p1 ∈ Pk so that

p1(t1) = 1, p1(t2) = 0, . . . , p1(tk+1) = 0.

The polynomial q1(t) = (t − t2)(t − t3) · · · (t − tk+1) has the property that q1(tj ) = 0 for
j = 2, 3, . . . , k + 1, and q1(t1) = (t1 − t2)(t1 − t3) · · · (t1 − tk+1) �= 0 (why?). So now we
set

p1(t) = (t − t2)(t − t3) · · · (t − tk+1)

(t1 − t2)(t1 − t3) · · · (t1 − tk+1)
;

then, as desired, p1(t1) = 1 and p1(tj ) = 0 for j = 2, 3, . . . , k + 1. Similarly, we can
define

p2(t) = (t − t1)(t − t3) · · · (t − tk+1)

(t2 − t1)(t2 − t3) · · · (t2 − tk+1)

7This proof is identical to that of Proposition 3.6, and it will work whenever there are subspaces U and W with
the property that U +W = V and U ∩W = {0}.
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and polynomials p3, . . . , pk+1 so that

pi(tj ) =
{

1, when i = j

0, when i �= j
.

Like the standard basis vectors in Euclidean space, p1, p2, . . . , pk+1 are unit vectors in Pk
that are orthogonal to one another. It follows from Exercise 3.3.10 that these vectors form a
linearly independent set and hence a basis for Pk (why?). In Figure 6.1 we give the graphs
of the Lagrange “basis polynomials” p1, p2, p3 for P2 when t1 = −1, t2 = 0, and t3 = 2.

FIGURE 6.1
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Now it is easy to see that the appropriate linear combination

p = b1p1 + b2p2 + · · · + bk+1pk+1

has the desired properties: p(tj ) = bj for j = 1, 2, . . . , k + 1. On the other hand, two
polynomials of degree ≤ k with the same values at k + 1 points must be equal since their
difference is a polynomial of degree ≤ k with at least k + 1 roots. This establishes unique-
ness. (More elegantly, any polynomial q with q(tj ) = bj , j = 1, . . . , k + 1, must satisfy
〈q, pj 〉 = bj , j = 1, . . . , k + 1.)

Remark. The proof worked so nicely because we constructed a basis that was adapted to
the problem at hand. If we were to work with the “standard basis” {f0, f1, . . . , fk} for Pk ,
we would need to find coefficients a0, . . . , ak so that p(t) = a0 + a1t + a2t

2 + · · · + aktk
has the requisite properties. This results in a system of k + 1 linear equations in the k + 1
variables a0, . . . , ak:

a0 + a1t1 + a2t
2
1 + · · · + akt

k
1 = b1

a0 + a1t2 + a2t
2
2 + · · · + akt

k
2 = b2

...

a0 + a1tk+1 + a2t
2
k+1 + · · · + akt

k
k+1 = bk+1,

which in matrix form is⎡
⎢⎢⎢⎢⎢⎣

1 t1 t21 . . . t k1

1 t2 t22 . . . t k2
...

...
...

. . .
...

1 tk+1 t2k+1 . . . t kk+1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a0

a1

...

ak

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

b1

b2

...

bk+1

⎤
⎥⎥⎥⎥⎥⎦
.
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Theorem 6.4 shows that this system of equations has a unique solution so long as the ti’s
are distinct. By Proposition 5.5 of Chapter 1, we deduce that the coefficient matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

1 t1 t21 . . . tk1

1 t2 t22 . . . tk2
...

...
...

. . .
...

1 tk+1 t2k+1 . . . t kk+1

⎤
⎥⎥⎥⎥⎥⎦

is nonsingular, a fact that is amazingly tricky to prove by brute-force calculation (see
Exercise 12 and also Exercise 4.4.20).

Exercises 3.6

1. Use the definition of a vector space V to prove the following:
a. 0u = 0 for every u ∈ V .

b. −u = (−1)u for every u ∈ V .
(Hint: The distributive property 7 is all important.)

2.∗ Decide whether the following sets of vectors are linearly independent.

a.

{[
1 0

0 1

]
,

[
0 1

1 0

]
,

[
1 1

1 −1

]}
⊂ M2×2

b. {f1, f2, f3} ⊂ P1, where f1(t) = t , f2(t) = t + 1, f3(t) = t + 2

c. {f1, f2, f3} ⊂ C∞(R), where f1(t) = 1, f2(t) = cos t , f3(t) = sin t

d. {f1, f2, f3} ⊂ C0(R), where f1(t) = 1, f2(t) = sin2 t , f3(t) = cos2 t

e. {f1, f2, f3} ⊂ C∞(R), where f1(t) = 1, f2(t) = cos t , f3(t) = cos 2t

f. {f1, f2, f3} ⊂ C∞(R), where f1(t) = 1, f2(t) = cos 2t , f3(t) = cos2 t

3.∗ Decide whether each of the following is a subspace of M2×2. If so, provide a basis. If
not, give a reason.

a.

{
A ∈ M2×2 :

[
1

2

]
∈ N(A)

}

b.

{
A ∈ M2×2 :

[
1

2

]
∈ C(A)

}

c. {A ∈ M2×2 : rank(A) = 1}
d. {A ∈ M2×2 : rank(A) ≤ 1}
e. {A ∈ M2×2 : A is in echelon form}
f.

{
A ∈ M2×2 : A

[
1 2

1 1

]
=
[

1 2

1 1

]
A

}

g.

{
A ∈ M2×2 : A

[
1 2

1 1

]
=
[

1 2

1 1

]
AT

}

4.∗ What is the dimension of the vector space Mm×n? Give a basis.

5.∗ Check that the subsets defined in Example 2 are in fact subspaces of Mn×n. Find their
dimensions.
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6. Decide whether each of the following is a subspace of C0(R). If so, provide a basis
and determine its dimension. If not, give a reason.
a.∗ {f : f (1) = 2}
b. {f ∈ P2 : ∫ 1

0 f (t) dt = 0}
c.∗ {f ∈ C1(R) : f ′(t)+ 2f (t) = 0 for all t}
d. {f ∈ P4 : f (t)− tf ′(t) = 0 for all t}
e. {f ∈ P4 : f (t)− tf ′(t) = 1 for all t}
f.∗ {f ∈ C2(R) : f ′′(t)+ f (t) = 0 for all t}
g.∗ {f ∈ C2(R) : f ′′(t)− f ′(t)− 6f (t) = 0 for all t}
h. {f ∈ C1(R) : f (t) = ∫ t

0 f (s) ds for all t}
7. Suppose a0(t), . . . , an−1(t) are continuous functions. Prove that the set of solutions
y(t) of the nth-order differential equation

y(n)(t)+ an−1(t)y
(n−1)(t)+ · · · + a2(t)y

′′(t)+ a1(t)y
′(t)+ a0(t)y(t) = 0

is a subspace of Cn(R). Here y(k)(t) denotes the kth derivative of the function y(t).
(See Theorem 3.4 of Chapter 7 for an algorithm for finding those solutions when the
functions aj (t) are constants.)

8. Let Mn×n denote the vector space of all n× n matrices.
a. Let S ⊂ Mn×n denote the set of symmetric matrices (those satisfying AT = A).

Show that S is a subspace of Mn×n. What is its dimension?

b. Let K ⊂ Mn×n denote the set of skew-symmetric matrices (those satisfying AT =
−A). Show that K is a subspace of Mn×n. What is its dimension?

c. Show that S + K = Mn×n. (See Exercise 2.5.22.)

9. Define the trace of an n× nmatrixA (denoted trA) to be the sum of its diagonal entries:

trA =
n∑
i=1

aii .

a. Show that trA = tr(AT).

b. Show that tr(A+ B) = trA+ trB and tr(cA) = c trA for any scalar c.

c. Prove that tr(AB) = tr(BA). (Hint:
n∑
k=1

n∑
�=1
ck� =

n∑
�=1

n∑
k=1
ck�.)

d. If A,B ∈ Mn×n, define 〈A,B〉 = tr(ATB). Check that this is an inner product on
Mn×n.

e. Check that if A is symmetric and B is skew-symmetric, then 〈A,B〉 = 0. (Hint:
Use the properties to show that 〈A,B〉 = −〈B,A〉.)

f. Deduce that the subspaces of symmetric and skew-symmetric matrices (see Exercise
8) are orthogonal complements in Mn×n.

10. (See Exercise 9 for the relevant definitions.) Define V = {A ∈ Mn×n : trA = 0}.
a. Show that V is a subspace of Mn×n.
b.∗ Find a basis for V ⊥ (using the inner product defined in Exercise 9).

11. Here is a sketch of the algebra result mentioned in the text. Let p be a polynomial of
degree k, that is, p(t) = akt

k + ak−1t
k−1 + · · · + a1t + a0, where a0, . . . , ak ∈ R and

ak �= 0.
a. Prove the root-factor theorem: c is a root of p, i.e., p(c) = 0, if and only if p(t) =
(t − c)q(t) for some polynomial q of degree k − 1. (Hint: When you divide p(t)
by t − c, the remainder should be p(c). Why?)

b. Show that p has at most k roots.
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12. a. Suppose b, c, and d are distinct real numbers. Show that the matrix
⎡
⎢⎢⎣

1 1 1

b c d

b2 c2 d2

⎤
⎥⎥⎦

is nonsingular.

b. Suppose a, b, c, and d are distinct real numbers. Show that the matrix

⎡
⎢⎢⎢⎢⎣

1 1 1 1

a b c d

a2 b2 c2 d2

a3 b3 c3 d3

⎤
⎥⎥⎥⎥⎦

is nonsingular. (Hint: Subtract a times the third row from the fourth, a times the
second row from the third, and a times the first row from the second.)

c. Suppose t1, . . . , tk+1 are distinct. Prove that the matrix
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

t1 t2 . . . tk+1

t21 t22 . . . t2k+1
...

...
. . .

...

t k1 tk2 . . . t kk+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is nonsingular. (Hint: Iterate the trick from part b. If you know mathematical
induction, this would be a good place to try it.)

13. a. Prove that dim Mn×n = n2.

b. Let A ∈ Mn×n. Show that there are scalars c0, c1, . . . , cn2 , not all 0, so that c0In +
c1A+ c2A

2 + · · · + cn2An
2 = O. (That is, there is a nonzero polynomial p of

degree at most n2 so that p(A) = O.)

14. Let g(t) = 1. Using the inner product defined in Example 10(c), find the orthogonal
complement of Span (g) in
a.∗ P1 ⊂ C0([−1, 1])
b.∗ P1 ⊂ C0([0, 1])

c. P2 ⊂ C0([−1, 1])
d. P2 ⊂ C0([0, 1])

15. Let g1(t) = 1 and g2(t) = t . Using the inner product defined in Example 10(c), find
the orthogonal complement of Span (g1, g2) in
a. P2 ⊂ C0([−1, 1])
b.∗ P2 ⊂ C0([0, 1])

c. P3 ⊂ C0([−1, 1])
d. P3 ⊂ C0([0, 1])

16.∗ Let g1(t) = t − 1 and g2(t) = t2 + t . Using the inner product on P2 ⊂ C0([0, 1])
defined in Example 10(c), find the orthogonal complement of Span (g1, g2).

17. Let g1(t) = t − 1 and g2(t) = t2 + t . Using the inner product on P2 defined in Exam-
ple 10(b) with t1 = −1, t2 = 0, and t3 = 1, find a basis for the orthogonal complement
of Span (g1, g2).

18.∗ Show that for any positive integer n, the functions 1, cos t , sin t , cos 2t , sin 2t, . . . ,
cos nt , sin nt are orthogonal in C∞([−π, π ]) ⊂ C0([−π, π ]) (using the inner product
defined in Example 10(c)).
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19. Using the inner product defined in Example 10(c), let V = C0([a, b]), and let W =
{f ∈ V : ∫ b

a
f (t) dt = 0}.

a. Prove thatW is a subspace of V .

b. Prove thatW⊥ is the subspace of constant functions.

c. Prove or disprove: W +W⊥ = V .

20. Prove that the following are subspaces of Rω.
a.∗ {x : there is a constant C such that |xk| ≤ C for all k}
b. {x : lim

k→∞ xk exists}
c. {x : lim

k→∞ xk = 0}

d. {x :
∞∑
k=1
xk exists}

e. {x :
∞∑
k=1

|xk| exists} (Hint: Remember that |a + b| ≤ |a| + |b| for all a, b ∈ R.)

21. The subspace �2 ⊂ Rω defined by �2 = {x ∈ Rω :
∞∑
k=1
x2
k exists} is an inner product

space with inner product defined by 〈x, y〉 =
∞∑
k=1
xkyk . (That this sum makes sense

follows by “taking the limit” of the Cauchy-Schwarz Inequality.) Let

V = {x ∈ �2 : there is an integer n such that xk = 0 for all k > n}.
Show thatV is a (proper) subspace of �2 and thatV ⊥ = {0}. It follows that (V ⊥)⊥ = �2,
so Proposition 3.6 need not hold in infinite-dimensional spaces.

HISTORICAL NOTES
This chapter begins with the vectors you studied in the first chapters and puts them in an
algebraic setting, that of a vector space. The chapter ends with another extension of these
ideas, the formal definition of an abstract vector space. This definition has its origins in
the 1888 publication Geometrical Calculus by the Italian mathematician Giuseppe Peano
(1858–1932). Peano’s forte was formulating precise definitions and axioms in various areas
of mathematics and producing rigorous proofs of his mathematical assertions. Because of
his extremely careful approach to mathematics, he often found errors in other mathemati-
cians’work and occasionally found himself in heated arguments with his contemporaries on
the importance of such mathematical rigor. He is particularly known for his foundational
work in mathematics and his development of much of the concomitant notation. His defini-
tion of an abstract vector space in 1888 shows his penchant for precision and is essentially
what we use today.

Although formalism is extremely important in mathematics and Peano’s work should
be considered ahead of its time, the historical origins of the vector space lie with those
who first discovered and exploited its essential properties. The ideas of linear combinations
arose early in the study of differential equations. The history of the latter is itself a fascinat-
ing topic, with a great deal of activity beginning in the seventeenth century and continuing
to the present day. The idea that a linear combination of solutions of a linear ordinary
differential equation is itself a solution can be found in a 1739 letter from Leonhard Euler
(1707–1783) to Johann Bernoulli (1667–1748). Of course, this means that the collection
of all solutions forms a vector space, but Euler didn’t use that term. The notions of linear
independence and basis also emerge in that letter, as Euler discusses writing the general
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solution of the differential equation as a linear combination of certain base solutions. These
ideas continued to show up in works of other great mathematicians who studied differen-
tial equations, notably Jean le Rond d’Alembert (1717–1783) and Joseph-Louis Lagrange
(1736–1813). Not long thereafter, the ideas of vector space and dimension found their way
into the study of geometry with the work of Hermann Gunther Grassmann (1809–1877).
In 1844 he published a seminal work describing his “calculus of extension,” now called
exterior algebra. Because so many people found his work unreadable, he ultimately revised
it and published Die Ausdehnungslehre in 1862. The objects he introduced are linear com-
binations of symbols representing points, lines, and planes in various dimensions. In fact,
it was Grassmann’s work that inspired Peano to make the modern definitions of basis and
dimensions.

The history of dimension is itself a fascinating subject. For vector spaces, we have
seen that the definition is fairly intuitive. On the other hand, there are some very interesting
paradoxes that arise when one examines the notion of dimension more carefully. In 1877
Georg Cantor (1845–1918) made an amazing and troubling discovery: He proved that that
there is a one-to-one correspondence between points of R and points of R2. Although
intuitively the (two-dimensional) plane is bigger than the (one-dimensional) line, Cantor’s
argument says that they each have the same “number” of points.

Of course, the one-to-one correspondence described by Cantor must not be a very nice
function, so one might consider Cantor’s result not as a problem with the concept of di-
mension but as evidence that perhaps functions can be badly behaved. However, in 1890
Peano further confounded the situation by producing a continuous function from the line
into the plane that touches every point of a square. The actual definition of dimension
that finally came about to resolve these issues is too involved for us to discuss here, as it
entails elements of the branch of mathematics known as topology and objects called mani-
folds. The key players in this work were Georg Friedrich Bernhard Riemann (1826–1866),
J. Henri Poincaré (1854–1912), and L. E. J. Brouwer (1881–1966).

Even today, new discoveries and definitions shatter people’s expectations of dimension.
Cantor and Peano did not realize that they were laying the groundwork for what is now
the study of fractals or fractal geometry. Benoît Mandelbrot (1924–) coined the term
fractal (from the Latin fractus, describing the appearance of a broken stone as irregular
and fragmented) and launched a fascinating area of study. Fractal curves are strange beasts
in that they always appear the same no matter how closely you look at them. When the
notions of dimension were extended to capture this behavior, mathematicians had discovered
geometric figures with fractional dimension. Indeed, the coastline of Britain could actually
be considered to have fractal dimension approximately 1.2. The study of fractals is a very
active field of research today.



This page intentionally left blank 



191

C H A P T E R 4
PROJECTIONS AND LINEAR
TRANSFORMATIONS

A n inconsistent linear systemAx = b has, of course, no solution. But we might try to do
the best we can by solving instead the systemAx = p, where p is the vector closest to

b lying in the column space ofA. This naturally involves the notion of projection of vectors
in Rn onto subspaces, which is our fundamental example of a linear transformation. In this
chapter, we continue the discussion, initiated in Chapter 2, of linear transformations—
the functions underlying matrices. We will see that a given linear transformation can be
represented by quite different matrices, depending on the underlying basis (or coordinate
system) for our vector space. A propitious choice of basis can lead to a more “convenient”
matrix representation and a better understanding of the linear transformation itself.

1 Inconsistent Systems and Projection

Suppose we’re given the system Ax = b to solve, where

A =

⎡
⎢⎢⎢⎢⎣

2 1

1 1

0 1

1 −1

⎤
⎥⎥⎥⎥⎦

and b =

⎡
⎢⎢⎢⎢⎣

2

1

1

−1

⎤
⎥⎥⎥⎥⎦
.

As the reader can check, b /∈ C(A), and so this system is inconsistent. It seems reasonable
instead to solve Ax = p, where p is the vector in C(A) that is closest to b. The vector p is
characterized by the following lemma.

Lemma 1.1. Suppose V ⊂ Rm is a subspace, b ∈ Rm, and p ∈ V has the property that
b − p ∈ V ⊥. Then

‖b − p‖ < ‖b − q‖ for all other vectors q ∈ V.
That is, if p ∈ V and p differs from b by an element of V ⊥, then p is closer to b than every
other point in V .
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Proof. Since b − p ∈ V ⊥ and q − p ∈ V , the vectors q − p and b − p are orthogonal
and form a right triangle with hypotenuse b − q, as shown in Figure 1.1. Thus, by the
Pythagorean Theorem, ‖b − q‖ > ‖b − p‖, and so p is closer to b than every other point
in V .

FIGURE 1.1

b

V

p

q
Rm

Recall that Theorem 4.9 of Chapter 3 tells us that for any subspaceV ⊂ Rm and b ∈ Rm,
there is a unique way to write

b = p + (b − p), where p ∈ V and b − p ∈ V ⊥.

This leads to the following definition.

Definition. Let V ⊂ Rm be a subspace, and let b ∈ Rm. We define the projection of
b onto V to be the unique vector p ∈ V with the property that b − p ∈ V ⊥. We write
p = projV b.

Remark. Since (V ⊥)⊥ = V , it follows that projV ⊥b = b − p = b − projV b. (Note that
b − p ∈ V ⊥ and b − (b − p) = p ∈ (V ⊥)⊥.) In particular,

b = projV b + projV ⊥b.

To calculate p explicitly, we proceed as follows: Suppose V is n-dimensional and
choose vectors v1, . . . , vn that form a basis for V . Consider the m× n matrix A whose
columns are v1, . . . , vn. We want to solve

Ax = p where b − p ∈ C(A)⊥.

By Theorem 2.5 of Chapter 3, C(A)⊥ = N(AT), so now we can rewrite our problem as a
pair of equations:

Ax = p

AT(b − p) = 0.

Substituting the first in the second yields

AT(b − Ax) = 0.

That is, x is a solution of the normal equations1

ATAx = ATb.

We already know this equation has (at least) a solution, because p exists. Since, by con-
struction, the rank of A is n, we claim that ATA is nonsingular: Suppose x ∈ N(ATA).

1The nomenclature is yet another example of the lively imagination of mathematicians.
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This means

(ATA)x = AT(Ax) = 0,

so, dotting with x, we get

AT(Ax) · x = Ax · Ax = ‖Ax‖2 = 0;
thereforeAx = 0, and sinceA has rank n, we conclude that x = 0. As a result, we have the
following definition.

Definition. Given anm× nmatrixA of rankn, the least squares solution of the equation
Ax = b is the unique solution2 of the normal equations

(ATA)x = ATb.

Remark. When rank(A) < n, the normal equations are still consistent (see Exercise 3.4.24)
but have infinitely many solutions. Every one of those solutions x gives rise to the same
projection Ax = p, because p is the unique vector in C(A) with the property that b − p ∈
N(AT). But we define the least squares solution to be the unique vector x ∈ R(A) that
satisfies the normal equations; of all the solutions, this is the one of least length. (See
Proposition 4.10 of Chapter 3.) This leads to the pseudoinverse that is important in numer-
ical analysis. See Strang’s books for more details.

Summarizing, we have proved the following proposition.

Proposition 1.2. Suppose V ⊂ Rm is an n-dimensional subspace with basis vectors
v1, . . . , vn, and let A be the m× n matrix whose columns are these basis vectors. Given a
vector b ∈ Rm, the projection of b onto V is obtained by multiplying the unique solution of
the normal equations (ATA)x = ATb by the matrix A. That is,

p = projV b = Ax = (A(ATA)−1AT
)
b.

EXAMPLE 1

To solve the problem we posed at the beginning of the section, we wish to find the least
squares solution of the system Ax = b, where

A =

⎡
⎢⎢⎢⎢⎣

2 1

1 1

0 1

1 −1

⎤
⎥⎥⎥⎥⎦

and b =

⎡
⎢⎢⎢⎢⎣

2

1

1

−1

⎤
⎥⎥⎥⎥⎦
.

We need only solve the normal equations ATAx = ATb. Now,

ATA =
[

6 2

2 4

]
and ATb =

[
4

5

]
,

2x is called the least squares solution because it minimizes the sum of squares ‖b − q‖2 = (b1 − q1)
2 + · · · +

(bm − qm)2, among all vectors q = Ax for some x ∈ Rn.
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and so, using the formula for the inverse of a 2 × 2 matrix in Example 4 on p. 105, we find
that

x = (ATA)−1ATb = 1

20

[
4 −2

−2 6

][
4

5

]
= 1

10

[
3

11

]

is the least squares solution. Moreover, while we’re at it, we can find the projection of b
onto C(A) by calculating

Ax =

⎡
⎢⎢⎢⎢⎣

2 1

1 1

0 1

1 −1

⎤
⎥⎥⎥⎥⎦

(
1

10

[
3

11

])
= 1

10

⎡
⎢⎢⎢⎢⎣

17

14

11

−8

⎤
⎥⎥⎥⎥⎦
.

We note next that Proposition 1.2 gives us an explicit formula for projection onto a
subspace V ⊂ Rm, generalizing the case of dim V = 1 given in Chapter 1. Since we have

p = projV b = (A(ATA)−1AT
)
b

for every vector b ∈ Rm, it follows that the matrix

(∗) PV = A(ATA)−1AT

is the appropriate “projection matrix”; that is,

projV = μPV = μA(ATA)−1AT .

Remark. It can be rather messy to compute PV , since along the way we must calculate
(ATA)−1. Later in this chapter, we will see that a clever choice of basis will make this
calculation much easier.

Remark. Since we have written projV = μPV for the projection matrix PV , it follows that
projV is a linear transformation. (We already checked this for one-dimensional subspaces
V in Chapter 2.) In Exercise 13 we ask the reader to show this directly, using the definition
on p. 192.

EXAMPLE 2

If b ∈ C(A) to begin with, then b = Ax for some x ∈ Rn, and

PV b = (A(ATA)−1AT
)
b = A(ATA)−1(ATA)x = Ax = b,

as it should be. And if b ∈ C(A)⊥, then b ∈ N(AT), so

PV b = (A(ATA)−1AT
)
b = A(ATA)−1(ATb) = 0,

as it should be.

EXAMPLE 3

Note that when dim V = 1, we recover our formula for projection onto a line from Section
2 of Chapter 1. If a ∈ V ⊂ Rm is a nonzero vector, we consider it as an m× 1 matrix, and
the projection formula becomes

PV = 1

‖a‖2
aaT;
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that is,

PV b = 1

‖a‖2
(aaT)b = 1

‖a‖2
a(aTb) = a · b

‖a‖2
a,

as before. For example, if

a =

⎡
⎢⎢⎣

2

1

0

⎤
⎥⎥⎦ , then PV = 1

5

⎡
⎢⎢⎣

4 2 0

2 1 0

0 0 0

⎤
⎥⎥⎦ .

(This might be a good time to review Example 3 in Section 5 of Chapter 2. For a ∈ Rm,
remember that aaT is an m×m matrix, whereas aTa is a 1 × 1 matrix, i.e., a scalar.)

EXAMPLE 4

Let V ⊂ R3 be the plane defined by the equation x1 − 2x2 + x3 = 0. Then

v1 =

⎡
⎢⎢⎣

2

1

0

⎤
⎥⎥⎦ and v2 =

⎡
⎢⎢⎣

−1

0

1

⎤
⎥⎥⎦

form a basis for V , and we take

A =

⎡
⎢⎢⎣

2 −1

1 0

0 1

⎤
⎥⎥⎦ .

Then, since

ATA =
[

5 −2

−2 2

]
, we have (ATA)−1 = 1

6

[
2 2

2 5

]
,

and so

PV = A(ATA)−1AT = 1

6

⎡
⎢⎢⎣

2 −1

1 0

0 1

⎤
⎥⎥⎦
[

2 2

2 5

][
2 1 0

−1 0 1

]
= 1

6

⎡
⎢⎢⎣

5 2 −1

2 2 2

−1 2 5

⎤
⎥⎥⎦ .

Here is an alternative solution. We have already seen that

projV b = b − proj(V ⊥)b.

In matrix notation, this can be rewritten as

PV = I3 − PV ⊥ .

Since V ⊥ is spanned by a normal vector, a, to the plane, as in Example 3, we have

PV ⊥ = 1

‖a‖2
aaT, and so PV = I3 − 1

‖a‖2
aaT.
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In our case, we have a =
⎡
⎢⎣

1

−2

1

⎤
⎥⎦, and so

I3 − 1

‖a‖2
(aaT) =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦− 1

6

⎡
⎢⎢⎣

1

−2

1

⎤
⎥⎥⎦
[
1 −2 1

]

=

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦− 1

6

⎡
⎢⎢⎣

1 −2 1

−2 4 −2

1 −2 1

⎤
⎥⎥⎦ = 1

6

⎡
⎢⎢⎣

5 2 −1

2 2 2

−1 2 5

⎤
⎥⎥⎦ ,

just as before. This is a useful trick to keep in mind. It is sometimes easier to calculate PV ⊥

than PV ; generally, it is easier to project onto the subspace that has the smaller dimension.

In the next section, we’ll see the geometry underlying the formula for the projection
matrix.

1.1 Data Fitting
Perhaps the most natural setting in which inconsistent systems of linear equations arise is
that of fitting data to a linear model when they won’t quite fit. The least squares solution
of such linear problems is called the least squares line fitting the points (or the line of
regression in statistics). Even nonlinear problems can sometimes be rephrased linearly.
For example, fitting a parabola y = ax2 + bx + c to data points in the xy-plane, as we saw
in Section 6 of Chapter 1, is still a matter of solving a system of linear equations. Even more
surprisingly, in our laboratory work many of us have tried to find the right constants a and k
so that the data points (x1, y1), . . . , (xm, ym) lie on the curve y = axk . Taking logarithms,
we see that this is equivalent to fitting the points (ui, vi) = (ln xi, ln yi), i = 1, . . . , m, to
a line v = ku+ ln a.3

EXAMPLE 5

Find the least squares line y = ax + b for the data points (−1, 0), (1, 1), and (2, 3). (See
Figure 1.2.) We get the system of equations

−1a + b = 0

1a + b = 1

2a + b = 3 ,

which in matrix form becomes

A

[
a

b

]
=

⎡
⎢⎢⎣

−1 1

1 1

2 1

⎤
⎥⎥⎦
[
a

b

]
=

⎡
⎢⎢⎣

0

1

3

⎤
⎥⎥⎦ .

3This is why “log-log paper” was so useful before the advent of calculators and computers.
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FIGURE 1.2
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The least squares solution is

[
a

b

]
= (ATA)−1AT

⎡
⎢⎢⎣

0

1

3

⎤
⎥⎥⎦ = 1

14

[
3 −2

−2 6

][
7

4

]
= 1

14

[
13

10

]
.

That is, the least squares line is

y = 13

14
x + 5

7
.

When we find the least squares line y = ax + b fitting the data points (x1, y1), . . . ,

(xm, ym), we are finding the least squares solution of the (inconsistent) systemA

[
a

b

]
= y,

where

A =

⎡
⎢⎢⎢⎢⎢⎣

x1 1

x2 1
...

...

xm 1

⎤
⎥⎥⎥⎥⎥⎦

and y =

⎡
⎢⎢⎢⎢⎢⎣

y1

y2

...

ym

⎤
⎥⎥⎥⎥⎥⎦
.

Let’s denote by y = A

[
a

b

]
the projection of y onto C(A). The least squares solution

[
a

b

]

has the property that ‖y − y‖ is as small as possible, whence the name least squares. If we
define the error vector ε = y − y, then we have

ε =

⎡
⎢⎢⎢⎢⎢⎣

ε1

ε2

...

εm

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

y1 − y1

y2 − y2
...

ym − ym

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

y1 − (ax1 + b)
y2 − (ax2 + b)

...

ym − (axm + b)

⎤
⎥⎥⎥⎥⎥⎦
.

The least squares process chooses a and b so that ‖ε‖2 = ε2
1 + · · · + ε2

m is as small as
possible. But something interesting happens. Recall that

ε = y − y ∈ C(A)⊥.
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Thus, ε is orthogonal to each of the column vectors of A, and so, in particular,

⎡
⎢⎢⎣
ε1

...

εm

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1
...

1

⎤
⎥⎥⎦ = ε1 + · · · + εm = 0.

That is, in the process of minimizing the sum of the squares of the errors εi , we have in fact
made their (algebraic) sum equal to 0.

Exercises 4.1

1. By first finding the projection onto V ⊥, find the projection of the given vector b ∈ Rm

onto the given hyperplane V ⊂ Rm.
a. V = {x1 + x2 + x3 = 0} ⊂ R3, b = (2, 1, 1)

b.∗ V = {x1 + x2 + x3 = 0} ⊂ R4, b = (0, 1, 2, 3)

c. V = {x1 − x2 + x3 + 2x4 = 0} ⊂ R4, b = (1, 1, 1, 1)

2. Use the formula PV = A(ATA)−1AT for the projection matrix to check that PV = P T
V

and P 2
V = PV . Show that I − PV has the same properties, and explain why.

3.∗ Let V = Span
(
(1, 1,−1), (−2, 0, 1)

) ⊂ R3. Construct the matrix PV representing
projV
a. by finding PV ⊥ ;

b. by using the formula (∗) on p. 194.

4. LetV = Span
(
(1, 0, 1), (0, 1,−2)

) ⊂ R3. Construct the matrixPV representing projV
a. by finding PV ⊥ ;

b. by using the formula (∗) on p. 194.

5. Let V = Span
(
(1, 0, 1, 0), (0, 1, 0, 1), (1, 1,−1,−1)

) ⊂ R4. Construct the matrix
PV representing projV
a. by finding PV ⊥ ;

b. by using the formula (∗) on p. 194.

6.∗ Find the least squares solution of

x1 + x2 = 4

2x1 + x2 = −2

x1 − x2 = 1 .

Use your answer to find the point on the plane spanned by (1, 2, 1) and (1, 1,−1) that
is closest to (4,−2, 1).

7. Find the least squares solution of

x1 + x2 = 1

x1 − 3x2 = 4

2x1 + x2 = 3 .

Use your answer to find the point on the plane spanned by (1, 1, 2) and (1,−3, 1) that
is closest to (1, 4, 3).
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8. Find the least squares solution of

x1 − x2 = 1

x1 = 4

x1 + 2x2 = 3 .

Use your answer to find the point on the plane spanned by (1, 1, 1) and (−1, 0, 2) that
is closest to (1, 4, 3).

9. Consider the four data points (−1, 0), (0, 1), (1, 3), (2, 5).
a.∗ Find the “least squares horizontal line” y = a fitting the data points. Check that the

sum of the errors is 0.

b. Find the “least squares line” y = ax + b fitting the data points. Check that the sum
of the errors is 0.

c.∗ (Calculator recommended) Find the “least squares parabola” y = ax2 + bx + c fit-
ting the data points. What is true of the sum of the errors in this case?

10. Consider the four data points (1, 1), (2, 2), (3, 1), (4, 3).
a. Find the “least squares horizontal line” y = a fitting the data points. Check that the

sum of the errors is 0.

b. Find the “least squares line” y = ax + b fitting the data points. Check that the sum
of the errors is 0.

c. (Calculator recommended) Find the “least squares parabola” y = ax2 + bx + c fit-
ting the data points. What is true of the sum of the errors in this case?

11.∗ (Calculator required) Find the least squares fit of the form y = axk to the data points
(1, 2), (2, 3), (3, 5), and (5, 8).

12. Given data points (x1, y1), . . . , (xm, ym), let (x1, y1), . . . , (xm, ym) be the correspond-
ing points on the least squares line.
a. Show that y1 + · · · + ym = y1 + · · · + ym.

b. Conclude that the least squares line passes through the centroid
(

1
m

m∑
i=1
xi,

1
m

m∑
i=1
yi

)

of the original data points.

c. Show that
m∑
i=1
xiyi =

m∑
i=1
xiyi . (Hint: This is one of the few times that the preceding

parts of the exercise are not relevant.)

13.∗ Use the definition of projection on p. 192 to show that for any subspace V ⊂ Rm,
projV : Rm → Rm is a linear transformation. That is, show that
a. projV (x + y) = projV x + projV y for all vectors x and y;

b. projV (cx) = c projV x for all vectors x and scalars c.

14. Prove from the definition of projection on p. 192 that if projV = μA, then A = A2 and
A = AT. (Hint: For the latter, show thatAx · y = x · Ay for all x, y. It may be helpful
to write x and y as the sum of vectors in V and V ⊥. Then use Exercise 2.5.24.)

15. Prove that if A2 = A and A = AT, then A is a projection matrix. (Hints: First decide
onto which subspace it should be projecting. Then show that for all x, the vector Ax
lies in that subspace and x − Ax is orthogonal to that subspace.)

16. Let V andW be subspaces of Rn and let b ∈ Rn. The affine subspace passing through
b and parallel to V is defined to be

b + V = {x ∈ Rn : x = b + v for some v ∈ V }.
a. Suppose x ∈ b + V and y ∈ c +W have the property that x − y is orthogonal to

both V andW . Show that ‖x − y‖ ≤ ‖x′ − y′‖ for any x′ ∈ b + V and y′ ∈ c +W .
(Thus, x and y are the points in b + V and c +W , respectively, that are closest.)
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b. Show that the distance between the affine subspaces b + V and c +W (see Figure
1.3), i.e., the least possible distance between a point in one and a point in the other, is

‖proj(V+W)⊥(b − c)‖.
c. Deduce that this distance is 0 when V +W = Rn. Give the obvious geometric

explanation.

FIGURE 1.3
c + W

c

b + V
b

V

W

17. Using the formula derived in Exercise 16, find the distance
a.∗ between the skew lines �: (2, 1, 1)+ t (0, 1,−1) and m: (1, 1, 0)+ s(1, 1, 1) in

R3

b. between the skew lines �: (1, 1, 1, 0)+ t (1, 0, 1, 1) and m: (0, 0, 0, 1)+
s(1, 1, 0, 2) in R4

c. between the line �: (1, 0, 0, 1)+ t (1, 0, 1, 0) and the 2-dimensional plane P =
Span

(
(1, 1, 1, 1), (0, 1, 1, 2)

)
in R4

2 Orthogonal Bases

We saw in the last section how to find the projection of a vector onto a subspace V ⊂ Rm

using the so-called normal equations. But the inner workings of the formula (∗) on p. 194
are still rather mysterious. Because we have known since Chapter 1 how to project a vector
x onto a line, it might seem more natural to start with a basis {v1, . . . , vk} for V and sum
up the projections of x onto the vj ’s. However, as we see in the diagram on the left in
Figure 2.1, when we start with x ∈ V and add the projections of x onto the vectors of an
arbitrary basis for V , the resulting vector needn’t have much to do with x. Nevertheless,
the diagram on the right suggests that when we start with a basis consisting of mutually
orthogonal vectors, the process may work. We begin by proving this as a lemma.

Definition. Let v1, . . . , vk ∈ Rm. We say {v1, . . . , vk} is an orthogonal set of vectors
provided vi · vj = 0 whenever i 
= j . We say {v1, . . . , vk} is an orthogonal basis for a
subspace V if {v1, . . . , vk} is both a basis for V and an orthogonal set. Moreover, we
say {v1, . . . , vk} is an orthonormal basis for V if it is an orthogonal basis consisting of
unit vectors.
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x x

projv2
x

projw2
x

projv1
x projw1

x

projv1
x + projv2

x

projw1
x + projw2

x
v2 w2

v1 w1

FIGURE 2.1

The first reason that orthogonal sets of vectors are so important is the following:

Proposition 2.1. Let v1, . . . , vk ∈ Rm. If {v1, . . . , vk} is an orthogonal set of nonzero
vectors, then {v1, . . . , vk} is linearly independent.

Proof. This was the content of Exercise 3.3.10, but the result is so important that we give
the proof here. Suppose

c1v1 + c2v2 + · · · + ckvk = 0.

We must show that c1 = c2 = · · · = ck = 0. For any i = 1, . . . , k, we take the dot product
of this equation with vi , obtaining

c1(v1 · vi )+ · · · + ci(vi · vi )+ · · · + ck(vk · vi ) = 0,

from which we see that ci‖vi‖2 = 0. Since vi 
= 0, it follows that ci = 0. Because this
holds for any i = 1, . . . , k, we have c1 = c2 = · · · = ck = 0, as required.

The same sort of calculation shows us how to write a vector as a linear combination of
orthogonal basis vectors, as we saw in Exercise 3.3.11.

Lemma 2.2. Suppose {v1, . . . , vk} is a basis for V . Then the equation

x =
k∑
i=1

projvix =
k∑
i=1

x · vi
‖vi‖2

vi

holds for all x ∈ V if and only if {v1, . . . , vk} is an orthogonal basis for V .

Proof. Suppose {v1, . . . , vk} is an orthogonal basis for V . Then there are scalars c1, . . . , ck
so that

x = c1v1 + · · · + civi + · · · + ckvk.
Taking advantage of the orthogonality of the vj ’s, we take the dot product of this equation
with vi :

x · vi = c1(v1 · vi )+ · · · + ci(vi · vi )+ · · · + ck(vk · vi )

= ci‖vi‖2,

and so

ci = x · vi
‖vi‖2

.

(Note that vi 
= 0 because {v1, . . . , vk} forms a basis for V .)
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Conversely, suppose that every vector x ∈ V is the sum of its projections on v1, . . . , vk .
Let’s just examine what this means when x = v1: We are given that

v1 =
k∑
i=1

projviv1 =
k∑
i=1

v1 · vi
‖vi‖2

vi .

Recall from Proposition 3.1 of Chapter 3 that every vector has a unique expansion as a
linear combination of basis vectors, so comparing coefficients of v2, . . . , vk on either side
of this equation, we conclude that

v1 · vi = 0 for all i = 2, . . . , k.

A similar argument shows that vi · vj = 0 for all i 
= j , and the proof is complete.

We recall that whenever {v1, . . . , vk} is a basis forV , every vector x ∈ V can be written
uniquely as a linear combination

x = c1v1 + c2v2 + · · · + ckvk,
where the coefficients c1, c2, . . . , ck are called the coordinates of x with respect to the basis
{v1, . . . , vk}. We emphasize that, as in Lemma 2.2, when {v1, . . . , vk} forms an orthogonal
basis for V , the dot product gives the coordinates of x. As we shall see in Section 4, when
the basis is not orthogonal, it is more tedious to compute these coordinates.

Not only do orthogonal bases make it easy to calculate coordinates, they also make
projections quite easy to compute, as we now see.

Proposition 2.3. Let V ⊂ Rm be a k-dimensional subspace. The equation

(†) projV b =
k∑
i=1

projvib =
k∑
i=1

b · vi
‖vi‖2

vi

holds for all b ∈ Rm if and only if {v1, . . . , vk} is an orthogonal basis for V .

Proof. Assume {v1, . . . , vk} is an orthogonal basis for V and let b ∈ Rm. Write b =
p + (b − p), where p = projV b (and so b − p ∈ V ⊥). Then, since p ∈ V , it follows from

Lemma 2.2 that p =
k∑
i=1

p · vi
‖vi‖2

vi . Moreover, for i = 1, . . . , k, we have b · vi = p · vi ,

since b − p ∈ V ⊥. Thus,

projV b = p =
k∑
i=1

projvip =
k∑
i=1

p · vi
‖vi‖2

vi =
k∑
i=1

b · vi
‖vi‖2

vi =
k∑
i=1

projvib.

Conversely, suppose projV b =
k∑
i=1

projvib for all b ∈ Rm. In particular, when b ∈ V , we

deduce that b = projV b can be written as a linear combination of v1, . . . , vk , so these vectors
span V ; since V is k-dimensional, {v1, . . . , vk} gives a basis for V . By Lemma 2.2, it must
be an orthogonal basis.

We now have another way to calculate the projection of a vector on a subspace V ,
provided we can come up with an orthogonal basis for V .
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EXAMPLE 1

We return to Example 4 of Section 1. The basis {v1, v2} we used there was certainly not an
orthogonal basis, but it is not hard to come up with one that is. Instead, we take

w1 =

⎡
⎢⎢⎣

−1

0

1

⎤
⎥⎥⎦ and w2 =

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ .

(It is immediate that w1 · w2 = 0 and that w1,w2 lie in the plane x1 − 2x2 + x3 = 0.) Now,
we calculate

projV b = projw1
b + projw2

b = b · w1

‖w1‖2
w1 + b · w2

‖w2‖2
w2

=
(

1

‖w1‖2
w1wT

1 + 1

‖w2‖2
w2wT

2

)
b

=

⎛
⎜⎜⎝

1

2

⎡
⎢⎢⎣

1 0 −1

0 0 0

−1 0 1

⎤
⎥⎥⎦+ 1

3

⎡
⎢⎢⎣

1 1 1

1 1 1

1 1 1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ b

=

⎡
⎢⎢⎣

5
6

1
3 − 1

6
1
3

1
3

1
3

− 1
6

1
3

5
6

⎤
⎥⎥⎦ b,

as we found earlier.

Remark. This is exactly what we get from formula (∗) on p. 194 when {v1, . . . , vk} is an
orthogonal set. In particular,

PV = A(ATA)−1AT

=

⎡
⎢⎢⎣

|
v1

|

|
v2

|
· · ·

|
vk

|

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1
‖v1‖2

1
‖v2‖2

. . .

1
‖vk‖2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

vT
1

vT
2
...

vT
k

⎤
⎥⎥⎥⎥⎥⎦

=
k∑
i=1

1

‖vi‖2
vivT

i .

To see why the last equality holds, the reader can either apply both sides to a vector x ∈ Rm

or think through the usual procedure for multiplying matrices (preferably using one finger
from each hand). See also Exercise 2.5.4.

Now it is time to develop an algorithm for transforming a given (ordered) basis
{v1, . . . , vk} for a subspace (or inner product space) into an orthogonal basis {w1, . . . ,wk},
as shown in Figure 2.2. The idea is quite simple. We set

w1 = v1.

If v2 is orthogonal to w1, then we set w2 = v2. Of course, in general, it will not be, and we
want w2 to be the part of v2 that is orthogonal to w1; i.e., we set

w2 = v2 − projw1
v2 = v2 − v2 · w1

‖w1‖2
w1.
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FIGURE 2.2

v2

v1

w2

w1

v3

v2 v1

w3

w1w2

Then, by construction, w1 and w2 are orthogonal and Span (w1,w2) ⊂ Span (v1, v2). Since
w2 
= 0 (why?), {w1,w2} must be linearly independent and therefore give a basis for
Span (v1, v2) by Proposition 4.4 of Chapter 3. We continue, replacing v3 by its part or-
thogonal to the plane spanned by w1 and w2:

w3 = v3 − projSpan (w1,w2)
v3 = v3 − projw1

v3 − projw2
v3 = v3 − v3 · w1

‖w1‖2
w1 − v3 · w2

‖w2‖2
w2.

Note that we are making definite use of Proposition 2.3 here: We must use w1 and w2 in the
formula here, rather than v1 and v2, because the formula (†) requires an orthogonal basis.
Once again, we find that w3 
= 0 (why?), and so {w1,w2,w3} must be linearly independent
(since they are nonzero and mutually orthogonal) and, resultingly, an orthogonal basis for
Span (v1, v2, v3). The process continues until we have arrived at vk and replaced it by

wk = vk − projSpan (w1,...,wk−1)
vk = vk − vk · w1

‖w1‖2
w1 − vk · w2

‖w2‖2
w2 − · · · − vk · wk−1

‖wk−1‖2
wk−1.

Summarizing, we have the algorithm that goes by the name of the Gram-Schmidt
process.

Theorem 2.4 (Gram-Schmidt process). Given a basis {v1, . . . , vk} for an inner product
space V , we obtain an orthogonal basis {w1, . . . ,wk} for V as follows:

w1 = v1

w2 = v2 − v2 · w1

‖w1‖2
w1

...

and, assuming w1, . . . ,wj have been defined,

wj+1 = vj+1 − vj+1 · w1

‖w1‖2
w1 − vj+1 · w2

‖w2‖2
w2 − · · · − vj+1 · wj

‖wj‖2
wj

...

wk = vk − vk · w1

‖w1‖2
w1 − vk · w2

‖w2‖2
w2 − · · · − vk · wk−1

‖wk−1‖2
wk−1.

If we so desire, we can arrange for an orthonormal basis by dividing each of w1, . . . ,wk
by its respective length:

q1 = w1

‖w1‖ , q2 = w2

‖w2‖ , . . . , qk = wk
‖wk‖ .
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EXAMPLE 2

Let v1 = (1, 1, 1, 1), v2 = (3, 1,−1, 1), and v3 = (1, 1, 3, 3). We want to use the Gram-
Schmidt process to give an orthogonal basis for V = Span (v1, v2, v3) ⊂ R4. We take

w1 = v1 = (1, 1, 1, 1);
w2 = v2 − v2 · w1

‖w1‖2
w1 = (3, 1,−1, 1)− (3, 1,−1, 1) · (1, 1, 1, 1)

‖(1, 1, 1, 1)‖2
(1, 1, 1, 1)

= (3, 1,−1, 1)− 4

4
(1, 1, 1, 1) = (2, 0,−2, 0);

w3 = v3 − v3 · w1

‖w1‖2
w1 − v3 · w2

‖w2‖2
w2

= (1, 1, 3, 3)− (1, 1, 3, 3) · (1, 1, 1, 1)
‖(1, 1, 1, 1)‖2

(1, 1, 1, 1)

− (1, 1, 3, 3) · (2, 0,−2, 0)

‖(2, 0,−2, 0)‖2
(2, 0,−2, 0)

= (1, 1, 3, 3)− 8

4
(1, 1, 1, 1)− −4

8
(2, 0,−2, 0) = (0,−1, 0, 1).

And if we desire an orthonormal basis, then we take

q1 = 1

2
(1, 1, 1, 1),

q2 = 1√
2
(1, 0,−1, 0),

q3 = 1√
2
(0,−1, 0, 1).

It’s always a good idea to check that the vectors form an orthogonal (or orthonormal) set,
and it’s easy—with these numbers—to do so.

2.1 The QR Decomposition
The Gram-Schmidt process gives rise in an obvious way to another matrix decomposition
that is useful in numerical computation. Just as the reduction to echelon form led to
the LU decomposition, the Gram-Schmidt process gives us what is usually called the
QR decomposition. We start with a matrix A whose columns v1, . . . , vn form a linearly
independent set. Let q1, . . . ,qn be the orthonormal basis for C(A) obtained by applying
the Gram-Schmidt process to v1, . . . , vn. Notice that for j = 1, . . . , n, the vector vj can be
written as a linear combination of q1, q2, . . . ,qj (why?). Thus, if we let Q be the m× n
matrix with columns q1, . . . ,qn, we see that there is an upper triangular n× nmatrix R so
that A = QR. Moreover, R is nonsingular, since its diagonal entries are nonzero.

EXAMPLE 3

Revisiting Example 2 above, let

A =

⎡
⎢⎢⎢⎢⎣

1 3 1

1 1 1

1 −1 3

1 1 3

⎤
⎥⎥⎥⎥⎦
, Q =

⎡
⎢⎢⎢⎢⎢⎣

1
2

1√
2

0
1
2 0 − 1√

2
1
2 − 1√

2
0

1
2 0 1√

2

⎤
⎥⎥⎥⎥⎥⎦
, and R =

⎡
⎢⎢⎣

2 2 4

0 2
√

2 −√
2

0 0
√

2

⎤
⎥⎥⎦ .
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Then, as the reader can check, we have A = QR. The entries of R can be computed by
keeping track of the arithmetic during the Gram-Schmidt process, or, more easily, by noting
that rij = qi · vj . (Note, as a check, that rij = 0 whenever i > j .)

Remark. The fact that the columns of the m× n matrix Q form an orthonormal set can
be restated in matrix form as QTQ = In. When A is square, so is the matrix Q. An
n× nmatrixQ is called orthogonal if its column vectors form an orthonormal set,4 i.e., if
QTQ = In. Orthogonal matrices will have a geometric role to play soon and will reappear
seriously in Chapter 6.

Remark. Suppose we have calculated theQR decomposition of an m× n matrix A whose
columns form a linearly independent set. How does this help us deal with the normal
equations and the projection formula? Recall that the normal equations are

(ATA)x = ATb;
substituting A = QR, we have

RT(QTQ)Rx = RTQTb, or

Rx = QTb.

(Here we’ve used the facts that QTQ = In and that R is nonsingular, and hence RT is
nonsingular.) In particular, using the formula

x = R−1QTb

to solve for the least squares solution is quite effective for computer work. Finally, the
projection matrix (∗) on p. 194 can be rewritten

PV = A(ATA)−1AT = (QR)(RTR)−1(RTQT) = (QR)(R−1)(RT)−1(RT)QT = QQT,

which says that projecting onto the subspace C(A) is the same as summing the projections
onto the orthonormal basis vectors q1, . . . ,qn. This is exactly what Proposition 2.3 told us.

Exercises 4.2

1. Redo Exercise 4.1.4 by finding an orthogonal basis for V .

2. Execute the Gram-Schmidt process in each case to give an orthonormal basis for the
subspace spanned by the given vectors.
a. (1, 0, 0), (2, 1, 0), (3, 2, 1)

b. (1, 1, 1), (0, 1, 1), (0, 0, 1)

c.∗ (1, 0, 1, 0), (2, 1, 0, 1), (0, 1, 2,−3)

d. (−1, 2, 0, 2), (2,−4, 1,−4), (−1, 3, 1, 1)

3. Let V = Span
(
(2, 1, 0,−2), (3, 3, 1, 0)

) ⊂ R4.
a. Find an orthogonal basis for V .

b. Use your answer to part a to find the projection of b = (0, 4,−4,−7) onto V .

c. Use your answer to part a to find the projection matrix PV .

4The terminology is confusing and unfortunate, but history has set it in stone. Matrices with orthogonal column
vectors of nonunit length don’t have a special name.
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4.∗ Let V = Span
(
(1, 3, 1, 1), (1, 1, 1, 1), (−1, 5, 2, 2)

) ⊂ R4.
a. Find an orthogonal basis for V .

b. Use your answer to part a to find projV (4,−1, 5, 1).

c. Use your answer to part a to find the projection matrix PV .

5.∗ Let V = Span
(
(1,−1, 0, 2), (1, 0, 1, 1)

) ⊂ R4, and let b = (1,−3, 1, 1).
a. Find an orthogonal basis for V .

b. Use your answer to part a to find p = projV b.

c. Letting

A =

⎡
⎢⎢⎢⎢⎣

1 1

−1 0

0 1

2 1

⎤
⎥⎥⎥⎥⎦
,

use your answer to part b to give the least squares solution of Ax = b.

6. Let V = Span
(
(1, 0, 1, 1), (0, 1, 0, 1)

) ⊂ R4.
a. Give an orthogonal basis for V .

b. Give a basis for the orthogonal complement of V .

c. Given a general vector x ∈ R4, find v ∈ V and w ∈ V ⊥ so that x = v + w.

7. According to Proposition 4.10 of Chapter 3, if A is an m× n matrix, then for each
b ∈ C(A), there is a unique x ∈ R(A) with Ax = b. In each case, give a formula for
that x. (Hint: It may help to remember that all solutions of Ax = b have the same
projection onto R(A).)

a. A =
[

1 2 3

1 2 3

]

b.∗ A =
[

1 1 1

0 1 −1

]
c. A =

[
1 1 1 1

1 1 3 −5

]

d. A =
⎡
⎢⎣

1 1 1 1

1 1 3 −5

2 2 4 −4

⎤
⎥⎦

8.∗ Give theQR decomposition of the following matrices.

a. A =
⎡
⎢⎣

1 1

1 0

0 1

⎤
⎥⎦ b. A =

⎡
⎢⎢⎢⎣

1 1 0

0 1 0

1 1 1

0 1 1

⎤
⎥⎥⎥⎦

9. By finding theQR decomposition of the appropriate matrix, redo
a. Exercise 4.1.6 b. Exercise 4.1.7 c. Exercise 4.1.8

10. Suppose that v1, . . . , vk ∈ Rn are orthonormal and that for every x ∈ Rn we have

‖x‖2 = (x · v1)
2 + · · · + (x · vk)2.

Prove that k = n and deduce that {v1, . . . , vk} is an orthonormal basis for Rn. (Hint:
If k < n, choose x 
= 0 orthogonal to Span (v1, . . . , vk).)

11.� Let A be an n× n matrix and, as usual, let a1, . . . , an denote its column vectors.
a. Suppose a1, . . . , an form an orthonormal set. Show that A−1 = AT.

b.∗ Suppose a1, . . . , an form an orthogonal set and each is nonzero. Find the appropriate
formula for A−1.
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12. Using the inner product defined in Example 10(c) of Chapter 3, Section 6, find an
orthogonal basis for the given subspace V and use your answer to find the projection
of f onto V .
a.∗ V = P1 ⊂ C0([−1, 1]), f (t) = t2 − t + 1

b. V = P1 ⊂ C0([0, 1]), f (t) = t2 + t − 1

c. V = P2 ⊂ C0([−1, 1]), f (t) = t3

d.∗ V = Span (1, cos t, sin t) ⊂ C0([−π, π ]), f (t) = t

e. V = Span (1, cos t, sin t) ⊂ C0([−π, π ]), f (t) = |t |

3 TheMatrix of a Linear Transformation and the
Change-of-Basis Formula

We now elaborate on the discussion of linear transformations initiated in Section 2 of Chap-
ter 2. As we saw in Section 1, the projection of vectors in Rn onto a subspace V ⊂ Rn

is a linear transformation (see Exercise 4.1.13), just like the projections, reflections, and
rotations in R2 that we studied in Section 2 of Chapter 2. Other examples of linear trans-
formations include reflections across planes in R3, rotations in R3, and even differentiation
and integration of polynomials. We will save this last example for the next section; here
we will deal only with functions from Rn to Rm.

We recall the following definition.

Definition. A function T : Rn → Rm is called a linear transformation (or linear map)
if it satisfies

(i) T (x + y) = T (x)+ T (y) for all x, y ∈ Rn;

(ii) T (cx) = c T (x) for all x ∈ Rn and scalars c.

If we think visually of T as mapping Rn to Rm, then we have a diagram like Figure 3.1.
We also see that, because of linearity, the behavior of T on all of Span (x, y) is completely
determined by T (x) and T (y).

FIGURE 3.1

x

y

T

T

x

y

Rn Rm

x + y

T(y)

T(x)

T(x)

T(y)
T(x + y)
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EXAMPLE 1

We begin with a few examples of linear transformations from Rn to Rm.

(a) If A is an m× n matrix, then the map μA : Rn → Rm is a linear map, as we saw in
Exercise 1.4.13.

(b) If V ⊂ Rn is a subspace, then, as we saw in Section 1, the projection map projV is a
linear transformation from Rn to Rn.

(c) If V ⊂ Rn is a subspace and x ∈ Rn, we can define the reflection of x across V by the
formula

RV (x) = projV x − projV ⊥x.

Since both projV and projV ⊥ are linear maps, it will follow easily that RV is, as well:
First, for all x, y ∈ Rn, we have

RV (x + y) = projV (x + y)− projV ⊥(x + y)

= (projV x + projV y
)− (projV ⊥x + projV ⊥y

)
= (projV x − projV ⊥x

)+ (projV y − projV ⊥y
)

= RV (x)+ RV (y).
Next, for all x ∈ Rn and scalars c, we have

RV (cx) = projV (cx)− projV ⊥(cx)

= c projV x − c projV ⊥x = c
(
projV x − projV ⊥x

)
= cRV (x),

as required.

As we saw in Section 2 of Chapter 2, if T : Rn → Rm is a linear transformation, then
we can find a matrixA, the so-called standard matrix ofA, so that T = μA: The j th column
of A is given by T (ej ), where ej is the j th standard basis vector. We summarize this in the
following proposition.

Proposition 3.1. Let T : Rn → Rm be a linear transformation, and let E = {e1, . . . , en}
be the standard basis for Rn. Let A be the matrix whose column vectors are the vectors
T (e1), . . . , T (en) ∈ Rm (that is, the coordinate vectors of T (ej )with respect to the standard
basis of Rm):

A =

⎡
⎢⎢⎣

|
T (e1)

|

|
T (e2)

|
· · ·

|
T (en)

|

⎤
⎥⎥⎦ .

Then T = μA and we call A the standard matrix for T . We will denote this matrix by
[T ]stand.

Proof. This follows immediately from the linearity properties of T . Let x =

⎡
⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎥⎦

∈ Rn.
Then

T (x)= T (x1e1 + x2e2 + · · · + xnen) = T (x1e1)+ T (x2e2)+ · · · + T (xnen)

= x1T (e1)+ x2T (e2)+ · · · + xnT (en)=

⎡
⎢⎢⎣

|
T (e1)

|

|
T (e2)

|
· · ·

|
T (en)

|

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎥⎥⎦
.
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EXAMPLE 2

The most basic example of a linear map is the following. Fix a ∈ Rn, and defineT : Rn → R

by T (x) = a · x. By Proposition 2.1 of Chapter 1, we have

T (u + v) = a · (u + v) = (a · u)+ (a · v) = T (u)+ T (v), and

T (cv) = a · (cv) = c(a · v) = c T (v),

as required. Moreover, it is easy to see that

if a =

⎡
⎢⎢⎢⎢⎢⎣

a1

a2

...

an

⎤
⎥⎥⎥⎥⎥⎦
, then [T ]stand =

[
a1 a2 · · · an

]
= aT

is the standard matrix for T , as we might expect.

EXAMPLE 3

Let V ⊂ R3 be the plane x3 = 0 and consider the linear transformation projV : R3 → R3.
We now use Proposition 3.1 to find its standard matrix. Since projV (e1) = e1, projV (e2) =
e2, and projV (e3) = 0, we have

[projV ]stand =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎦ .

Similarly, consider the reflectionRV across the planeV . SinceRV (e1) = e1,RV (e2) =
e2, and RV (e3) = −e3, the standard matrix for RV is

[RV ]stand =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 −1

⎤
⎥⎥⎦ .

EXAMPLE 4

Consider the linear transformation T : R3 → R3 given by rotating an angle θ counterclock-
wise around the x3-axis, as viewed from high above the x1x2-plane. Then we have (see
Example 6 in Section 2 of Chapter 2)

T (e1) =

⎡
⎢⎢⎣

cos θ

sin θ

0

⎤
⎥⎥⎦ , T (e2) =

⎡
⎢⎢⎣

− sin θ

cos θ

0

⎤
⎥⎥⎦ , and T (e3) = e3 =

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦ .

Thus,

[T ]stand =

⎡
⎢⎢⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎥⎥⎦ .
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EXAMPLE 5

Now let V ⊂ R3 be the plane spanned by v1 =
⎡
⎢⎣

1

0

1

⎤
⎥⎦ and v2 =

⎡
⎢⎣

1

1

−1

⎤
⎥⎦. Let’s compute the

standard matrix for projV using Proposition 3.1. Noting that {v1, v2} gives an orthogonal
basis for V , we can use Proposition 2.3 to compute

projV (e1) = projv1
(e1)+ projv2

(e1)

= 1

2

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦+ 1

3

⎡
⎢⎢⎣

1

1

−1

⎤
⎥⎥⎦ = 1

6

⎡
⎢⎢⎣

5

2

1

⎤
⎥⎥⎦ ,

projV (e2) = projv1
(e2)+ projv2

(e2)

= 0

2

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦+ 1

3

⎡
⎢⎢⎣

1

1

−1

⎤
⎥⎥⎦ = 1

3

⎡
⎢⎢⎣

1

1

−1

⎤
⎥⎥⎦ , and

projV (e3) = projv1
(e3)+ projv2

(e3)

= 1

2

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦+ −1

3

⎡
⎢⎢⎣

1

1

−1

⎤
⎥⎥⎦ = 1

6

⎡
⎢⎢⎣

1

−2

5

⎤
⎥⎥⎦ .

Thus, the standard matrix for projV is given by

[projV ]stand = 1

6

⎡
⎢⎢⎣

5 2 1

2 2 −2

1 −2 5

⎤
⎥⎥⎦ .

Of course, in general, [projV ]stand is nothing but the projection matrix PV we computed in
Section 1.

EXAMPLE 6

Using the same plane V as in Example 5, we can compute the standard matrix for projV ⊥
because we know that projV + projV ⊥ is the identity map. Thus, the standard matrix for
projV ⊥ is given by

[projV ⊥]stand =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦− 1

6

⎡
⎢⎢⎣

5 2 1

2 2 −2

1 −2 5

⎤
⎥⎥⎦ = 1

6

⎡
⎢⎢⎣

1 −2 −1

−2 4 2

−1 2 1

⎤
⎥⎥⎦ .

To double-check our work, note that the column space (and row space, too) is spanned by

v3 =
⎡
⎢⎣

1

−2

−1

⎤
⎥⎦, which is orthogonal to v1 and v2 and therefore spans V ⊥.
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Similarly, we can compute the standard matrix for reflection across V by using the
definition:

[RV ]stand = [projV ]stand − [projV ⊥]stand

= 1

6

⎡
⎢⎢⎣

5 2 1

2 2 −2

1 −2 5

⎤
⎥⎥⎦− 1

6

⎡
⎢⎢⎣

1 −2 −1

−2 4 2

−1 2 1

⎤
⎥⎥⎦ = 1

6

⎡
⎢⎢⎣

4 4 2

4 −2 −4

2 −4 4

⎤
⎥⎥⎦

= 1

3

⎡
⎢⎢⎣

2 2 1

2 −1 −2

1 −2 2

⎤
⎥⎥⎦ .

We see in these examples that the standard matrix for a projection or reflection may
disguise the geometry of the actual linear transformation. When x ∈ V and y ∈ V ⊥, we
know that projV (x) = x and projV (y) = 0; thus, in Example 5, since v1, v2 ∈ V and v3 ∈
V ⊥, we have

projV (v1) = v1,

projV (v2) = v2,

projV (v3) = 0.

Now, since v1, v2, and v3 are mutually orthogonal nonzero vectors, they form a basis for
R3. Thus, given any x ∈ R3, we can write x = c1v1 + c2v2 + c3v3 for appropriate scalars
c1, c2, and c3. Since projV is a linear transformation, we therefore have

projV (x) = projV (c1v1 + c2v2 + c3v3)

= c1projV (v1)+ c2projV (v2)+ c3projV (v3)

= c1v1 + c2v2.

Similarly, when x ∈ V and y ∈ V ⊥, we know that RV (x) = x and RV (y) = −y, so

RV (x) = RV (c1v1 + c2v2 + c3v3) = c1v1 + c2v2 − c3v3.

These examples lead us to make the following definition.

Definition. Let T : Rn → Rn be a linear transformation, and let B = {v1, . . . , vn} be an
ordered basis for Rn. For each j = 1, . . . , n, let a1j , a2j , . . . , anj denote the coordinates
of T (vj ) with respect to the basis B, i.e.,

T (vj ) = a1jv1 + a2jv2 + · · · + anjvn, j = 1, . . . , n.

Then we define A = [aij ] to be the matrix for T with respect to the basis B. We denote
this matrix by [T ]B.

It is important to remember that the coefficients of T (vj ) will be entered as the j th

column of the matrix [T ]B. To write this formally, given a vector x ∈ Rn, we let CB(x)
denote the column vector whose entries are the coordinates of x with respect to the basis
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B. That is, if

x = c1v1 + c2v2 + · · · + cnvn, then CB(x) =

⎡
⎢⎢⎢⎢⎢⎣

c1

c2

...

cn

⎤
⎥⎥⎥⎥⎥⎦
.

With this notation, we now can write

[T ]B =

⎡
⎢⎢⎣

|
CB(T (v1))

|

|
CB(T (v2))

|
· · ·

|
CB(T (vn))

|

⎤
⎥⎥⎦ .

Remark. If we denote the standard basis {e1, . . . , en} by E, we have [T ]E = [T ]stand.

EXAMPLE 7

Returning to Examples 5 and 6, when we take B = {v1, v2, v3}, with

v1 =

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

1

1

−1

⎤
⎥⎥⎦ , and v3 =

⎡
⎢⎢⎣

1

−2

−1

⎤
⎥⎥⎦

and V = Span (v1, v2), we have

[projV ]B =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎦ , [projV ⊥]B =

⎡
⎢⎢⎣

0 0 0

0 0 0

0 0 1

⎤
⎥⎥⎦ ,

and [RV ]B =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 −1

⎤
⎥⎥⎦ .

In fact, it doesn’t matter what the particular vectors v1, v2, and v3 happen to be. So long
as V = Span (v1, v2) and V ⊥ = Span (v3), we will obtain these matrices with respect to
the basis B. Indeed, these are the matrices we obtained for projection onto and reflection
across the standard plane x3 = 0 in Example 3.

EXAMPLE 8

Let T : R2 → R2 be the linear transformation defined by multiplying by

A =
[

3 1

2 2

]
.

It is rather difficult to understand this mapping until we discover that if we take

v1 =
[

1

1

]
and v2 =

[
−1

2

]
,
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v2

v1

T(v2) = v2

T(v1) = 4v1

T

FIGURE 3.2

then T (v1) = 4v1 and T (v2) = v2, as shown in Figure 3.2, so that the matrix for T with
respect to the ordered basis B = {v1, v2} is the diagonal matrix

[T ]B =
[

4 0

0 1

]
.

Now it is rather straightforward to picture the linear transformation: It stretches the v1-axis
by a factor of 4 and leaves the v2-axis unchanged. Because we can “pave” the plane by
parallelograms formed by v1 and v2, we are able to describe the effects of T quite explicitly.
The curious reader will learn how we stumbled upon v1 and v2 by reading Chapter 6.

At first it might seem confusing that the same transformation is represented by more
than one matrix. Indeed, each choice of basis gives a different matrix for the transformation
T . How are these matrices related to each other? The answer is found by looking at the
matrix P with column vectors v1 and v2:5

P =
[

1 −1

1 2

]
.

Since T (v1) = 4v1 and T (v2) = v2, we observe that the first column of AP , Av1, is 4v1 =
P

[
4

0

]
, and the second column of AP , Av2, is v2 = P

[
0

1

]
. Therefore,

AP =
[

3 1

2 2

][
1 −1

1 2

]
=
[

4 −1

4 2

]
=
[

1 −1

1 2

][
4 0

0 1

]
= P [T ]B.

This might be rewritten as [T ]B = P−1AP , in the form that will occupy our attention for
the rest of this section.

It would have been a more honest exercise here to start with the geometric description
of T , i.e., its action on the basis vectors v1 and v2, and try to find the standard matrix for
T . As the reader can check, we have

e1 = 2
3 v1 − 1

3 v2

e2 = 1
3 v1 + 1

3 v2,

and so we compute that

5In the ensuing discussion, and on into Chapter 6, the matrix P has nothing to do with projection matrices.
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T (e1) = 2
3T (v1)− 1

3T (v2) = 8
3 v1 − 1

3 v2

=
[

3

2

]
, and

T (e2) = 1
3T (v1)+ 1

3T (v2) = 4
3 v1 + 1

3 v2

=
[

1

2

]
.

What a relief! In matrix form, this would, of course, be the equation A = [T ]stand =
P [T ]BP−1.

Following this example, we now state the main result of this section.

Proposition 3.2 (Change-of-Basis Formula, Take 1). Let T : Rn → Rn be a linear trans-
formation with standard matrix [T ]stand. Let B = {v1, . . . , vn} be an ordered basis for Rn

and let [T ]B be the matrix for T with respect to B. LetP be the n× nmatrix whose columns
are given by the vectors v1, . . . , vn. Then we have

[T ]standP = P [T ]B.

Remark. Since P is invertible (why?), this can be written as [T ]stand = P [T ]BP−1 or as
[T ]B = P−1[T ]standP , providing us formulas to find [T ]stand from [T ]B, and vice versa.
Since these formulas tell us how to change the matrix from one basis to another, we call
them change-of-basis formulas. We call P the change-of-basis matrix from the standard
basis to the basis B. Note that, as a linear transformation,

μP (ej ) = vj , j = 1, . . . , n;
that is, it maps the j th standard basis vector to the j th element of the new ordered basis.

Proof. The j th column of P is the vector vj (more specifically, its coordinate vectorCE(vj )
with respect to the standard basis). Therefore, the j th column vector of the matrix product
[T ]standP is the standard coordinate vector of T (vj ). On the other hand, the j th column of
[T ]B is the coordinate vector, CB(T (vj )), of T (vj ) with respect to the basis B. That is,

if the j th column of [T ]B is

⎡
⎢⎢⎢⎢⎣

α1

α2

...

αn

⎤
⎥⎥⎥⎥⎦

then T (vj ) = α1v1 + α2v2 + · · · + αnvn. But we also
know that

P

⎡
⎢⎢⎢⎢⎢⎣

α1

α2

...

αn

⎤
⎥⎥⎥⎥⎥⎦

= α1v1 + α2v2 + · · · + αnvn.

That is, the j th column of P [T ]B is exactly the linear combination of the columns of P
needed to give the standard coordinate vector of T (vj ).
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EXAMPLE 9

We want to use the change-of-basis formula, Proposition 3.2, and the result of Example 7
to recover the results of Examples 5 and 6. Starting with the basis B = {v1, v2, v3}, with

v1 =

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

1

1

−1

⎤
⎥⎥⎦ , and v3 =

⎡
⎢⎢⎣

1

−2

−1

⎤
⎥⎥⎦ ,

we note that V = Span (v1, v2) and so

[projV ]B =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎦ .

To get the standard matrix for projV , we take

P =

⎡
⎢⎢⎣

| | |
v1 v2 v3

| | |

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1

0 1 −2

1 −1 −1

⎤
⎥⎥⎦

and compute that

P−1 = 1

6

⎡
⎢⎢⎣

3 0 3

2 2 −2

1 −2 −1

⎤
⎥⎥⎦ .

(Exercise 4.2.11 may be helpful here, but, as a last resort, there’s always Gaussian elimi-
nation.) Then we have

[projV ]stand = P [projV ]BP−1 = 1

6

⎡
⎢⎢⎣

1 1 1

0 1 −2

1 −1 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3 0 3

2 2 −2

1 −2 −1

⎤
⎥⎥⎦

= 1

6

⎡
⎢⎢⎣

5 2 1

2 2 −2

1 −2 5

⎤
⎥⎥⎦ ,

as before. Similarly,

[RV ]stand = P [RV ]BP−1 = 1

6

⎡
⎢⎢⎣

1 1 1

0 1 −2

1 −1 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3 0 3

2 2 −2

1 −2 −1

⎤
⎥⎥⎦

= 1

3

⎡
⎢⎢⎣

2 2 1

2 −1 −2

1 −2 2

⎤
⎥⎥⎦ ,

just as we obtained previously.
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EXAMPLE 10

Armed with the change-of-basis formula, we can now study rotations in R3. Consider
the linear transformation T : R3 → R3 defined by rotating an angle 2π/3 about the line
spanned by (1,−1, 1). (The angle is measured counterclockwise, looking down from a
vantage point on the “positive side” of this line; see Figure 3.3.) To find the standard matrix
for T , the key is to choose a convenient basis B adapted to the geometry of the problem.
We choose

v3 =

⎡
⎢⎢⎣

1

−1

1

⎤
⎥⎥⎦

along the axis of rotation and v1, v2 to be an orthonormal basis for the plane orthogonal to
that axis; for example,

v1 = 1√
2

⎡
⎢⎢⎣

1

1

0

⎤
⎥⎥⎦ and v2 = 1√

6

⎡
⎢⎢⎣

−1

1

2

⎤
⎥⎥⎦ .

e3

e2

e1

v3

v2

v1

P

FIGURE 3.3

(How did we arrive at these?) Since v1 and v2 rotate an angle 2π/3, we have (see Example
6 in Section 2 of Chapter 2)

T (v1) = − 1
2 v1 +

√
3

2 v2

T (v2) = −
√

3
2 v1 − 1

2 v2

T (v3) = v3.

(Now the alert reader should figure out why we chose v1, v2 to be orthonormal. We also
want v1, v2, v3 to form a “right-handed system” so that we’re turning in the correct direction.
But there’s no need to worry about the length of v3.) Thus, we have

[T ]B =

⎡
⎢⎢⎢⎣

− 1
2 −

√
3

2 0
√

3
2 − 1

2 0

0 0 1

⎤
⎥⎥⎥⎦ .

Next, the change-of-basis matrix from the standard basis to the new basis B is

P =

⎡
⎢⎢⎣

1√
2

− 1√
6

1

1√
2

1√
6

−1

0 2√
6

1

⎤
⎥⎥⎦ ,
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whose inverse matrix is

P−1 =

⎡
⎢⎢⎣

1√
2

1√
2

0

− 1√
6

1√
6

2√
6

1
3 − 1

3
1
3

⎤
⎥⎥⎦ .

Once again, we solve for

[T ]stand = P [T ]BP−1 =

⎡
⎢⎢⎣

1√
2

− 1√
6

1

1√
2

1√
6

−1

0 2√
6

1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

− 1
2 −

√
3

2 0
√

3
2 − 1

2 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1√
2

1√
2

0

− 1√
6

1√
6

2√
6

1
3 − 1

3
1
3

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 −1 0

0 0 −1

1 0 0

⎤
⎥⎥⎦ ,

amazingly enough. In hindsight, then, we should be able to see the effect of T on the
standard basis vectors quite plainly. Can you?

Remark. Suppose we first rotateπ/2 about the x3-axis and then rotateπ/2 about the x1-axis.
We leave it to the reader to check, in Exercise 2, that the result is the linear transformation
whose matrix we just calculated. This raises a fascinating question: Is the composition of
rotations always again a rotation? (See Exercise 6.2.16.) If so, is there a way of predicting
the ultimate axis and angle?

EXAMPLE 11

Consider the ordered basis B = {v1, v2, v3}, where

v1 =

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

1

1

3

⎤
⎥⎥⎦ , and v3 =

⎡
⎢⎢⎣

1

−2

−2

⎤
⎥⎥⎦ .

Suppose that T : R3 → R3 is the linear transformation defined by

T (v1) = v2 − v3, T (v2) = −v2, and T (v3) = v1 + v2.

Then the matrix [T ]B for T with respect to the basis B is given by

[T ]B =

⎡
⎢⎢⎣

0 0 1

1 −1 1

−1 0 0

⎤
⎥⎥⎦ .

To compute the standard matrix for T , we take

P =

⎡
⎢⎢⎣

1 1 1

0 1 −2

1 3 −2

⎤
⎥⎥⎦
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and calculate

P−1 =

⎡
⎢⎢⎣

4 5 −3

−2 −3 2

−1 −2 1

⎤
⎥⎥⎦ .

Then

[T ]stand = P [T ]BP−1 =

⎡
⎢⎢⎣

1 1 1

0 1 −2

1 3 −2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 1

1 −1 1

−1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4 5 −3

−2 −3 2

−1 −2 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 −1 0

13 16 −10

22 26 −17

⎤
⎥⎥⎦ .

We end this section with a definition and a few comments.

Definition. Let A and B be n× n matrices. We say B is similar to A if there is an
invertible matrix P such that B = P−1AP .

That is, two square matrices are similar if they are the matrices for some linear trans-
formation with respect to different ordered bases.

We say a linear transformation T : V → V is diagonalizable if there is some basis B
for V such that the matrix for T with respect to that basis is diagonal. Similarly,6 we say a
square matrix is diagonalizable if it is similar to a diagonal matrix. In Chapter 6 we will
see the power of diagonalizing matrices to solve a wide variety of problems, and we will
learn some convenient criteria for matrices to be diagonalizable.

EXAMPLE 12

Consider the matrices

A =
[

2 1

0 3

]
and B =

[
2 0

0 3

]
.

To decide whether B is similar to A, we try to find an invertible matrix

P =
[
a b

c d

]

so that B = P−1AP , or, equivalently, PB = AP . Calculating, we have
[
a b

c d

][
2 0

0 3

]
=
[

2 1

0 3

][
a b

c d

]

[
2a 3b

2c 3d

]
=
[

2a + c 2b + d
3c 3d

]

6One of the authors apologizes for the atrocious pun; the other didn’t even notice.
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if and only if c = 0 and b = d. Setting a = b = d = 1 and c = 0, we can check that,
indeed, with

P =
[

1 1

0 1

]
,

we have PB = AP , and so, since P is invertible, B = P−1AP . In particular, we infer that
A is diagonalizable.

Exercises 4.3

The first four exercises are meant to be a review of material from Section 2 of Chapter 2:
Just find the standard matrices by determining where each of the standard basis vectors is
mapped.

1. Calculate the standard matrix for each of the following linear transformations T :
a.∗ T : R2 → R2 given by rotating −π/4 about the origin and then reflecting across the

line x1 − x2 = 0

b. T : R3 → R3 given by rotating π/2 about the x1-axis (as viewed from the positive
side) and then reflecting across the plane x2 = 0

c. T : R3 → R3 given by rotating −π/2 about the x1-axis (as viewed from the positive
side) and then rotating π/2 about the x3-axis

2. Check the result claimed in the remark on p. 218.

3. Consider the cube with vertices (±1,±1,±1), pictured in Figure 3.4. (Note that the
coordinate axes pass through the centers of the various faces.) Give the standard
matrices for each of the following symmetries of the cube. Check that each of your
matrices is an orthogonal 3 × 3 matrix.
a.∗ 90◦ rotation about the x3-axis (viewed from high above)

b. 180◦ rotation about the line joining (−1, 0, 1) and (1, 0,−1)

c. 120◦ rotation about the line joining (−1,−1,−1) and (1, 1, 1) (viewed from high
above)

FIGURE 3.4

(–1, 1, 1)
(1, –1, 1)

(–1, –1, 1)

(–1, 1, –1)

(1, 1, 1)

(1, 1, –1)

(1, –1, –1)

4. Consider the tetrahedron with vertices (1, 1, 1), (−1,−1, 1), (1,−1,−1), and
(−1, 1,−1), pictured in Figure 3.5. Give the standard matrices for each of the follow-
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ing symmetries of the tetrahedron. Check that each of your matrices is an orthogonal
3 × 3 matrix.
a. ±120◦ rotations about the line joining (0, 0, 0) and the vertex (1, 1, 1)

b. 180◦ rotation about the line joining (0, 0, 1) and (0, 0,−1)

c. reflection across the plane containing the topmost edge and the midpoint of the
opposite edge

FIGURE 3.5

(1, 1, 1)

(–1, 1, –1)(1, –1, –1)

(–1, –1, 1)

5. Let v1 =
[

2

3

]
and v2 =

[
1

2

]
, and consider the basis B = {v1, v2} for R2.

a.∗ Suppose that T : R2 → R2 is a linear transformation whose standard matrix is

[T ]stand =
[

1 5

2 −2

]
. Find the matrix [T ]B.

b. If S : R2 → R2 is a linear transformation defined by

S(v1) = 2v1 + v2

S(v2) = −v1 + 3v2,

then give the standard matrix for S.

6. Derive the result of Exercise 2.2.12 by the change-of-basis formula.

7.∗ The standard matrix for a linear transformation T : R3 → R3 is

⎡
⎢⎣

−1 2 1

0 1 3

1 −1 1

⎤
⎥⎦. Use

the change-of-basis formula to find its matrix with respect to the basis

B =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1

0

−1

⎤
⎥⎦ ,

⎡
⎢⎣

0

2

3

⎤
⎥⎦ ,

⎡
⎢⎣

1

1

1

⎤
⎥⎦

⎫⎪⎬
⎪⎭

.

8. Suppose V is a k-dimensional subspace of Rn. Choose a basis {v1, . . . , vk} for V and a
basis {vk+1, . . . , vn} for V ⊥. Then B = {v1, . . . , vn} forms a basis for Rn. Consider the
linear transformations projV , projV ⊥ , andRV , all mapping Rn to Rn, given by projection
to V , projection to V ⊥, and reflection across V , respectively. Give the matrices for
these three linear transformations with respect to the basis B.

9. Let T : R3 → R3 be the linear transformation given by reflecting across the plane
−x1 + x2 + x3 = 0.
a. Find an orthogonal basis B = {v1, v2, v3} for R3 so that v1, v2 span the plane and

v3 is orthogonal to it.
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b. Give the matrix representing T with respect to your basis in part a.

c. Use the change-of-basis theorem to give the standard matrix for T .

10. Redo Exercise 4.1.4 by using the change-of-basis formula.

11.∗ Let T : R3 → R3 be the linear transformation given by reflecting across the plane
x1 − 2x2 + 2x3 = 0. Use the change-of-basis formula to find its standard matrix.

12. Let V ⊂ R3 be the subspace defined by

V = {(x1, x2, x3) : x1 − x2 + x3 = 0}.
Find the standard matrix for each of the following linear transformations:
a. projection on V

b. reflection across V

c. rotation of V through angle π/6 (as viewed from high above)

13. Let V be the subspace of R3 spanned by (1, 0, 1) and (0, 1, 1). Let T : R3 → R3 be
the linear transformation given by reflecting across V . Find the standard matrix for T .

14.∗ Let V ⊂ R3 be the plane defined by the equation 2x1 + x2 = 0. Find the standard
matrix for RV .

15. Let the linear transformation T : R3 → R3 be defined by rotating an angle π/2 about
the line spanned by (2, 1, 0) (viewed from a vantage point far out the “positive side” of
this line) and then reflecting across the plane orthogonal to this line. (See Figure 3.6.)
Use the change-of-basis formula to give the standard matrix for T .

FIGURE 3.6

x1

x3

x2

16.∗ Let V = Span
(
(1, 0, 2, 1), (0, 1,−1, 1)

) ⊂ R4. Use the change-of-basis formula to
find the standard matrix for projV : R4 → R4.

17. Show (by calculation) that for any real numbers a and b, the matrices

[
1 a

0 2

]
and[

1 b

0 2

]
are similar. (Hint: Remember that when P is invertible, B = P−1AP ⇐⇒

PB = AP .)

18. a. If c is any scalar, show that cI is similar only to itself.

b. Show that

[
a 0

0 b

]
is similar to

[
b 0

0 a

]
.

c. Show that

[
2 1

0 2

]
is not similar to

[
2 0

0 2

]
.
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d. Show that

[
2 1

0 2

]
is not diagonalizable, i.e., is not similar to any diagonal matrix.

(Hint: Remember that when P is invertible, B = P−1AP ⇐⇒ PB = AP .)

19. Let e1, e2 denote the standard basis, as usual. Let T : R2 → R2 be defined by

T (e1) = 8e1 − 4e2

T (e2) = 9e1 − 4e2.

a. Give the standard matrix for T .

b. Let v1 = 3e1 − 2e2 and v2 = −e1 + e2. Calculate the matrix for T with respect to
the basis B = {v1, v2}.

c. Is T diagonalizable? Give your reasoning. (Hint: See part d of Exercise 18.)

20. Prove or give a counterexample:
a. If B is similar to A, then BT is similar to AT.

b. If B2 is similar to A2, then B is similar to A.

c. If B is similar to A and A is nonsingular, then B is nonsingular.

d. If B is similar to A and A is symmetric, then B is symmetric.

e. If B is similar to A, then N(B) = N(A).
f. If B is similar to A, then rank(B) = rank(A).

21. Show that similarity of matrices is an equivalence relation. That is, verify the following.
a. Reflexivity: Any n× n matrix A is similar to itself.

b. Symmetry: For any n× n matrices A and B, if A is similar to B, then B is similar
to A.

c. Transitivity: For any n× n matrices A, B, and C, if A is similar to B and B is
similar to C, then A is similar to C.

22. Suppose A and B are n× n matrices.
a. Show that if either A or B is nonsingular, then AB and BA are similar.

b. Must AB and BA be similar in general?

23. Let T : R3 → R3 be the linear transformation given by rotating some angle θ and about
a line spanned by the unit vector v. LetA be the standard matrix for T . Use the change-
of-basis formula to prove that A is an orthogonal matrix (i.e., that AT = A−1). (Hint:
Choose an orthonormal basis B = {v1, v2, v3} for R3 with v3 = v.)

24.∗ Consider the linear transformation T : R3 → R3 whose standard matrix is

A =

⎡
⎢⎢⎢⎣

1
6

1
3 +

√
6

6
1
6 −

√
6

3

1
3 −

√
6

6
2
3

1
3 +

√
6

6

1
6 +

√
6

3
1
3 −

√
6

6
1
6

⎤
⎥⎥⎥⎦ .

a. Find a nonzero vector v1 satisfyingAv1 = v1. (Hint: Proceed as in Exercise 1.4.5.)7

b. Find an orthonormal basis {v2, v3} for the plane orthogonal to v1.

c. Let B = {v1, v2, v3}. Apply the change-of-basis formula to find [T ]B.

d. Use your answer to part c to explain why T is a rotation. (Also see Example 6 in
Section 1 of Chapter 7.)

7This might be a reasonable place to give in and use a computer program like Maple, Mathematica, or MATLAB.
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25. a. Show that the linear transformation T : R3 → R3 defined by multiplication by

A = 1

9

⎡
⎢⎢⎣

8 −4 −1

1 4 −8

4 7 4

⎤
⎥⎥⎦

is a rotation. (Hint: Proceed as in Exercise 24.)

b. (Calculator suggested) Determine the angle of rotation.

26. a.∗ Fix 0 < φ ≤ π/2 and 0 ≤ θ < 2π , and let a = (cosφ cos θ, cosφ sin θ, sin φ).
Show that the intersection of the circular cylinder x2

1 + x2
2 = 1 with the plane

a · x = 0 is an ellipse. (Hint: Consider the new basis v1 = (sin θ,− cos θ, 0),
v2 = (− sin φ cos θ,− sin φ sin θ, cosφ), v3 = a.)

b. Describe the projection of the cylindrical region x2
1 + x2

2 = 1, −h ≤ x3 ≤ h onto
the general plane a · x = 0. (Hint: Special cases are the planes x3 = 0 and x1 = 0.)

27. Let the linear map T : R2 → R2 have standard matrix A =
[

2 −1

−1 2

]
.

a. Calculate the matrix for T with respect to the basis B =
{

1√
2

[
1

1

]
,

1√
2

[
−1

1

]}
.

b. Set y = CB(x), and calculate Ax · x = 2x2
1 − 2x1x2 + 2x2

2 in terms of y1 and y2.

c. Use the result of part b to sketch the conic section 2x2
1 − 2x1x2 + 2x2

2 = 3. (See
also Section 4.1 of Chapter 6.)

4 Linear Transformations on Abstract
Vector Spaces

In this section we deal with linear transformations from Rn to Rm (with m and n
different) and, more generally, from one abstract vector space (see Section 6 of Chapter 3)
to another. We have the following definition.

Definition. Let V and W be vector spaces. A function T : V → W is called a linear
transformation (or linear map) if it satisfies

(a) T (u + v) = T (u)+ T (v) for all u, v ∈ V ;

(b) T (cv) = c T (v) for all v ∈ V and scalars c.

Of course, we can take V = Rn and W = Rm and all our previous examples would
be appropriate as examples here. But the broad scope of linear algebra begins to become
apparent when we consider vector spaces such as the set of all matrices or function spaces and
consider maps between them. A very important example comes from differential calculus.
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EXAMPLE 1

For any interval I ⊂ R, define

D : C1(I) → C0(I) by D(f ) = f ′.

That is, to each continuously differentiable function f , associate its derivative (which then
is a continuous function). D satisfies the linearity properties by virtue of the rules of
differentiation:

D(f + g) = D(f )+D(g) since (f + g)′ = f ′ + g′;
D(cf ) = c D(f ) since (cf )′ = cf ′.

Although C1(I) is infinite-dimensional, we can also think of restricting this linear transfor-
mation to smaller (possibly finite-dimensional) subspaces. For example, we can consider
D : Pk → Pk−1 for any positive integer k, since the derivative of a polynomial is a poly-
nomial of one degree less.

EXAMPLE 2

Here are some more examples of linear transformations on abstract vector spaces.

(a) The mapM : C0(I) → C0(I) given byM(f )(t) = tf (t)

(b) The map T : C0([0, 1]) → C0([0, 1]) given by T (f )(t) = ∫ t0 f (s) ds

(c) The map E : C0([0, 4]) → R3 given by E(f ) =
⎡
⎢⎣
f (0)

f (1)

f (3)

⎤
⎥⎦

(d) The map T : M2×2 → M2×2 given by T (A) = BA, for B =
[

1 2

1 1

]

We leave it to the reader to check that these are all linear transformations. It is also worth
thinking about how one might restrict the domains and ranges to various subspaces, e.g.,
the subspaces of polynomials or polynomials of a certain degree.

Just as the nullspace and column space are crucial tools to understand the linear map
μA : Rn → Rm associated to an m× n matrix A, we define corresponding subspaces for
arbitrary linear transformations.

Definition. Let T : V → W be a linear transformation. We define

ker(T ) = {v ∈ V : T (v) = 0},
called the kernel of T , and

image (T ) = {w ∈ W : w = T (v) for some v ∈ V },
called the image of T .

We leave it to the reader to check, in Exercise 11, that the kernel of T is a subspace of
V and that the image of T is a subspace ofW .
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EXAMPLE 3

Let’s determine the kernel and image of a few linear transformations.

(a) Consider the differentiation map D : P3 → P2 given by D(f ) = f ′. Then the con-
stant function 1 gives a basis for ker(D) (see Exercise 6), and image (D) = P2, since,
given g(t) = a + bt + ct2 ∈ P2, we set f (t) = at + 1

2bt
2 + 1

3ct
3 and D(f ) = g.

(b) Consider the linear map M defined in Example 2(a) with the interval I = [1, 2].
If f ∈ ker(M) = {f ∈ C0(I) : tf (t) = 0 for all t ∈ I}, then we must have f (t) = 0
for all t ∈ I. Given any continuous function g, we can take f (t) = g(t)/t and this
too will be continuous; sinceM(f ) = g, we see that image (M) = C0(I). We ask the
reader to explore, in Exercise 15, what happens for an interval I containing 0.

(c) Consider the linear map T : P2 → R2 defined by T (f ) =
[
f (0)

f (1)

]
. Then ker(T )

consists of all quadratic polynomials with roots at 0 and 1, i.e., all constant multiples
of f (t) = t (t − 1), so f gives a basis for ker(T ). On the other hand, given any
(a, b) ∈ R2, we can set f (t) = a + (b − a)t and T (f ) = (a, b).

(d) Modifying the preceding example slightly, consider the linear map S : P2 → R3 de-

fined by S(f ) =
⎡
⎢⎣
f (0)

f (1)

f (2)

⎤
⎥⎦. Now ker(S) = {0} since a nonzero quadratic polynomial

can have only two roots. On the other hand, it follows from the Lagrange Interpo-
lation Formula, Theorem 6.4 of Chapter 3, that for every (a, b, c) ∈ R3, there is a
polynomial f ∈ P2 with S(f ) = (a, b, c). Explicitly, we take

f (t) = a

2
(t − 1)(t − 2)− bt (t − 2)+ c

2
t (t − 1)

=
(
a

2
− b + c

2

)
t2 +

(
− 3a

2
+ 2b − c

2

)
t + a.

(e) What happens if we consider instead the linear map S ′ : P1 → R3 defined by the same
formula? (Here we are restricting the domain of S to the polynomials of degree at most
1.) Clearly, ker(S ′) = {0}, but now which vectors (a, b, c) ∈ R3 are in image (S ′)? We
leave it to the reader to check that (a, b, c) ∈ image (S ′) if and only if a − 2b + c = 0.

Reviewing some terminology from the blue box on p. 88, we say that the linear map
T : V → W is onto (or surjective) when image (T ) = W . This means that for every w ∈ W ,
there is some v ∈ V withT (v) = w. WhenT = μA for anm× nmatrixA, this corresponds
to saying that C(A) = Rm, which we know occurs precisely when A has rank m. On the
other hand, ker(T ) = {0} happens precisely when solutions of T (v) = w are unique, for
if T (v1) = w and T (v2) = w, then T (v1 − v2) = 0, so v1 = v2 if and only if 0 is the only
vector in ker(T ). In this case, we say that T is one-to-one (or injective).

When a linear transformationT : V → W is both one-to-one and onto, it gives a one-to-
one correspondence between the elements of V and the elements ofW . Moreover, because
T is a linear map, this correspondence respects the linear structure of the two vector spaces;
that is, if v1 and v2 correspond to w1 and w2, respectively, then av1 + bv2 corresponds
to aw1 + bw2 for any scalars a and b. Thus, for all intents and purposes, T provides a
complete dictionary translating the elements (and the algebraic structure) of V into those of
W , and the two spaces are “essentially” the same. This leads us to the following definition.
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Definition. A linear map T : V → W that is both one-to-one and onto is called an
isomorphism.8

This definition leads us naturally to the following proposition.

Proposition 4.1. A linear transformation T : V → W is an isomorphism if and only if
there is a linear transformation T −1 : W → V satisfying (T −1◦T )(v) = v for all v ∈ V
and (T ◦T −1)(w) = w for all w ∈ W .

Proof. Suppose we have such a linear transformation T −1 : W → V . Then we will show
that ker(T ) = {0} and image (T ) = W . First, suppose that T (v) = 0. Then, applying the
function T −1, we have v = T −1

(
T (v)

) = T (0) = 0, so ker(T ) = {0}.9 Now, to establish
that image (T ) = W , we choose any w ∈ W and note that if we set v = T −1(w), then we
have T (v) = T (T −1(w)) = w.

We leave the second half of the proof to the reader in Exercise 13.

EXAMPLE 4

Given a finite-dimensional vector space V and an ordered basis B = {v1, . . . , vn} for V ,
we can define a function CB : V → Rn that assigns to each vector v ∈ V its vector of
coordinates with respect to B. That is,

CB(c1v1 + c2v2 + · · · + cnvn) =

⎡
⎢⎢⎢⎢⎢⎣

c1

c2

...

cn

⎤
⎥⎥⎥⎥⎥⎦
.

Since B is a basis for V , for each v ∈ V there exist unique scalars c1, c2, . . . , cn so that
v = c1v1 + c2v2 + · · · + cnvn; this means that CB is a well-defined function. We leave it
to the reader to check that CB is a linear transformation. It is also one-to-one and onto
(why?), and therefore CB defines an isomorphism from V to Rn.

Indeed, it follows from Proposition 4.1 that C−1
B : Rn → V , which associates to each

n-tuple of coefficients the corresponding linear combination of the basis vectors,

C−1
B

⎛
⎜⎜⎝

⎡
⎢⎢⎣
c1

...

cn

⎤
⎥⎥⎦

⎞
⎟⎟⎠ = c1v1 + · · · + cnvn,

is also a linear transformation.

We see from the previous example that, given a basis for a finite-dimensional abstract
vector space V , we can, using the isomorphism CB, identify V with Rn for the appropri-
ate positive integer n. We will next use this identification to associate matrices to linear
transformations between abstract vector spaces.

8This comes from the Greek root isos, “equal,” and morphe, ”form” or “shape.”
9Of course, we are taking it for granted that T (0) = 0 for any linear map T . This follows from the fact that
T (0) = T (0 + 0) = T (0)+ T (0).
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We saw in the previous section how to define the matrix for a linear transformation
T : Rn → Rn with respect to a basis B for Rn. Although we didn’t say so explicitly, we
worked with the formula

[T ]BCB(x) = CB(T (x)) for all x ∈ Rn.

We will now use the same idea to associate matrices to linear transformations on finite-
dimensional abstract vector spaces, given a choice of ordered bases for domain and range.

Definition. Let V and W be finite-dimensional vector spaces, and let T : V → W

be a linear transformation. Let V = {v1, . . . , vn} be an ordered basis for V , and let
W = {w1, . . . ,wm} be an ordered basis for W . Define numbers aij , i = 1, . . . , m,
j = 1, . . . , n, by

T (vj ) = a1jw1 + a2jw2 + · · · + amjwm, j = 1, . . . , n.

Then we define A = [T ]V,W = [aij
]

to be the matrix for T with respect to V and W.

Remark.

(a) We will usually assume, as in Section 3, that whenever the vector spaces V and W
are the same, we will take the bases to be the same, i.e., W = V.

(b) Since a1j , . . . , amj are the coordinates of T (vj ) with respect to the basis W, i.e.,

CW(T (vj )) =

⎡
⎢⎢⎢⎢⎢⎣

a1j

a2j

...

amj

⎤
⎥⎥⎥⎥⎥⎦

, we can use the schematic notation as before:

A = [T ]V,W =

⎡
⎢⎢⎣

|
CW(T (v1))

|

|
CW(T (v2))

|
· · ·

|
CW(T (vn))

|

⎤
⎥⎥⎦ .

(c) The calculation in the proof of Proposition 3.1 shows now that if v =
n∑
i=1
xivi (i.e.,

CV(v) = x) and w =
m∑
j=1
yjwj (i.e., CW(w) = y), then

T (v) = w if and only if Ax = y.

That is,
CW(T (v)) = ACV(v) for all v ∈ V.

This can be summarized by the diagram in Figure 4.1. If we start with v ∈ V , we can
either go down and then to the right, obtaining ACV(v) = Ax, or else go to the right
and then down, obtaining CW(T (v)) = y. The matrix A is defined so that we get the
same answer either way.

FIGURE 4.1

WV
T

CV CW

μA
Rn Rm
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(d) What’s more, suppose U , V , and W are vector spaces with bases U, V, and W,
respectively. Suppose also thatA is the matrix for a linear transformation T : V → W

with respect to V and W, and suppose thatB is the matrix for S : U → V with respect
to U and V. Then, because matrix multiplication corresponds to composition of linear
transformations, AB is the matrix for T ◦S with respect to U and W.

EXAMPLE 5

Let’s return now to D : P3 → P2. Let’s choose “standard” bases for these vector spaces:
V = {1, t, t2, t3} and W = {1, t, t2}. Then

D(1) = 0 = 0 · 1 + 0 · t + 0 · t2
D(t) = 1 = 1 · 1 + 0 · t + 0 · t2
D(t2) = 2t = 0 · 1 + 2 · t + 0 · t2
D(t3) = 3t2 = 0 · 1 + 0 · t + 3 · t2.

Now—and this is always the confusing part—we must be sure to arrange these coefficients
as the columns, and not as the rows, of our matrix:

[D]V,W = A =

⎡
⎢⎢⎣

0 1 0 0

0 0 2 0

0 0 0 3

⎤
⎥⎥⎦ .

Let’s make sure we understand what this means. Suppose f (t) = 2 − t + 5t2 + 4t3 ∈ P3

and we wish to calculate D(f ). The coordinate vector of f with respect to the basis V is
⎡
⎢⎢⎢⎢⎣

2

−1

5

4

⎤
⎥⎥⎥⎥⎦
,

and so

A

⎡
⎢⎢⎢⎢⎣

2

−1

5

4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0 1 0 0

0 0 2 0

0 0 0 3

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

2

−1

5

4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

−1

10

12

⎤
⎥⎥⎦ ,

which is the coordinate vector ofD(f ) ∈ P2 with respect to the basis W. That is,D(f ) =
−1 + 10t + 12t2.

EXAMPLE 6

Define T : P3 → P4 by T (f )(t) = tf (t). Note that when we multiply a polynomial f (t)
of degree ≤ 3 by t , we obtain a polynomial of degree ≤ 4. We ask the reader to check that
this is a linear transformation. The matrix for T with respect to the bases V = {1, t, t2, t3}
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and W = {1, t, t2, t3, t4} is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

as we leave it to the reader to check.

EXAMPLE 7

Define T : P3 → R2 by T (f ) =
[
f (0)

f (1)

]
. Again we leave it to the conscientious reader to

check that this is a linear transformation. With respect to the bases V = {1, t, t2, t3} for P3

and the standard basis W = {e1, e2} for R2, the matrix for T is

A =
[

1 0 0 0

1 1 1 1

]
.

EXAMPLE 8

Of course, if we use different bases for our vector spaces, then we will get different matrices
representing our linear transformation. Returning to Example 5, let’s instead use the basis
V′ = {1, t − 1, (t − 1)2, (t − 1)3} for P3 and the same basis W = {1, t, t2} for P2. Then

D(1) = 0 = 0 · 1 + 0 · t + 0 · t2
D(t − 1) = 1 = 1 · 1 + 0 · t + 0 · t2
D((t − 1)2) = 2(t − 1) = −2 · 1 + 2 · t + 0 · t2
D((t − 1)3) = 3(t − 1)2 = 3 · 1 − 6 · t + 3 · t2 .

Thus, the matrix for D with respect to the bases V′ and W is

[D]V′,W = A′ =

⎡
⎢⎢⎣

0 1 −2 3

0 0 2 −6

0 0 0 3

⎤
⎥⎥⎦ .

EXAMPLE 9

Fix

M =
[

0 1

1 0

]
,

and define T : M2×2 → M2×2 by T (X) = MX. Then properties of matrix multiplication
tell us that T is a linear transformation. Using the basis V consisting of

v1 =
[

1 0

0 0

]
, v2 =

[
0 1

0 0

]
, v3 =

[
0 0

1 0

]
, and v4 =

[
0 0

0 1

]
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for M2×2, the matrix for T is

A =

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎥⎦
,

as we leave it to the reader to check.

The matrix we have been discussing for a linear transformation T : V → W depends
on the choice of ordered bases V and W for V andW , respectively. If we choose alternative
bases V′ and W′, our experience in Section 3, where we hadV = W = Rn and V = W = B,
shows that we should expect a change-of-basis formula relating the two matrices. Let’s
now figure this out. Given ordered bases V = {v1, . . . , vn} and V′ = {v′

1, . . . , v
′
n}, define

the change-of-basis matrix from V to V′ as before: Let P be the n× n matrix whose j th

column vector consists of the coordinates of the vector v′
j with respect to the basis V, i.e.,

v′
j = p1jv1 + p2jv2 + · · · + pnjvn.

That is, we have the usual matrix P giving the change of basis in V :

P =

⎡
⎢⎢⎣

|
CV(v′

1))

|

|
CV(v′

2))

|
· · ·

|
CV(v′

n))

|

⎤
⎥⎥⎦ .

Then do the same thing with the bases for W : Let W = {w1, . . . ,wm} and W′ =
{w′

1, . . . ,w
′
m} be two ordered bases for W , and let Q be the m×m matrix whose j th

column vector consists of the coordinates of the vector w′
j with respect to the basis W, i.e.,

w′
j = q1jw1 + q2jw2 + · · · + qmjwm.

So we now have the matrixQ giving the change of basis inW :

Q =

⎡
⎢⎢⎣

|
CW(w′

1))

|

|
CW(w′

2))

|
· · ·

|
CW(w′

m))

|

⎤
⎥⎥⎦ .

Then we have the following theorem.

Theorem 4.2 (Change-of-Basis Formula, Take 2). Let V and W be finite-dimensional
vector spaces, and let T : V → W be a linear transformation. Let V and V′ be ordered
bases for V , and let W and W′ be ordered bases forW . LetP andQ be the change-of-basis
matrices from V to V′ and from W to W′, respectively. If A = [T ]V,W and A′ = [T ]V′,W′ ,
then we have

A′ = Q−1AP.

This result is summarized in the diagram in Figure 4.2 (where we’ve omitted the μ’s
in the bottom rectangle for clarity).10

10This diagram seems quite forbidding at first blush, but it really does contain all the information in the theorem.
You just need to follow the arrows around, composing functions, starting and ending at the appropriate places.
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FIGURE 4.2
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Proof. One can give a proof exactly like that of Proposition 3.2, and we leave this to the
reader in Exercise 10. Here we give an argument that, we hope, explains the diagram.

Given a vector v ∈ V , let x = CV(v) and x′ = CV′(v). The important relation here is

x = Px′.

We derive this as follows. Using the equations v =
n∑
i=1
xivi and

v =
n∑
j=1

x ′
jv

′
j =

n∑
j=1

x ′
j

( n∑
i=1

pijvi
)

=
n∑
i=1

( n∑
j=1

pijx
′
j

)
vi ,

we deduce from Corollary 3.3 of Chapter 3 that

xi =
n∑
j=1

pijx
′
j .

Likewise, if T (v) = w, let y = CW(w) and y′ = CW′(w). As above, we will have
y = Qy′. Now compare the equations y′ = A′x′ and y = Ax using x = Px′ and y =
Qy′: We have, on the one hand, y = Qy′ = Q(A′x′) = (QA′)x′ and, on the other hand,
y = Ax = A(Px′) = (AP )x′. Since x′ is arbitrary, we conclude that AP = QA′, and so
A′ = Q−1AP , as we wished to establish.

EXAMPLE 10

We revisit Example 7, using instead the basis V′ = {1, t − 1, t2 − t, t3 − t2} for P3 (why
is this a basis?). We see directly that the matrix for T with respect to the bases V′ and W is

A′ =
[

1 −1 0 0

1 0 0 0

]
.

Does this agree with what we get applying Theorem 4.2? The change-of-basis matrix is

P =

⎡
⎢⎢⎢⎢⎣

1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 1

⎤
⎥⎥⎥⎥⎦
,
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andQ = I2×2 since we are not changing basis inW = R2. Therefore, we obtain

A′ = Q−1AP =
[

1 0 0 0

1 1 1 1

]
⎡
⎢⎢⎢⎢⎣

1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

=
[

1 −1 0 0

1 0 0 0

]
,

as we hoped.

EXAMPLE 11

Returning to Example 9, with V = W = M2×2, we let V = W = {v1, v2, v3, v4} as before
and take the new basis

v′
1 =

[
1 0

1 0

]
, v′

2 =
[

0 1

0 1

]
, v′

3 =
[

1 0

−1 0

]
, and v′

4 =
[

0 1

0 −1

]
.

Since v′
1 = v1 + v3, v′

2 = v2 + v4, v′
3 = v1 − v3, and v′

4 = v2 − v4, the change-of-basis
matrix is

P = Q =

⎡
⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎥⎦
,

and the reader can check that (again applying Exercise 4.2.11)

P−1 = Q−1 = 1

2

⎡
⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎥⎦
.

Using the matrix A we obtained earlier, we now find that

A′ = Q−1AP = 1

2

⎡
⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎤
⎥⎥⎥⎥⎦
.

We see that we can interpret T as a reflection of M2×2 across the two-dimensional plane
spanned by v′

1 and v′
2. Notice that multiplying by M switches the rows of a 2 × 2 matrix,

so, indeed, the matrices v′
1 and v′

2 are left fixed, and the matrices v′
3 and v′

4 are multiplied
by −1.
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EXAMPLE 12

Finally, consider the linear transformation T : P3 → P3 defined by T (f )(t) = f ′′(t)+
4f ′(t)− 5f (t). We ask the reader to check, in Exercise 3, that T is in fact a linear map
and that its matrix with respect to the “standard” basis V = {1, t, t2, t3} for P3 is

A =

⎡
⎢⎢⎢⎢⎣

−5 4 2 0

0 −5 8 6

0 0 −5 12

0 0 0 −5

⎤
⎥⎥⎥⎥⎦
.

Because this matrix is already in echelon form, we see that N(A) = {0} and C(A) = R4.
Thus, we infer from Exercise 12 that ker(T ) = {0} and image (T ) = P3.

Exercises 4.4

1. In each case, a linear transformationT : M2×2 → M2×2 is defined. Give the matrix for

T with respect to the “standard basis” v1 =
[

1 0

0 0

]
, v2 =

[
0 1

0 0

]
, v3 =

[
0 0

1 0

]
,

v4 =
[

0 0

0 1

]
for M2×2. In each case, determine ker(T ) and image (T ).

a.∗ T (X) = XT

b.∗ T (X) =
[

1 2

3 4

]
X

c. T (X) =
[

1 2

2 4

]
X

d. T (X) =
[

1 2

3 4

]
X −X

[
1 2

3 4

]

2. Let V ⊂ C∞(R) be the given subspace. LetD : V → V be the differentiation operator
D(f ) = f ′. Give the matrix for D with respect to the given basis.
a.∗ V = Span (1, ex, e2x, . . . , enx)

b. V = Span (ex, xex, x2ex, . . . , xnex)

3.∗ Verify the details of Example 12.

4. Use the change-of-basis formula to find the matrix for the linear transformationD : P3 →
P2 (see Example 5) with respect to the indicated bases. Here V and W indicate the
“standard bases,” as in Example 5.
a.∗ V′ = {1, t − 1, (t − 1)2, (t − 1)3}, W′ = W

b. V′ = V, W′ = {1, t − 1, (t − 1)2}
c. V′ = {1, t − 1, (t − 1)2, (t − 1)3}, W′ = {1, t − 1, (t − 1)2}

5. Define T : P3 → P3 by

T (f )(t) = 2f (t)+ (1 − t)f ′(t).

a. Show that T is a linear transformation.

b. Give the matrix representing T with respect to the “standard basis” {1, t, t2, t3}.
c. Determine ker(T ) and image (T ). Give your reasoning.
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d. Let g(t) = 1 + 2t . Use your answer to part b to find a solution of the differential
equation T (f ) = g.

e. What are all the solutions of T (f ) = g?

6. Consider the differentiation operator D : C1(R) → C0(R) (or Pk → Pk−1, if you
prefer).
a. Show that ker(D) = {constant functions}.
b. Give the interpretation of Theorem 5.3 of Chapter 1 familiar to all students of

calculus.

7. Define M : P → P by M(f )(t) = tf (t), and let D : P → P be the differentiation
operator, as usual.
a. Calculate D◦M −M◦D.

b. Check your result of part a with matrices if you consider the transformation mapping
the finite-dimensional subspace P3 to P3. (Remark: You will need to use the
matrices for both D : P3 → P2 and D : P4 → P3, as well as the matrices for both
M : P2 → P3 andM : P3 → P4.)

c. Show that there can be no linear transformations S : V → V and T : V → V on a
finite-dimensional vector space V with the property that S◦T − T ◦S = I . (Hint:
See Exercise 3.6.9.) Why does this not contradict the result of part b?

8. Let V andW be vector spaces, and let T : V → W be a linear transformation.
a.∗ Show that T maps the line through u and v to the line through T (u) and T (v). What

does this mean if T (u) = T (v)?
b. Show that T maps parallel lines to parallel lines.

9. a. Consider the identity transformation Id : Rn → Rn. Using the basis V in the domain
and the basis V′ in the range, show that the matrix [Id]V,V′ is the inverse of the
change-of-basis matrix P .

b. Use this observation to give another derivation of the change-of-basis formula.

10. Give a proof of Theorem 4.2 modeled on the proof of Proposition 3.2.

11. Let V andW be vector spaces (not necessarily finite-dimensional), and let T : V → W

be a linear transformation. Check that ker(T ) ⊂ V and image (T ) ⊂ W are subspaces.

12. Suppose V = {v1, . . . , vn} is an ordered basis for V , W = {w1, . . . ,wm} is an ordered
basis forW , and A is the matrix for the linear transformation T : V → W with respect
to these bases.
a. Check that x ∈ N(A) ⇐⇒ x1v1 + · · · + xnvn ∈ ker(T ).

b. Check that y ∈ C(A) ⇐⇒ y1w1 + · · · + ymwm ∈ image (T ).

13. Prove that if a linear transformation T : V → W is an isomorphism, then there is
a linear transformation T −1 : W → V satisfying (T −1◦T )(v) = v for all v ∈ V and
(T ◦T −1)(w) = w for all w ∈ W .

14. Decide whether each of the following functions T is a linear transformation. If not,
explain why. If so, give ker(T ) and image (T ).
a.∗ T : Rn → R, T (x) = ‖x‖
b.∗ T : P3 → R, T (f ) = ∫ 1

0 f (t) dt

c. T : Mm×n → Mn×m, T (X) = XT

d.∗ T : P → P , T (f )(t) = ∫ t0 f (s) ds
e. T : C0(R) → C1(R), T (f )(t) = ∫ t0 f (s) ds

15. Let I = [0, 1], and let M : C0(I) → C0(I) be given by M(f )(t) = tf (t). Determine
ker(T ) and image (T ).
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16. Let V be a finite-dimensional vector space, letW be a vector space, and let T : V → W

be a linear transformation. Give a matrix-free proof that dim(ker T )+ dim(image T ) =
dim V , as follows.
a. Let {v1, . . . , vk} be a basis for ker T , and (following Exercise 3.4.17) extend to

obtain a basis {v1, . . . , vk, vk+1, . . . , vn} for V . Show that {T (vk+1), . . . , T (vn)}
gives a basis for image (T ).

b. Conclude the desired result. Explain why this is a restatement of Corollary 4.7 of
Chapter 3 whenW is finite-dimensional.

17. Suppose T : V → W is an isomorphism and dim V = n. Prove that dimW = n.

18. a. Suppose T : V → W is a linear transformation. Suppose {v1, . . . , vk} ⊂ V is lin-
early dependent. Prove that {T (v1), . . . , T (vk)} ⊂ W is linearly dependent.

b. Suppose T : V → V is a linear transformation and V is finite-dimensional. Sup-
pose image (T ) = V . Prove that if {v1, . . . , vk} ⊂ V is linearly independent, then
{T (v1), . . . , T (vk)} is linearly independent. (Hint: Use Exercise 12 or Exercise
16.)

19. Let V and W be subspaces of Rn with V ∩W = {0}. Let S = projV and T = projW .
Show that S◦T = T ◦S if and only if V and W are orthogonal subspaces. (They need
not be orthogonal complements, however.)

20. Suppose V is a vector space and T : V → V is a linear transformation. Suppose
v1, v2, v3 ∈ V are nonzero vectors satisfying

T (v1) = v1

T (v2) = 2v2

T (v3) = −v3.

Prove that {v1, v2, v3} is linearly independent.

21. Let V be a vector space.
a. Let V ∗ denote the set of all linear transformations from V to R. Show that V ∗ is a

vector space.

b. Suppose {v1, . . . , vn} is a basis for V . For i = 1, . . . , n, define fi ∈ V ∗ by

fi (a1v1 + a2v2 + · · · + anvn) = ai.

Prove that {f1, . . . , fn} gives a basis for V ∗.

c. Deduce that whenever V is finite-dimensional, dim V ∗ = dim V .

22. Let t1, . . . , tk+1 be distinct real numbers. Define a linear transformationT : Pk → Rk+1

by

T (f ) =

⎡
⎢⎢⎢⎢⎢⎣

f (t1)

f (t2)

...

f (tk+1)

⎤
⎥⎥⎥⎥⎥⎦
.

a. Prove that ker(T ) = {0}.
b. Show that the matrix for T with respect to the “standard bases” for Pk and Rk+1 is

the matrix A on p. 185.

c. Deduce that the matrix A on p. 185 is nonsingular. (See Exercise 12.)

d. Explain the origins of the inner product on Pk defined in Example 10(b) in Section
6 of Chapter 3.
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23. Suppose T : Rn → Rn has the following properties:

(i) T (0) = 0;

(ii) T preserves distance (i.e., ‖T (x)− T (y)‖ = ‖x − y‖ for all x, y ∈ Rn).

a. Prove that T (x) · T (y) = x · y for all x, y ∈ Rn.

b. If {e1, . . . , en} is the standard basis, letT (ei ) = vi . Prove thatT
( n∑
i=1
xiei
) =

n∑
i=1
xivi .

c. Deduce from part b that T is a linear transformation.

d. Prove that the standard matrix for T is orthogonal.

24. (See the discussion on p. 167 and Exercise 3.4.25.) Let A be an n× n matrix. Prove
that the functions μA : R(A) → C(A) and μAT : C(A) → R(A) are inverse functions
if and only if A = QP , where P is a projection matrix andQ is orthogonal.

HISTORICAL NOTES
Carl Friedrich Gauss (1777–1855) invented the method of least squares while he was study-
ing the orbits of asteroids. In 1801 he successfully predicted the orbit of Ceres, an asteroid
discovered by the Italian astronomer G. Piazzi on the first day of that year. The work was so
impressive that the German astronomer Wilhelm Olbers asked him to apply his methods to
study the second known asteroid, Pallas, which Olbers had discovered in 1802. In a paper
of 1809, Gauss summarized his work on Pallas. His calculations had led him to an incon-
sistent linear system in six variables, which therefore required a least-squares approach.
In the same paper he also used the techniques of what we now call Gaussian elimination.
Adrien-Marie Legendre (1752–1833) actually published the least squares method first, in
1806, in a book describing methods for determining the orbits of comets. Gauss claimed
priority in his book, and it is now generally accepted that he was the first to design and use
the method.

The uses of orthogonality and orthogonal projections go far beyond the statistical anal-
ysis of data. Jean Baptiste Joseph Fourier (1768–1830) was a great French mathematician
who focused much of his attention on understanding and modeling physical phenomena
such as heat transfer and vibration. His work led to what is now called Fourier series and the
approach to problem solving called Fourier analysis. Fourier was a mathematical prodigy
and studied at the École Royale Militaire in his hometown of Auxerre. A short time after
leaving school, he applied to enter the artillery or the engineers, but was denied. He then
decided, at the age of nineteen, to join an abbey to study for the priesthood. He never
took his religious vows; instead, he was offered a professorship at the École Militaire, and
mathematics became his life’s work. He was imprisoned during the Reign of Terror in 1794
and may have come close to being guillotined. He accepted a job at the École Normale in
Paris, starting in 1795, and soon thereafter was offered the chair of analysis at the École
Polytechnique. He accompanied Napoleon as scientific adviser to Egypt in 1798 and was
rewarded by being appointed governor of lower Egypt. When he returned to Paris in 1801,
he was appointed prefect of the Department of Isère.

During his time in Grenoble, Fourier developed his theory of heat, completing his
memoir On the Propagation of Heat in Solid Bodies (1807). Fourier’s ideas were met
with a cold reception when he proposed them in the early nineteenth century, but now his
techniques are indispensable in fields such as electrical engineering. The fundamental idea
behind Fourier analysis is that many functions can be approximated by linear combinations
of the functions 1, cos nx, and sin nx, as n ranges over all positive integers. These functions
are orthogonal in the vector space of continuous functions on the interval [0, 2π ] endowed
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with the inner product described in Example 10(c) in Section 6 of Chapter 3. Thus, the
basic idea of Fourier analysis is that continuous functions should be well approximated
by their projections onto (finite-dimensional) spans of these orthogonal functions. Other
classes of orthogonal functions have been studied over the years and applied to the theory of
differential equations by mathematicians such as Legendre, Charles Hermite (1822–1901),
Pafnuty Lvovich Chebyshev (1821–1894), and Edmond Nicolas Laguerre (1834–1886).
Many of these ideas have also played a significant role in the modern theory of interpolation
and numerical integration.
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C H A P T E R 5
DETERMINANTS

To each square matrix we associate a number, called its determinant. For us, that number will
provide a convenient computational criterion for determining whether a matrix is singular.
We will use this criterion in Chapter 6. The determinant also has a geometric interpretation
in terms of area and volume. Although this interpretation is not necessary for our later
work, we find it such a beautiful example of the interplay between algebra and geometry
that we could not resist telling at least part of this story. Those who study multivariable
calculus will recognize the determinant when it appears in the change-of-variables formula
for integrals.

1 Properties of Determinants

In Section 3 of Chapter 2 we saw that a 2 × 2 matrix A =
[
a b

c d

]
is nonsingular if and

only if the quantity ad − bc is nonzero. Here we give this quantity a name, the determinant
of A, denoted detA; i.e., detA = ad − bc. We will explore the geometric interpretation
of the determinant in Section 3, but for now we want to figure out how this idea should
generalize to n× n matrices. To do this, we will study the effect of row operations on the
determinant. If we switch the two rows, the determinant changes sign. If we multiply one
of the rows by a scalar, the determinant multiplies by that same factor. Slightly less obvious
is the observation that if we do a row operation of type (iii)—adding a multiple of one row
to the other—then the determinant does not change: For any scalar k, consider that

det

[
a b

c + ka d + kb

]
= a(d + kb)− b(c + ka) = ad − bc = det

[
a b

c d

]
.

Now let’s reverse this reasoning. Starting with these three properties and the re-
quirement that the determinant of the identity matrix be 1, can we derive the formula

detA = ad − bc? LetA =
[
a b

c d

]
and assume that a �= 0. First we add −c/a times the

first row to the second: [
a b

c d

]
�
[
a b

0 d − bc
a

]
.
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So far, the determinant has not changed. If ad − bc = 0, then both entries of the second
row are 0, and so the determinant is 0 (why?). Provided that ad − bc �= 0, we can add a
suitable multiple of the second row to the first row to obtain

[
a 0

0 ad−bc
a

]
.

But this matrix is obtained from the identity matrix by multiplying the first row by a and
the second row by ad−bc

a
, so we start with the determinant of the identity matrix, 1, and

multiply by a · ad−bc
a

= ad − bc, and this is the determinant of A. The persnickety reader
may wonder what to do if a = 0. If c �= 0, we switch rows and get a determinant of −bc;
and last, if a = c = 0, we can arrange, by a suitable row operation of type (iii) if necessary,
for a zero row, so once again the determinant is 0.

It turns out that this story generalizes to n× n matrices. We will prove in the next
section that there is a unique function, det, that assigns to each n× nmatrix a real number,
called its determinant, that is characterized by the effect of elementary row operations and
by its value on the identity matrix. We state these properties in the following proposition.

Proposition 1.1. Let A be an n× n matrix.

1. Let A′ be obtained from A by exchanging two rows. Then detA′ = − detA.

2. LetA′ be obtained fromA by multiplying some row by the scalar c. Then detA′ =
c detA.

3. Let A′ be obtained from A by adding a multiple of one row to another. Then
detA′ = detA.

4. Last, det In = 1.

EXAMPLE 1

We now use row operations to calculate the determinant of the matrix

A =

⎡
⎢⎢⎣

2 4 6

2 1 0

1 0 1

⎤
⎥⎥⎦ .

First we exchange rows 1 and 3, and then we proceed to echelon form:

detA = det

⎡
⎢⎢⎣

2 4 6

2 1 0

1 0 1

⎤
⎥⎥⎦ = − det

⎡
⎢⎢⎣

1 0 1

2 1 0

2 4 6

⎤
⎥⎥⎦

= − det

⎡
⎢⎢⎣

1 0 1

0 1 −2

0 4 4

⎤
⎥⎥⎦ = − det

⎡
⎢⎢⎣

1 0 1

0 1 −2

0 0 12

⎤
⎥⎥⎦

= −12 det

⎡
⎢⎢⎣

1 0 1

0 1 −2

0 0 1

⎤
⎥⎥⎦ = −12 det

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦ = −12,

where we’ve used the pivots to clear out the upper entries in the columns without changing
the determinant.
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Generalizing the determinant criterion for two vectors in R2 to be linearly (in)dependent,
we deduce the following characterization of nonsingular matrices that will be critical in
Chapter 6.

Theorem 1.2. Let A be a square matrix. Then A is nonsingular if and only if detA �= 0.

Proof. Suppose A is nonsingular. Then its reduced echelon form is the identity matrix.
Turning this upside down, we can start with the identity matrix and perform a sequence of
row operations to obtain A. If we keep track of the effect on the determinant, we see that
we’ve started with det I = 1 and multiplied it by a nonzero number to obtain detA. That
is, detA �= 0. Conversely, suppose A is singular. Then its echelon form U has a row of
zeroes, and therefore detU = 0 (see Exercise 2). It follows, as in the previous case, that
detA = 0.

We give next some properties of determinants that can be useful on both computational
and theoretical grounds.

Proposition 1.3. If A is an upper (lower) triangular n× n matrix, then detA =
a11a22 · · · ann; that is, detA is the product of the diagonal entries.

Proof. If aii = 0 for some i, then A is singular (why?) and so detA = 0, and the desired
equality holds in this case. Now assume all the aii are nonzero. Let Ai be the i th row vector
of A, as usual, and write Ai = aiiBi , where the i th entry of Bi is 1. Then, letting B be the
matrix with rows Bi and using property 2 of Proposition 1.1 repeatedly, we have detA =
a11a22 · · · ann detB. Now B is an upper (lower) triangular matrix with 1’s on the diagonal,
so, using property 3, we can use the pivots to clear out the upper (lower) entries without
changing the determinant; thus, detB = det I = 1. And so finally, detA = a11a22 · · · ann,
as promised.

Remark. One must be careful to apply Proposition 1.3 only when the matrix is triangular.
When there are nonzero entries on both sides of the diagonal, further work is required.

Of special interest is the “product rule” for determinants. Notice, first of all, that because
row operations can be represented by multiplication by elementary matrices, Proposition
1.1 can be restated as follows:

Proposition 1.4. Let E be an elementary matrix, and let A be an arbitrary square matrix.
Then

det(EA) = detE detA.

Proof. Left to the reader in Exercise 3.

Theorem 1.5. Let A and B be n× n matrices. Then

det(AB) = detA detB.

Proof. Suppose A is singular, so that there is some nontrivial linear relation among its row
vectors:

c1A1 + · · · + cnAn = 0.

Then, multiplying by B on the right, we find that

c1(A1B)+ · · · + cn(AnB) = 0,

from which we conclude that there is (the same) nontrivial linear relation among the row
vectors ofAB, and soAB is singular as well. We infer from Theorem 1.2 that both detA = 0
and detAB = 0, and so the result holds in this case.
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Now, if A is nonsingular, we know that we can write A as a product of elementary
matrices, viz., A = Em · · ·E2E1. We now apply Proposition 1.4 twice. First, we have

detA = det(Em · · ·E2E1) = detEm · · · detE2 detE1;
but then we have

detAB = det(Em · · ·E2E1B) = detEm · · · detE2 detE1 detB

= (detEm · · · detE2 detE1) detB = detA detB,

as claimed.

A consequence of this proposition is that det(AB) = det(BA), even though matrix
multiplication is not commutative. Another useful observation is the following:

Corollary 1.6. If A is nonsingular, then det(A−1) = 1

detA
.

Proof. From the equationAA−1 = I and Theorem 1.5 we deduce that detA det(A−1) = 1,
so det(A−1) = 1/ detA.

A fundamental consequence of the product rule is the fact that similar matrices have
the same determinant. (Recall that B is similar to A if B = P−1AP for some invertible
matrix P .) For, using Theorem 1.5 and Corollary 1.6, we obtain

det(P−1AP) = det(P−1) det(AP ) = det(P−1) detA det P = detA.

As a result, when V is a finite-dimensional vector space, it makes sense to define the
determinant of a linear transformation T : V → V . One writes down the matrix A for
T with respect to any (ordered) basis and defines det T = detA. The Change-of-Basis
Formula, Proposition 3.2 of Chapter 4, tells us that any two matrices representing T are
similar and hence, by our calculation, have the same determinant. What’s more, as we shall
see shortly, det T has a nice geometric meaning: It gives the factor by which signed volume
is distorted under the mapping by T .

The following result is somewhat surprising, as it tells us that whatever holds for rows
must also hold for columns.

Proposition 1.7. Let A be a square matrix. Then

det(AT) = detA.

Proof. Suppose A is singular. Then so is AT (see Exercise 3.4.12). Thus, det(AT) =
0 = detA, and so the result holds in this case. Suppose now that A is nonsingular. As in
the preceding proof, we write A = Em · · ·E2E1. Now we have AT = (Em · · ·E2E1)

T =
ET

1E
T
2 · · ·ET

m, and so, using the product rule and the fact that det(ET
i ) = detEi (see Exercise

4), we obtain

det(AT) = det(ET
1 ) det(ET

2 ) · · · det(ET
m) = detE1 detE2 · · · detEm = detA.

An immediate and useful consequence of Proposition 1.7 is the fact that the determinant
behaves the same under column operations as it does under row operations. We have

Corollary 1.8. Let A be an n× n matrix.

1. Let A′ be obtained from A by exchanging two columns. Then detA′ = − detA.

2. Let A′ be obtained from A by multiplying some column by the number c. Then
detA′ = c detA.

3. Let A′ be obtained from A by adding a multiple of one column to another. Then
detA′ = detA.



1 Properties of Determinants 243

1.1 Linearity in Each Row
It is more common to start with a different version of Proposition 1.1. We replace property
3 with the following:

3′. Suppose the i th row of the matrixA is written as a sum of two vectors, Ai = A′
i + A′′

i .
Let A′ denote the matrix with A′

i as its i th row and all other rows the same as those of A,
and likewise for A′′. Then detA = detA′ + detA′′.
Properties 2 and 3′ say that the determinant is a linear function of each of the row vectors
of the matrix. Be careful! This is not the same as saying that det(A+ B) = detA+ detB,
which is false for most matrices A and B.

We will prove the following result at the end of Section 2.

Theorem 1.9. For each n ≥ 1, there is exactly one function det that associates to each
n× n matrix a real number and has the properties 1, 2, 3′, and 4.

The next two results establish the fact that properties 1, 2, and 3′ imply property 3,
so that all the results of this section will hold if we assume that the determinant satisfies
property 3′ instead of property 3. For the rest of this section, we assume that we know that
detA satisfies properties 1, 2, and 3′, and we use those properties to establish property 3.

Lemma 1.10. If two rows of a matrix A are equal, then detA = 0.

Proof. If Ai = Aj , then the matrix is unchanged when we switch rows i and j . On the
other hand, by property 1, the determinant changes sign when we switch these rows. That
is, we have detA = − detA. This can happen only when detA = 0.

Now we can easily deduce property 3 from properties 1, 2, and 3′:

Proposition 1.11. Let A be an n× n matrix, and let B be the matrix obtained by adding a
multiple of one row of A to another. Then detB = detA.

Proof. Suppose B is obtained from A by replacing the i th row by its sum with c times the
j th row; i.e., Bi = Ai + cAj , with i �= j . By property 3′, detB = detA+ detA′, where
A′
i = cAj and all the other rows of A′ are the corresponding rows of A. If we define the

matrixA′′ by setting A′′
i = Aj and keeping all the other rows the same, then property 2 tells

us that detA′ = c detA′′. But two rows of the matrix A′′ are identical, so, by Lemma 1.10,
detA′′ = 0. Therefore, detB = detA, as desired.

Exercises 5.1

1. Calculate the following determinants.

a. det

⎡
⎢⎣

−1 3 5

6 4 2

−2 5 1

⎤
⎥⎦

b.∗ det

⎡
⎢⎢⎢⎣

1 −1 0 1

0 2 1 1

2 −2 2 3

0 0 6 2

⎤
⎥⎥⎥⎦

c. det

⎡
⎢⎢⎢⎣

1 4 1 −3

2 10 0 1

0 0 2 2

0 0 −2 1

⎤
⎥⎥⎥⎦

d.∗ det

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
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2. Suppose one row of the n× nmatrixA consists only of 0 entries, i.e., Ai = 0 for some
i. Use the properties of determinants to show that detA = 0.

3. Prove Proposition 1.4.

4.� Without using Proposition 1.7, show that for any elementary matrix E, we have
detET = detE. (Hint: Consider each of the three types of elementary matrices.)

5. Let A be an n× n matrix and let c be a scalar. Show that det(cA) = cn detA.

6. Given that 1898, 3471, 7215, and 8164 are all divisible by 13, use properties of deter-
minants to show that

det

⎡
⎢⎢⎢⎢⎣

1 8 9 8

3 4 7 1

7 2 1 5

8 1 6 4

⎤
⎥⎥⎥⎥⎦

is divisible by 13. (Hint: Use Corollary 1.8. You may also use the result of Exercise
5.2.6—the determinant of a matrix with integer entries is an integer.)

7.� Let A be an n× n matrix. Show that

det

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0
... A

0

⎤
⎥⎥⎥⎥⎥⎦

= detA.

8. a. Show that

det

⎡
⎢⎢⎣

1 1 1

b c d

b2 c2 d2

⎤
⎥⎥⎦ = (c − b)(d − b)(d − c).

b. Show that

det

⎡
⎢⎢⎢⎢⎣

1 1 1 1

a b c d

a2 b2 c2 d2

a3 b3 c3 d3

⎤
⎥⎥⎥⎥⎦

= (b − a)(c − a)(d − a)(c − b)(d − b)(d − c).

c.∗ In general, evaluate (with proof)

det

⎡
⎢⎢⎢⎢⎢⎣

1 t1 t21 . . . t k1

1 t2 t22 . . . t k2
...

...
...

. . .
...

1 tk+1 t2k+1 . . . t kk+1

⎤
⎥⎥⎥⎥⎥⎦
.

(See Exercises 3.6.12 and 4.4.22.)
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9. Generalizing Exercise 7, we have:
a.� Suppose A ∈ Mk×k , B ∈ Mk×�, and D ∈ M�×�. Prove that

det

[
A B

O D

]
= detA detD.

b. Suppose now that A, B, and D are as in part a and C ∈ M�×k . Prove that if A is
invertible, then

det

[
A B

C D

]
= detA det(D − CA−1B).

c. If we assume, moreover, that k = � and AC = CA, then deduce that

det

[
A B

C D

]
= det(AD − CB).

d. Give an example to show that the result of part c needn’t hold whenA and C do not
commute.

10.∗ Suppose A is an orthogonal n× n matrix. (Recall that this means that ATA = In.)
What are the possible values of detA?

11. SupposeA is a skew-symmetric n× nmatrix. (Recall that this means thatAT = −A.)
Show that when n is odd, detA = 0. Give an example to show that this needn’t be true
when n is even. (Hint: Use Exercise 5.)

12. Prove directly that properties 1, 2, and 3 imply property 3′ for the last row.
a. Do the case of 2 × 2 matrices first. Suppose first that {A1,A′

2} is linearly dependent;
show that in this case, detA = detA′′. Next, deduce the result when {A1,A′

2} is
linearly independent by writing A′′

2 as a linear combination of A1 and A′
2.

b. Generalize this argument to n× n matrices. Consider first the case that {A1, . . . ,

An−1,A′
n} is linearly dependent, then the case that {A1, . . . ,An−1,A′

n} is linearly
independent.

13. Using Proposition 1.4, prove the uniqueness statement in Theorem 1.9. That is, prove
that the determinant function is uniquely determined by the properties 1, 2, 3′, and 4.
(Hint: Mimic the proof of Theorem 1.5. It might be helpful to consider two functions
det and d̃et that have these properties and to show that det(A) = d̃et(A) for every
square matrix A.)

2 Cofactors and Cramer’s Rule
We began this chapter with a succinct formula for the determinant of a 2 × 2 matrix:

det

[
a11 a12

a21 a22

]
= a11a22 − a12a21,

and we showed that this function on M2×2 satisfies the properties listed in Proposition
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1.1. Similarly, it is not too hard to show that it satisfies property 3′; thus, this formula
establishes the existence part of Theorem 1.9 in the case n = 2. It would be nice if there
were a simple formula for the determinant of n× n matrices when n > 2. Reasoning
as above, such a formula could help us prove that a function satisfying the properties in
Theorem 1.9 actually exists.

Let’s try to determine one in the case n = 3. Given the 3 × 3 matrix

A =

⎡
⎢⎢⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎥⎦ ,

we use the properties to calculate detA. First we use linearity in the first row to break this
up into the sum of three determinants:

detA = a11 det

⎡
⎢⎢⎣

1 0 0

a21 a22 a23

a31 a32 a33

⎤
⎥⎥⎦+ a12 det

⎡
⎢⎢⎣

0 1 0

a21 a22 a23

a31 a32 a33

⎤
⎥⎥⎦+ a13 det

⎡
⎢⎢⎣

0 0 1

a21 a22 a23

a31 a32 a33

⎤
⎥⎥⎦

= a11 det

⎡
⎢⎢⎣

1 0 0

0 a22 a23

0 a32 a33

⎤
⎥⎥⎦+ a12 det

⎡
⎢⎢⎣

0 1 0

a21 0 a23

a31 0 a33

⎤
⎥⎥⎦+ a13 det

⎡
⎢⎢⎣

0 0 1

a21 a22 0

a31 a32 0

⎤
⎥⎥⎦

= a11 det

[
a22 a23

a32 a33

]
− a12 det

[
a21 a23

a31 a33

]
+ a13 det

[
a21 a22

a31 a32

]

(∗) = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33,

where we’ve used the result of Exercise 5.1.7 and Corollary 1.8 at the last stage. Be sure to
understand precisely how! The result can be depicted schematically as in Figure 2.1 below,
but be warned that this handy mnemonic device works only for 3 × 3 determinants! (In

FIGURE 2.1 + + +

− − −
a12 a13

a32 a33

a11

a31

a21a23a22

a11

a21

a31

a12

a22

a32

general, the determinant of an n× nmatrix can be written as the sum of n! terms, each (±)
the product of n entries of the matrix, one from each row and column.)

Before proceeding to the n× n case, we make a few observations. First, although we
“expanded” the above determinant along the first row, we could have expanded along any
row. As we shall see in the following example, one must be a bit careful with signs. The
reader might find it interesting to check that the final expression, (∗), for detA results from
any of these three expansions. If we believe the uniqueness part of Theorem 1.9, this is
no surprise. Second, since we know from the last section that detA = detAT, we can also
“expand” the determinant along any column. Again, the reader may find it valuable to see
that any such expansion results in the same final expression.
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EXAMPLE 1

Let

A =

⎡
⎢⎢⎣

2 1 3

1 −2 3

0 2 1

⎤
⎥⎥⎦ .

Suppose we want to calculate detA by expanding along the second row. If we switch the
first two rows, we get

detA = − det

⎡
⎢⎢⎣

1 −2 3

2 1 3

0 2 1

⎤
⎥⎥⎦

= (−1)

(
(1) det

[
1 3

2 1

]
− (−2) det

[
2 3

0 1

]
+ (3) det

[
2 1

0 2

])

= (−1)
(
(1)(−5)+ (2)(2)+ (3)(4)) = −11.

Of course, because of the 0 entry in the third row, we’d have been smarter to expand along
the third row. Now if we switch the first and third rows and then the second and third rows,
the original rows will be in the order 3, 1, 2, and the determinant will be the same:

detA = det

⎡
⎢⎢⎣

0 2 1

1 −2 3

2 1 3

⎤
⎥⎥⎦

= (0) det

[
1 3

−2 3

]
− (2) det

[
2 3

1 3

]
+ (1) det

[
2 1

1 −2

]

= −2(3)+ 1(−5) = −11.

The preceding calculations of a 3 × 3 determinant suggest a general recursive formula.
Given an n× nmatrix A with n ≥ 2, denote by Aij the (n− 1)× (n− 1)matrix obtained
by deleting the i th row and the j th column from A. Define the ij th cofactor of the matrix to
be

Cij = (−1)i+j detAij .

Note that we include the coefficient of ±1 according to the “checkerboard” pattern as
indicated below:1 ⎡

⎢⎢⎢⎢⎢⎣

+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...
. . .

⎤
⎥⎥⎥⎥⎥⎦
.

Then we have the following formula, which is called the expansion in cofactors along the
i th row.

1We can account for the power of −1 as follows, generalizing the procedure in Example 1: To move the ith row to
the top, without otherwise changing the order of the rows, requires switching pairs of rows i − 1 times; this gives
a sign of (−1)i−1. We then alternate signs as we proceed from column to column, the j th column contributing a
sign of (−1)j−1. Thus, in the expansion, detAij appears with a factor of (−1)i−1(−1)j−1 = (−1)i+j .
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Proposition 2.1. Let A be an n× n matrix. Then for any fixed i, we have

detA =
n∑
j=1

aijCij .

Note that when we define the determinant of a 1 × 1 matrix by the obvious rule

det [a] = a,

Proposition 2.1 yields the familiar formula for the determinant of a 2 × 2 matrix.
If we accept Theorem 1.9, the proof of Proposition 2.1 follows exactly along the lines

of the computation we gave in the 3 × 3 case above: Just expand along the i th row using
linearity (property 3′). We leave the details of this to the reader. Now, by using the fact that
detAT = detA, we also have the expansion in cofactors along the j th column:

Proposition 2.2. Let A be an n× n matrix. Then for any fixed j , we have

detA =
n∑
i=1

aijCij .

As we mentioned above, we can turn this whole argument around to use these formulas
to prove Theorem 1.9. The proof we give here is somewhat sketchy and quite optional;
the reader who is familiar with mathematical induction may wish to make this proof more
complete by using that tool.

Proof of Theorem 1.9. First, we can deduce from the reasoning of Section 1 that there
can be only one such function, because, by reducing the matrix to echelon form by row
operations, we are able to compute the determinant. (See Exercise 5.1.13.) Now, to establish
existence, we will show that the formula given in Proposition 2.2 satisfies properties 1, 2,
3′, and 4.

We begin with property 1. When we form a new matrix A′ by switching two adjacent
rows (say, rows k and k + 1) of A, then whenever i �= k and i �= k + 1, we have a′

ij = aij
and C ′

ij = −Cij ; on the other hand, when i = k, we have a′
kj = ak+1,j and C ′

kj = −Ck+1,j ;
when i = k + 1, we have a′

k+1,j = akj and C ′
k+1,j = −Ckj , so

n∑
i=1

a′
ijC

′
ij = −

n∑
i=1

aijCij ,

as required. We can exchange an arbitrary pair of rows by exchanging an odd number of
adjacent pairs in succession (see Exercise 9), so the general result follows.

The remaining properties are easier to check. If we multiply the kth row by c, then
for i �= k, we have a′

ij = aij and C ′
ij = cCij , whereas for i = k, we have C ′

kj = Ckj and
a′
kj = cakj . Thus,

n∑
i=1

a′
ijC

′
ij = c

n∑
i=1

aijCij ,

as required. Suppose now that we replace the kth row by the sum of two row vectors,
viz., A′

k = Ak + A′′
k . Then for i �= k, we have C ′

ij = Cij + C ′′
ij and a′

ij = aij = a′′
ij . When
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i = k, we likewise have C ′
kj = Ckj = C ′′

kj , but a′
kj = akj + a′′

kj . So

n∑
i=1

a′
ijC

′
ij =

n∑
i=1

aijCij +
n∑
i=1

a′′
ijC

′′
ij ,

as required. Verifying the fourth property is straightforward and is left to the reader.

Remark. It is worth remarking that expansion in cofactors is an important theoretical tool,
but a computational nightmare. Even using calculators and computers, to compute an
n× n determinant by expanding in cofactors requires (approximately) n! multiplications
(and additions). On the other hand, to compute an n× n determinant by row reducing
the matrix to upper triangular form requires slightly fewer than 1

3n
3 multiplications (and

additions). Now, n! grows faster2 than (n/e)n, which gets large much faster than does n3.
Indeed, consider the following table displaying the number of operations required:

n cofactors row operations

2 2 2

3 6 8

4 24 20

5 120 40

6 720 70

7 5,040 112

8 40,320 168

9 362,880 240

10 3,628,800 330

Thus, we see that once n > 4, it is sheer folly to calculate a determinant by the cofactor
method (unless almost all the entries of the matrix happen to be 0).

Having said that, we can see that the cofactor method is particularly effective when a
variable is involved.

EXAMPLE 2

The main thrust of Chapter 6 will be to find, given a square matrix A, values of t for which
the matrix A− tI is singular. By Theorem 1.2, we want to find out when the determinant
is 0. For example, if

A =

⎡
⎢⎢⎣

3 2 −1

0 1 2

1 1 −1

⎤
⎥⎥⎦ , then A− tI =

⎡
⎢⎢⎣

3 − t 2 −1

0 1 − t 2

1 1 −1 − t

⎤
⎥⎥⎦ ,

2The precise estimate comes from Stirling’s formula, which states that the ratio of n! to
(
n
e

)n √
2πn approaches

1 as n → ∞. See Spivak, Calculus, 4th ed., p. 578.
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and we can compute det(A− tI ) by expanding in cofactors along the first column. Note
that this saves us work because one of the terms will drop out.

det(A− tI ) = det

⎡
⎢⎢⎣

3 − t 2 −1

0 1 − t 2

1 1 −1 − t

⎤
⎥⎥⎦

= (3 − t) det

[
1 − t 2

1 −1 − t

]
− (0) det

[
2 −1

1 −1 − t

]

+ (1) det

[
2 −1

1 − t 2

]

= (3 − t)(− (1 − t)(1 + t)− 2
)+ (4 + (1 − t))

= (3 − t)(−3 + t2)+ (5 − t)
= −t3 + 3t2 + 2t − 4.

In Chapter 6 we will learn some tricks to find the roots of such polynomials.

We conclude this section with a few classic formulas. The first is particularly useful for
solving 2 × 2 systems of equations and may be useful even for larger n if you are interested
only in a certain component xi of the solution vector.

Proposition 2.3 Cramer’s Rule. Let A be a nonsingular n× n matrix, and let b ∈ Rn.
Then the i th coordinate of the vector x solving Ax = b is

xi = detBi
detA

,

where Bi is the matrix obtained by replacing the i th column of A by the vector b.

Proof. This is amazingly simple. We calculate the determinant of the matrix obtained by
replacing the i th column of A by b = Ax = x1a1 + · · · + xnan:

detBi = det

⎡
⎢⎢⎣

|
a1

|

|
a2

|
· · ·

|
x1a1 + · · · + xnan

|
· · ·

|
an

|

⎤
⎥⎥⎦

= det

⎡
⎢⎢⎣

|
a1

|

|
a2

|
· · ·

|
xiai

|
· · ·

|
an

|

⎤
⎥⎥⎦ = xi detA,

since the multiples of columns other than the i th do not contribute to the determinant.

EXAMPLE 3

We wish to solve [
2 3

4 7

][
x1

x2

]
=
[

3

−1

]
.
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We have

B1 =
[

3 3

−1 7

]
and B2 =

[
2 3

4 −1

]
,

so detB1 = 24, detB2 = −14, and detA = 2. Therefore, x1 = 12 and x2 = −7.

We now deduce from Cramer’s Rule an “explicit” formula for the inverse of a non-
singular matrix. Students seem always to want an alternative to Gaussian elimination, but
what follows is practical only for the 2 × 2 case (where it gives us our familiar formula
from Example 4 on p. 105) and—barely—for the 3 × 3 case. Having an explicit formula,
however, can be useful for theoretical purposes.

Proposition 2.4. Let A be a nonsingular matrix, and let C = [Cij
]

be the matrix of its
cofactors. Then

A−1 = 1

detA
CT.

Proof. We recall from the discussion on p. 104 that the j th column vector of A−1 is the
solution of Ax = ej , where ej is the j th standard basis vector for Rn. Now, Cramer’s Rule
tells us that the i th coordinate of the j th column of A−1 is

(A−1)ij = 1

detA
det Aji ,

where Aji is the matrix obtained by replacing the i th column ofA by ej . Now, we calculate
det Aji by expanding in cofactors along the i th column of the matrix Aji . Since the only
nonzero entry of that column is the j th, and since all its remaining columns are those of the
original matrix A, we find that

det Aji = (−1)i+j detAji = Cji,

and this proves the result.

EXAMPLE 4

Let’s apply this result to find the inverse of the matrix

A =

⎡
⎢⎢⎣

1 −1 1

2 −1 0

1 −2 2

⎤
⎥⎥⎦

without any row operations (compare with the answer obtained by Gaussian elimination on
p. 105). First of all,

detA = (1) det

[
−1 0

−2 2

]
− (−1) det

[
2 0

1 2

]
+ (1) det

[
2 −1

1 −2

]
= −1.

Next, we calculate the cofactor matrix. We leave it to the reader to check the details of
the arithmetic. (Be careful not to forget the checkerboard pattern of +’s and −’s for the
coefficients of the 2 × 2 determinants.)

C =

⎡
⎢⎢⎣

−2 −4 −3

0 1 1

1 2 1

⎤
⎥⎥⎦ .
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Thus, applying Proposition 2.4, we have

A−1 = 1

detA
CT =

⎡
⎢⎢⎣

2 0 −1

4 −1 −2

3 −1 −1

⎤
⎥⎥⎦ .

In fairness, for 3 × 3 matrices, this formula isn’t bad when detA would cause trouble-
some arithmetic doing Gaussian elimination.

EXAMPLE 5

Consider the matrix

A =

⎡
⎢⎢⎣

1 2 1

−1 1 2

2 0 3

⎤
⎥⎥⎦ ;

then

detA = (1) det

[
1 2

0 3

]
− (2) det

[
−1 2

2 3

]
+ (1) det

[
−1 1

2 0

]
= 15,

and so we suspect the fractions won’t be fun if we do Gaussian elimination. Undaunted,
we calculate the cofactor matrix:

C =

⎡
⎢⎢⎣

3 7 −2

−6 1 4

3 −3 3

⎤
⎥⎥⎦ ,

and so

A−1 = 1

detA
CT = 1

15

⎡
⎢⎢⎣

3 −6 3

7 1 −3

−2 4 3

⎤
⎥⎥⎦ .

Exercises 5.2

1. Calculate the following determinants using cofactors.

a. det

⎡
⎢⎣

−1 3 5

6 4 2

−2 5 1

⎤
⎥⎦

b.∗ det

⎡
⎢⎢⎢⎣

1 −1 0 1

0 2 1 1

2 −2 2 3

0 0 6 2

⎤
⎥⎥⎥⎦

c. det

⎡
⎢⎢⎢⎣

1 4 1 −3

2 10 0 1

0 0 2 2

0 0 −2 1

⎤
⎥⎥⎥⎦

d.∗ det

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
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2.∗ Let A =
⎡
⎢⎣

1 2 1

2 3 0

1 4 2

⎤
⎥⎦.

a. If Ax =
⎡
⎢⎣

1

2

−1

⎤
⎥⎦, use Cramer’s Rule to find x2.

b. Find A−1 using cofactors.

3.∗ Using cofactors, find the determinant and the inverse of the matrix

A =

⎡
⎢⎢⎣

−1 2 3

2 1 0

0 2 3

⎤
⎥⎥⎦ .

4. Check that Proposition 2.4 gives the customary answer for the inverse of a nonsingular
2 × 2 matrix.

5. For each of the following matrices A, calculate det(A− tI ).

a.∗
[

1 5

2 4

]

b.

[
0 1

1 0

]

c.

[
0 −1

1 0

]

d.

[
1 3

3 1

]

e.∗
[

1 1

−1 3

]

f.∗

⎡
⎢⎣

−1 1 2

1 2 1

2 1 −1

⎤
⎥⎦

g.

⎡
⎢⎣

1 0 0

−2 1 2

−2 0 3

⎤
⎥⎦

h.

⎡
⎢⎣

3 2 −2

2 2 −1

2 1 0

⎤
⎥⎦

i.

⎡
⎢⎣

1 −1 4

3 2 −1

2 1 −1

⎤
⎥⎦

j.∗

⎡
⎢⎣

1 −6 4

−2 −4 5

−2 −6 7

⎤
⎥⎦

6. Show that if the entries of a matrix A are integers, then detA is an integer. (Hint: Use
induction.)

7.� a. Suppose A is an n× n matrix with integer entries and detA = ±1. Show that A−1

has all integer entries.

b. Conversely, suppose A and A−1 are both matrices with integer entries. Prove that
detA = ±1.

8. We call the vector x ∈ Rn integral if every component xi is an integer. Let A be
a nonsingular n× n matrix with integer entries. Prove that the system of equations
Ax = b has an integral solution for every integral vector b ∈ Rn if and only if detA =
±1. (Note that if A has integer entries, μA maps integral vectors to integral vectors.
When does μA map the set of all integral vectors onto the set of all integral vectors?)

9. Prove that the exchange of any pair of rows of a matrix can be accomplished by an odd
number of exchanges of adjacent pairs.
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10. Suppose A is an orthogonal n× n matrix. Show that the cofactor matrix C = ±A.

11. Generalizing the result of Proposition 2.4, show thatACT = (detA)I even ifA happens
to be singular. In particular, when A is singular, what can you conclude about the
columns of CT?

12. a. If C is the cofactor matrix of A, give a formula for detC in terms of detA.

b. Let C =
⎡
⎢⎣

1 −1 2

0 3 1

−1 0 −1

⎤
⎥⎦. Can there be a matrix A with cofactor matrix C and

detA = 3? Find a matrix A with positive determinant and cofactor matrix C.

13. a. Show that if (x1, y1) and (x2, y2) are distinct points in R2, then the unique line
passing through them is given by the equation

det

⎡
⎢⎢⎣

1 x y

1 x1 y1

1 x2 y2

⎤
⎥⎥⎦ = 0.

b. Show that if (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) are noncollinear points in R3,
then the unique plane passing through them is given by the equation

det

⎡
⎢⎢⎢⎢⎣

1 x y z

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

⎤
⎥⎥⎥⎥⎦

= 0.

14. As we saw in Exercises 1.6.7 and 1.6.11, through any three noncollinear points in R2

there pass a unique parabola y = ax2 + bx + c and a unique circle x2 + y2 + ax +
by + c = 0. (In the case of the parabola, we must also assume that no two of the points
lie on a vertical line.) Given three such points (x1, y1), (x2, y2), and (x3, y3), show that
the equation of the parabola and circle are, respectively,

det

⎡
⎢⎢⎢⎢⎣

1 x x2 y

1 x1 x2
1 y1

1 x2 x2
2 y2

1 x3 x2
3 y3

⎤
⎥⎥⎥⎥⎦

= 0 and det

⎡
⎢⎢⎢⎢⎣

1 x y x2 + y2

1 x1 y1 x2
1 + y2

1

1 x2 y2 x2
2 + y2

2

1 x3 y3 x2
3 + y2

3

⎤
⎥⎥⎥⎥⎦

= 0.

15. (from the 1994 Putnam Exam) Let A and B be 2 × 2 matrices with integer entries
such that A, A+ B, A+ 2B, A+ 3B, and A+ 4B are all invertible matrices whose
inverses have integer entries. Prove that A+ 5B is invertible and that its inverse has
integer entries. (Hint: Use Exercise 7.)

16. In this problem, let D(x, y) denote the determinant of the 2 × 2 matrix with rows x
and y. Assume the vectors v1, v2, v3 ∈ R2 are pairwise linearly independent.
a. Prove that D(v2, v3)v1 +D(v3, v1)v2 +D(v1, v2)v3 = 0. (Hint: Write v1 as a

linear combination of v2 and v3 and use Cramer’s Rule to solve for the coefficients.)

b. Now suppose a1, a2, a3 ∈ R2 and for i = 1, 2, 3, let �i be the line in the plane
passing through ai with direction vector vi . Prove that the three lines have a point
in common if and only if

D(a1, v1)D(v2, v3)+D(a2, v2)D(v3, v1)+D(a3, v3)D(v1, v2) = 0.
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(Hint: Use Cramer’s Rule to get an equation that says that the point of intersection
of �1 and �2 lies on �3.)

17. Using Exercise 16, prove that the perpendicular bisectors of the sides of a triangle have
a common point. (Hint: If ρ : R2 → R2 is rotation through an angle π/2 counterclock-
wise, show that D(x, ρ(y)) = x · y.)

3 Signed Area in R2 and SignedVolume in R3

We now turn to the geometric interpretation of the determinant. We start with x, y ∈ R2

and consider the parallelogram P they span. The area of P is nonzero so long as x and y
are not collinear, i.e., so long as {x, y} is linearly independent. We want to express the area
of P in terms of the coordinates of x and y. First notice that the area of the parallelogram
pictured in Figure 3.1 is the same as the area of the rectangle obtained by moving the shaded
triangle from the right side to the left. This rectangle has area A = bh, where b = ‖x‖ is
the base and h = ‖y‖ sin θ is the height. Remembering that sin θ = cos(π2 − θ) and using
the fundamental formula for dot product on p. 24, we have (see Figure 3.2)

‖x‖‖y‖ sin θ = ‖x‖‖y‖ cos
(π

2
− θ
)

= ρ(x) · y,

where ρ(x) is the vector obtained by rotating x an angle π/2 counterclockwise. If x =
(x1, x2) and y = (y1, y2), then we have

area(P) = ρ(x) · y = (−x2, x1) · (y1, y2) = x1y2 − x2y1,

which we notice is the determinant of the 2 × 2 matrix with row vectors x and y.

x

y

θ

FIGURE 3.1

x

y

θ

ρ(x)

π
θ2

−

FIGURE 3.2

EXAMPLE 1

If x = (3, 1) and y = (4, 3), then the area of the parallelogram spanned by x and y is
x1y2 − x2y1 = 3 · 3 − 1 · 4 = 5. On the other hand, if we interchange the two, letting
x = (4, 3) and y = (3, 1), then we get x1y2 − x2y1 = 4 · 1 − 3 · 3 = −5. Certainly the
parallelogram hasn’t changed, nor does it make sense to have negative area. What is the
explanation? In deriving our formula for the area above, we assumed 0 < θ < π ; but if
we must turn clockwise to get from x to y, this means that θ is negative, resulting in a sign
discrepancy in the area calculation.
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This example forces us to amend our earlier result. As indicated in Figure 3.3, we define
the signed area of the parallelogram P to be the area of P when one turns counterclockwise
from x to y and to be negative the area of P when one turns clockwise from x to y. Then
we have

signed area(P) = x1y2 − x2y1.

We use D(x, y) to represent the signed area of the parallelogram spanned by x and y, in
that order.

FIGURE 3.3

x

y

x

y

Signed area > 0 Signed area < 0

Next, we observe that the signed area satisfies properties 1, 2, 3, and 4 of the deter-
minant. The first is built into the definition of signed area. If we stretch one of the edges
of the parallelogram by a factor of c > 0, then the area is multiplied by a factor of c. And
if c < 0, the area is multiplied by a factor of |c| and the signed area changes sign (why?).
So property 2 holds. Property 3 is Cavalieri’s principle, as illustrated in Figure 3.4: If two
parallelograms have the same height and cross sections of equal lengths at corresponding
heights, then they have the same area. That is, when we shear a parallelogram, we do not
change its area. Property 4 is immediate because D(e1, e2) = 1.

x x

y y
y + cx

FIGURE 3.4

Interestingly, we can deduce property 3′ from Figure 3.5: The area of parallelogram
OBCD (D(x + y, z)) is equal to the sum of the areas of parallelogramsOAED (D(x, z))
and ABCE (D(y, z)). The proof of this, in turn, follows from the fact that �OAB is
congruent to �DEC.

Similarly, moving to three dimensions, let’s consider the signed volume D(x, y, z) of
the parallelepiped spanned by three vectors x, y, and z ∈ R3. Once again we observe that
this quantity satisfies properties 1, 2, 3, and 4 of the determinant. We will say in a minute
how the sign is determined, but then property 1 will be evident. Properties 2 and 4 are again
immediate. And Property 3 is again Cavalieri’s principle, as we see in Figure 3.6. If two
solids have the same height and cross sections of equal areas at corresponding heights, then
they have the same volume.
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FIGURE 3.5
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FIGURE 3.6
x

y

z

x

z + cx

y

z

Here is how we decide the sign of the signed volume. We apply the right-hand rule
familiar to most multivariable calculus and physics students: As shown in Figure 3.7, one
lines up the fingers of one’s right hand with the vector x and curls them toward y. If one’s
thumb now is on the same side of the plane spanned by x and y as z is, then the signed volume
is positive; if one’s thumb is on the opposite side, then the signed volume is negative. Note
that this definition is exactly what it takes for signed volume in R3 to have property 1 of
determinants.

x

y

z

z

x

y

Signed volume > 0

Signed volume < 0

FIGURE 3.7

We leave it for the reader to explore the notion of volume and signed volume in higher
dimensions, but for our purposes here, we will just say that the signed n-dimensional
volume of the parallelepiped spanned by vectors A1, . . . ,An ∈ Rn, denotedD(A1, . . . ,An),
coincides with the determinant of the matrix A with rows Ai .
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Now we close with a beautiful and important result, one that is used in establishing the
powerful change-of-variables theorem in multivariable calculus.

Proposition 3.1. Let T : Rn → Rn be a linear transformation. Let P ⊂ Rn be the par-
allelepiped spanned by v1, . . . , vn. Then the signed volume of the parallelepiped T (P) is
equal to the product of the signed volume of the parallelepiped P and det T .

Remark. By definition, det T is the signed volume of the parallelepiped spanned by the
vectors T (e1), . . . , T (en). This number, amazingly, gives the ratio of the signed volume of
T (P) to the signed volume of P for every parallelepiped P, as indicated in Figure 3.8.

FIGURE 3.8

e2

e1

v2

v1

T(e2)

T(e1)

T(v2)

T(v1)

T(P)

T

TP

Proof. The signed volume of P is given by D(v1, . . . , vn), which, by definition, is the
determinant of the matrix whose row vectors are v1, . . . , vn. By Proposition 1.7, this is in
turn the determinant of the matrix whose columns are v1, . . . , vn. Similarly, letting A be
the standard matrix for T , the signed volume of T (P) is given by

D(T (v1), . . . , T (vn))= det

⎡
⎢⎢⎣

| |
Av1 · · · Avn

| |

⎤
⎥⎥⎦= det

⎛
⎜⎜⎝

⎡
⎢⎢⎣ A

⎤
⎥⎥⎦

⎡
⎢⎢⎣

| |
v1 · · · vn

| |

⎤
⎥⎥⎦

⎞
⎟⎟⎠.

Using the product rule for determinants, Theorem 1.5, we infer that

D(T (v1), . . . , T (vn)) = (detA) D(v1, . . . , vn) = (det T ) D(v1, . . . , vn),

as required.

Exercises 5.3

1. Find the signed area of the parallelogram formed by the following pairs of vectors
in R2.
a.∗ x = (1, 5), y = (2, 3)

b. x = (4, 3), y = (5, 4)

c. x = (2, 5), y = (3, 7)
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2. Find the signed volume of the parallelepiped formed by the following triples of vectors
in R3.
a.∗ x = (1, 2, 1), y = (2, 3, 1), z = (−1, 0, 3)

b. x = (1, 1, 1), y = (2, 3, 4), z = (1, 1, 5)

c. x = (3,−1, 2), y = (1, 0,−3), z = (−2, 1,−1)

3. LetA = (a1, a2), B = (b1, b2), andC = (c1, c2) be points in R2. Show that the signed
area of �ABC is given by

1

2
det

⎡
⎢⎢⎣

1 a1 a2

1 b1 b2

1 c1 c2

⎤
⎥⎥⎦ .

4. Suppose A, B, and C are vertices of a triangle in R2, and D is a point in R2.
a. Use the fact that the vectors

−→
AB and

−→
AC are linearly independent to prove that

we can write D = rA+ sB + tC for some scalars r , s, and t with r + s + t = 1.
(Here, we are treating A, B, C, and D as vectors in R2.)

b. Use Exercise 3 to show that t is the ratio of the signed area of �ABD to the signed
area of �ABC (and similar results hold for r and s).

5. Let u, v ∈ R3. Define the cross product of u and v to be the vector

u × v =
(

det

[
u2 u3

v2 v3

]
, det

[
u3 u1

v3 v1

]
, det

[
u1 u2

v1 v2

])
.

a. Prove that for any vectors u, v, and w ∈ R3, w · (u × v) = D(w, u, v).
b. Show that u × v is orthogonal to u and v.

6. Let P be the parallelogram spanned by two vectors u, v ∈ R3.
a. By interpreting D(u × v, u, v) as both a signed volume and a determinant, show

that area(P) = ‖u × v‖. (Hint: For the latter, expand in cofactors.)

b. Let P1 be the projection of P onto the x2x3-plane; P2, its projection onto the x1x3-
plane; and P3, its projection onto the x1x2-plane. Show that

(
area(P)

)
2 = (area(P1)

)
2 + (area(P2)

)
2 + (area(P3)

)
2 .

How’s that for a generalization of the Pythagorean Theorem?!

7. Let a ∈ R3 be fixed. Define T : R3 → R3 by T (x) = a × x (see Exercise 5).
a. Prove that T is a linear transformation.

b. Give the standard matrix A of T .

c. Explain, using part a of Exercise 5 and Proposition 5.2 of Chapter 2, why A is
skew-symmetric.

8. Suppose a polygon in the plane has vertices (x1, y1), (x2, y2), . . . , (xn, yn). Give a
formula for its area. (Hint: To start, assume that the origin is inside the polygon; draw
a picture.)

9. (from the 1994 Putnam Exam) Find the value of m so that the line y = mx bisects the
region {

(x, y) ∈ R2 : x
2

4
+ y2 ≤ 1, x ≥ 0, y ≥ 0

}
.

(Hint: How are ellipses, circles, and linear transformations related?)

10. Given any ellipse, show that there are infinitely many inscribed triangles of maximal
area. (Hint: See the hint for Exercise 9.)



260 Chapter 5 Determinants

11. Let x, y ∈ R3. Show that

det

[
x · x x · y

y · x y · y

]

is the square of the area of the parallelogram spanned by x and y.

12. Generalizing the result of Exercise 11, let v1, . . . , vk ∈ Rn. Show that

det

⎡
⎢⎢⎢⎢⎢⎣

v1 · v1 v1 · v2 . . . v1 · vk

v2 · v1 v2 · v2 . . . v2 · vk
...

...
. . .

...

vk · v1 vk · v2 . . . vk · vk

⎤
⎥⎥⎥⎥⎥⎦

is the square of the volume of the k-dimensional parallelepiped spanned by v1, . . . , vk .

HISTORICAL NOTES
Determinants first arose as an aid to solving equations. Although 2 × 2 determinants were
implicit in the solution of a system of two linear equations in two unknowns given by Giro-
lamo Cardano (1501–1576) in his work Ars Magna (1545), the Japanese mathematician
Takakazu Seki (1642–1708) is usually credited with a more general study of determinants.
Seki, the son of a samurai, was a self-taught mathematical prodigy who developed quite a
following in seventeenth-century Japan. In 1683 he published Method of Solving Dissim-
ulated Problems, in which he studied determinants of matrices at least as large as 5 × 5.
In the same year the German mathematician Gottfried Wilhelm von Leibniz (1646–1716)
wrote a letter to Guillaume de l’Hôpital (1661–1704), in which he gave the vanishing of
the determinant of a 3 × 3 system of linear equations as the condition for the homogeneous
system to have a nontrivial solution. Although Leibniz never published his work on deter-
minants, his notes show that he understood many of their properties and uses, as well as
methods for computing them.

After Seki and Leibniz, determinants found their way into the work of many mathemati-
cians. In 1750 the Swiss mathematician Gabriel Cramer (1704–1752) published, without
proof and as an appendix to a book on plane algebraic curves, what is now called Cramer’s
Rule. Other eighteenth-century mathematicians who studied methods for computing de-
terminants and uses for them were Étienne Bézout (1730–1783), Alexandre Vandermonde
(1735–1796), and Pierre-Simon Laplace (1749–1847), who developed the method of ex-
pansion by cofactors for computing determinants.

The French mathematician Joseph-Louis Lagrange (1736–1813) seems to have been
the first to notice the relationship between determinants and volume. In 1773 he used a
3 × 3 determinant to compute the volume of a tetrahedron. Carl Friedrich Gauss (1777–
1855) used matrices to study the properties of quadratic forms (see Section 4 of Chapter 6).
Augustin Louis Cauchy (1789–1857) also studied determinants in the context of quadratic
forms and is given credit for the first proof of the multiplicative properties of the determinant.
Finally, three papers that Carl Gustav Jacob Jacobi (1804–1851) wrote in 1841 brought
general attention to the theory of determinants. Jacobi, a brilliant German mathematician
whose life was cut short by smallpox, focused his attention on determinants of matrices
with functions as entries. He proved key results regarding the independence of sets of
functions, inventing a particular determinant that is now called the Jacobian determinant. It
plays a major role in the change-of-variables formula in multivariable calculus, generalizing
Proposition 3.1.
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C H A P T E R 6
EIGENVALUES AND EIGENVECTORS

W e suggested in Chapter 4 that a linear transformation T : V → V is best understood
when there is a basis for V with respect to which the matrix of T becomes diagonal.

In this chapter, we shall develop techniques for determining whether T is diagonalizable
and, if so, for finding a diagonalizing basis.

There are important reasons to diagonalize a matrix. For instance, we saw a long
while ago (for example, in Examples 6 through 9 in Section 6 of Chapter 1) that it is often
necessary to understand and calculate (high) powers of a given square matrix. SupposeA is
diagonalizable, i.e., there is an invertible matrix P so that P−1AP = � is diagonal. Then
we have

A = P�P−1, and so

Ak = (P�P−1)(P�P−1) · · · (P�P−1)︸ ︷︷ ︸
k times

= P�kP−1,

using associativity to regroup and cancel the P−1P pairs. Since �k is easy to calculate,
we are left with a formula for Ak that helps us understand the corresponding linear trans-
formation and is easy to compute. We will see a number of applications of this principle
in Section 3. Indeed, we will see that the entries of � tell us a lot about growth in discrete
dynamical systems and whether systems approach a “steady state” in time. Further appli-
cations, to understanding conic sections and quadric surfaces and to systems of differential
equations, are given in Section 4 and in Section 3 of Chapter 7, respectively.

We turn first to the matter of finding the diagonal matrix� if, in fact,A is diagonalizable.
Then we will develop some criteria that guarantee diagonalizability.

1 The Characteristic Polynomial

Recall that a linear transformation T : V → V is diagonalizable if there is an (ordered)
basis B = {v1, . . . , vn} for V so that the matrix for T with respect to that basis is diagonal.
This means precisely that, for some scalars λ1, . . . , λn, we have

T (v1) = λ1v1,

T (v2) = λ2v2,

...

T (vn) = λnvn.
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Likewise, an n× n matrix A is diagonalizable if the associated linear transformation
μA : Rn → Rn is diagonalizable; so A is diagonalizable precisely when there is a basis
{v1, . . . , vn} for Rn with the property that Avi = λivi for all i = 1, . . . , n. We can write
these equations in matrix form:

A

⎡
⎢⎢⎣

|
v1

|

|
v2

|
· · ·

|
vn

|

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

|
v1

|

|
v2

|
· · ·

|
vn

|

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

λ1

λ2
. . .

λn

⎤
⎥⎥⎥⎥⎦
.

Thus, if we let P be the n× n matrix whose columns are the vectors v1, . . . , vn and � be
the n× n diagonal matrix with diagonal entries λ1, . . . , λn, then we have

AP = P�, and so P−1AP = �.

(Of course, this all follows immediately from the change-of-basis formula, Proposition 3.2
of Chapter 4. In that context, we called P the change-of-basis matrix.)

This observation leads us to the following definition.

Definition. Let T : V → V be a linear transformation. A nonzero vector v ∈ V is called
an eigenvector1 of T if there is a scalar λ so that T (v) = λv. The scalar λ is called the
associated eigenvalue of T .

In other words, an eigenvector of a linear transformation T is a nonzero vector that is
rescaled (perhaps in the negative direction) by T . The line spanned by the vector is identical
to the line spanned by its image under T .

EXAMPLE 1

Revisiting Example 8 in Section 3 of Chapter 4, we see that the vectors v1 and v2 are
eigenvectors of T , with associated eigenvalues 4 and 1.

This definition, in turn, leads to a convenient reformulation of diagonalizability:

Proposition 1.1. The linear transformation T : V → V is diagonalizable if and only if
there is a basis for V consisting of eigenvectors of T .

At this juncture, the obvious question to ask is how we should find eigenvectors. As a
matter of convenience, we’re now going to stick mostly to the more familiar matrix notation
since we’ll be starting with an n× n matrix most of the time anyhow. For general linear
transformations, let A denote the matrix for T with respect to some basis. Let’s start by
observing that the set of eigenvectors with eigenvalue λ, together with the zero vector,
forms a subspace.

1In the old days, it was called a characteristic vector, more or less a literal translation of the German eigen, which
means “characteristic,” “proper,” or “particular.”
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Lemma 1.2. Let A be an n× n matrix, and let λ be any scalar. Then

E(λ) = {x ∈ Rn : Ax = λx} = N(A− λI)
is a subspace of Rn. Moreover, E(λ) �= {0} if and only if λ is an eigenvalue, in which case
we call E(λ) the λ-eigenspace of the matrix A.

Proof. We know that N(A− λI) is always a subspace of Rn. By definition, λ is an
eigenvalue precisely when there is a nonzero vector in E(λ).

We now come to what will be for us the main computational tool for finding eigenvalues.

Proposition 1.3. Let A be an n× n matrix. Then λ is an eigenvalue of A if and only if
det(A− λI) = 0.

Proof. From Lemma 1.2 we infer that λ is an eigenvalue if and only if the matrixA− λI is
singular. Next we conclude from Theorem 1.2 of Chapter 5 thatA− λI is singular precisely
when det(A− λI) = 0. Putting the two statements together, we obtain the result.

Once we use this criterion to find the eigenvalues λ, it is an easy matter to find the
corresponding eigenvectors merely by finding N(A− λI).

EXAMPLE 2

Let’s find the eigenvalues and eigenvectors of the matrix

A =
[

3 1

−3 7

]
.

We start by calculating

det(A− tI ) = det

[
3 − t 1

−3 7 − t

]
= (3 − t)(7 − t)− (1)(−3) = t2 − 10t + 24.

Since t2 − 10t + 24 = (t − 4)(t − 6) = 0 when t = 4 or t = 6, these are our two eigen-
values. We now proceed to find the corresponding eigenspaces.

E(4): We see that

v1 =
[

1

1

]
gives a basis for N(A− 4I ) = N

([
−1 1

−3 3

])
.

E(6): We see that

v2 =
[

1

3

]
gives a basis for N(A− 6I ) = N

([
−3 1

−3 1

])
.

Since we observe that the set {v1, v2} is linearly independent, the matrixA is diagonalizable.

Indeed, as the reader can check, if we take P =
[

1 1

1 3

]
, then

P−1AP =
[

3
2 − 1

2

− 1
2

1
2

][
3 1

−3 7

][
1 1

1 3

]
=
[

4 0

0 6

]
,

as should be the case.
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EXAMPLE 3

Let’s find the eigenvalues and eigenvectors of the matrix

A =

⎡
⎢⎢⎣

1 2 1

0 1 0

1 3 1

⎤
⎥⎥⎦ .

We begin by computing

det(A− tI ) = det

⎡
⎢⎢⎣

1 − t 2 1

0 1 − t 0

1 3 1 − t

⎤
⎥⎥⎦

(expanding in cofactors along the second row)

= (1 − t)((1 − t)(1 − t)− 1
) = (1 − t)(t2 − 2t) = −t (t − 1)(t − 2).

Thus, the eigenvalues of A are λ = 0, 1, and 2. We next find the respective eigenspaces.

E(0): We see that

v1 =

⎡
⎢⎢⎣

−1

0

1

⎤
⎥⎥⎦ gives a basis for N(A− 0I ) = N

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 2 1

0 1 0

1 3 1

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= N

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 0 1

0 1 0

0 0 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

E(1): We see that

v2 =

⎡
⎢⎢⎣

3

−1

2

⎤
⎥⎥⎦ gives a basis for N(A− 1I ) = N

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 2 1

0 0 0

1 3 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= N

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 0 − 3
2

0 1 1
2

0 0 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

E(2): We see that

v3 =

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦ gives a basis for N(A− 2I ) = N

⎛
⎜⎜⎝

⎡
⎢⎢⎣

−1 2 1

0 −1 0

1 3 −1

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= N

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 0 −1

0 1 0

0 0 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

Once again,A is diagonalizable. As the reader can check, {v1, v2, v3} is linearly independent
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and therefore gives a basis for R3. Just to be sure, we let

P =

⎡
⎢⎢⎣

−1 3 1

0 −1 0

1 2 1

⎤
⎥⎥⎦ ;

then

P−1AP =

⎡
⎢⎢⎣

− 1
2 − 1

2
1
2

0 −1 0
1
2

5
2

1
2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 2 1

0 1 0

1 3 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−1 3 1

0 −1 0

1 2 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0

0 1 0

0 0 2

⎤
⎥⎥⎦ ,

as we expected.

There is a built-in check here for the eigenvalues. If λ is truly to be an eigenvalue of
A, we must find a nonzero vector in N(A− λI). If we do not, then λ cannot be an
eigenvalue.

EXAMPLE 4

Let’s find the eigenvalues and eigenvectors of the matrix

A =
[

0 −1

1 0

]
.

As usual, we calculate

det(A− tI ) = det

[
−t −1

1 −t

]
= t2 + 1.

Since t2 + 1 ≥ 1 for all real numbers t , there is no real number λ so that det(A− λI) = 0.
Thus, the matrix A has no real eigenvalue. Nevertheless, it is still interesting to allow
eigenvalues to be complex numbers (and, then, eigenvectors to be vectors with complex
entries). We will study this in greater detail in Section 1 of Chapter 7.

We recognize A as the matrix giving rotation of R2 through an angle of π/2. Thus, it
is clear on geometric grounds that this matrix has no (real) eigenvector: For any nonzero
vector x, the vector Ax makes a right angle with x and is therefore not a scalar multiple
of x.2

It is evident that we are going to find the eigenvalues of a matrixA by finding the (real)
roots of the polynomial det(A− tI ). This leads us to make our next definition.

Definition. Let A be a square matrix. Then p(t) = pA(t) = det(A− tI ) is called the
characteristic polynomial of A.3

2On the other hand, from the complex perspective, we note that ±i are the (complex) eigenvalues of A, and
multiplying a complex number by i has the effect of rotating it an angle of π/2. The reader can check that the
complex eigenvectors of this matrix are (1,±i).
3That the characteristic polynomial of an n× n matrix is in fact a polynomial of degree n seems pretty evident
from examples, but the fastidious reader can establish this by expanding in cofactors.
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We can restate Proposition 1.3 by saying that the eigenvalues of A are the real roots
of the characteristic polynomial pA(t). As in Example 4, this polynomial may sometimes
have complex roots; we will abuse language by calling these roots complex eigenvalues.
See Section 1 of Chapter 7 for a more detailed discussion of this situation.

Lemma 1.4. If A and B are similar matrices, then pA(t) = pB(t).

Proof. Suppose B = P−1AP . Then

pB(t)= det(B − tI )= det(P−1AP − tI )= det
(
P−1(A− tI )P )= det(A− tI )=pA(t),

by virtue of the product rule for determinants, Theorem 1.5 of Chapter 5.

As a consequence, if V is a finite-dimensional vector space and T : V → V is a linear
transformation, then we can define the characteristic polynomial of T to be that of the matrix
A for T with respect to any basis for V . By the change-of-basis formula, Proposition 3.2
of Chapter 4, and Lemma 1.4, we’ll get the same answer no matter what basis we choose.

Remark. In order to determine the eigenvalues of a matrix, we must find the roots of
its characteristic polynomial. In real-world applications (where the matrices tend to get
quite large), one might do this numerically (e.g., using Newton’s method). However, there
are more sophisticated methods for finding the eigenvalues without even calculating the
characteristic polynomial; a powerful such method is based on theQR decomposition of a
matrix. The interested reader should consult Strang’s books or Wilkinson for more details.

For the lion’s share of the matrices that we shall encounter here, the eigenvalues will
be integers, and so we take this opportunity to remind you of a shortcut from high school
algebra.

Proposition 1.5 (Rational Roots Test). Let p(t) = ant
n + an−1t

n−1 + · · · + a1t + a0 be
a polynomial with integer coefficients. If t = r/s is a rational root (in lowest terms) of p(t),
then r must be a factor of a0 and s must be a factor of an.4

In particular, when the leading coefficient an is ±1, as is always the case with the
characteristic polynomial, any rational root must in fact be an integer that divides a0. So,
in practice, we test the various factors of a0 (being careful to try both positive and negative
factors). In our case, a0 = p(0) = detA, so, starting with a matrixAwith all integer entries,
only the factors of the integer detA can be integer eigenvalues. Once we find one root λ,
we can divide p(t) by t − λ to obtain a polynomial of smaller degree.

EXAMPLE 5

The characteristic polynomial of the matrix

A =

⎡
⎢⎢⎣

4 −3 3

0 1 4

2 −2 1

⎤
⎥⎥⎦

is p(t) = −t3 + 6t2 − 11t + 6. The factors of 6 are ±1, ±2, ±3, and ±6. Since p(1) = 0,
we know that 1 is a root (so we were lucky!). Now,

−p(t)
t − 1

= t2 − 5t + 6 = (t − 2)(t − 3),

and we have succeeded in finding all three eigenvalues of A, namely, λ = 1, 2, and 3.

4We do not include a proof here, but you can find one in most abstract algebra texts. For obvious reasons, we
recommend Shifrin’s Abstract Algebra: A Geometric Approach, p. 105.
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Remark. It might be nice to have a few shortcuts for calculating the characteristic polynomial
of small matrices. For 2 × 2 matrices, it’s quite easy:

det

[
a − t b

c d − t

]
= (a − t)(d − t)− bc = t2 − (a + d) t + (ad − bc)

= t2 − trA t + detA .

(Recall that the trace of a matrix A, denoted trA, is the sum of its diagonal entries.) For
3 × 3 matrices, it’s a bit more involved:

det

⎡
⎢⎢⎣
a11 − t a12 a13

a21 a22 − t a23

a31 a32 a33 − t

⎤
⎥⎥⎦ = −t3 + (a11 + a22 + a33) t

2

− (
(a11a22 − a12a21)+ (a11a33 − a13a31)+ (a22a33 − a23a32)

)
t

+ (a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33)

= −t3 + trA t2 − Fred t + detA .

The coefficient of t in the characteristic polynomial has no standard name, and so it was that
one of the authors’ students christened the expression Fred years ago. Nevertheless, we see
that Fred is the sum of the cofactors C11, C22, and C33, i.e., the sum of the determinants of
the (three) 2 × 2 submatrices formed by deleting identical rows and columns from A.

In general, the characteristic polynomial p(t) of an n× n matrix A is always of the
form

p(t) = (−1)ntn + (−1)n−1 trA tn−1 + (−1)n−2 Fred tn−2 + · · · + detA .

Note that the constant coefficient is always detA (with no minus signs) because p(0) =
det(A− 0I ) = detA.

In the long run, these formulas notwithstanding, it’s sometimes best to calculate the
characteristic polynomial of 3 × 3 matrices by expansion in cofactors. If one is both atten-
tive and fortunate, this may save the trouble of factoring the polynomial.

EXAMPLE 6

Let’s find the characteristic polynomial of

A =

⎡
⎢⎢⎣

2 0 0

1 2 1

0 1 2

⎤
⎥⎥⎦ .

We calculate the determinant by expanding in cofactors along the first row:

det

⎡
⎢⎢⎣

2 − t 0 0

1 2 − t 1

0 1 2 − t

⎤
⎥⎥⎦ = (2 − t) det

[
2 − t 1

1 2 − t

]

= (2 − t)((2 − t)2 − 1
) = (2 − t)(t2 − 4t + 3)

= (2 − t)(t − 3)(t − 1).
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But that was too easy. Let’s try the characteristic polynomial of

B =

⎡
⎢⎢⎣

2 0 1

1 3 1

1 1 2

⎤
⎥⎥⎦ .

Again, we expand in cofactors along the first row:

det

⎡
⎢⎢⎣

2 − t 0 1

1 3 − t 1

1 1 2 − t

⎤
⎥⎥⎦ = (2 − t) det

[
3 − t 1

1 2 − t

]
+ 1 det

[
1 3 − t
1 1

]

= (2 − t)((3 − t)(2 − t)− 1
)+ (1 − (3 − t))

= (2 − t)(t2 − 5t + 5)− (2 − t) = (2 − t)(t2 − 5t + 4)

= (2 − t)(t − 1)(t − 4).

OK, perhaps we were a bit lucky there, too.

Exercises 6.1

1. Find the eigenvalues and eigenvectors of the following matrices.

a.∗
[

1 5

2 4

]

b.

[
0 1

1 0

]

c.

[
10 −6

18 −11

]

d.

[
0 1

−1 0

]

e.

[
1 3

3 1

]

f.∗
[

1 1

−1 3

]

g.∗

⎡
⎢⎣

−1 1 2

1 2 1

2 1 −1

⎤
⎥⎦

h.

⎡
⎢⎣

1 0 0

−2 1 2

−2 0 3

⎤
⎥⎦

i.

⎡
⎢⎣

1 −1 2

0 1 0

0 −2 3

⎤
⎥⎦

j.∗

⎡
⎢⎣

2 0 1

0 1 2

0 0 1

⎤
⎥⎦

k.

⎡
⎢⎣

1 −2 2

−1 0 −1

0 2 −1

⎤
⎥⎦

l.

⎡
⎢⎣

3 1 0

0 1 2

0 1 2

⎤
⎥⎦

m.

⎡
⎢⎣

1 −1 4

3 2 −1

2 1 −1

⎤
⎥⎦

n.∗

⎡
⎢⎣

1 −6 4

−2 −4 5

−2 −6 7

⎤
⎥⎦
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o.

⎡
⎢⎣

3 2 −2

2 2 −1

2 1 0

⎤
⎥⎦ p.

⎡
⎢⎢⎢⎣

1 0 0 1

0 1 1 1

0 0 2 0

0 0 0 2

⎤
⎥⎥⎥⎦

2. Show that 0 is an eigenvalue of A if and only if A is singular.

3. Show that the eigenvalues of an upper (or lower) triangular matrix are its diagonal
entries.

4. What are the eigenvalues and eigenvectors of a projection? a reflection?

5. Show that if λ is an eigenvalue of the 2 × 2 matrix

[
a b

c d

]
and either b �= 0 or λ �= a,

then

[
b

λ− a

]
is a corresponding eigenvector.

6. Suppose A is nonsingular. Prove that the eigenvalues of A−1 are the reciprocals of the
eigenvalues of A.

7. Suppose x is an eigenvector of A with corresponding eigenvalue λ.
a. Prove that for any positive integer n, x is an eigenvector of An with corresponding

eigenvalue λn. (If you know mathematical induction, this would be a good place to
use it.)

b. Prove or give a counterexample: x is an eigenvector of A+ I .

c. If x is an eigenvector of B with corresponding eigenvalue μ, prove or give a coun-
terexample: x is an eigenvector of A+ B with corresponding eigenvalue λ+ μ.

d. Prove or give a counterexample: If λ is an eigenvalue of A and μ is an eigenvalue
of B, then λ+ μ is an eigenvalue of A+ B.

8. Prove or give a counterexample: If A and B have the same characteristic polynomial,
then A and B are similar.

9. Suppose A is a square matrix. Suppose x is an eigenvector of A with corresponding
eigenvalue λ, and y is an eigenvector of AT with corresponding eigenvalue μ. Show
that if λ �= μ, then x · y = 0.

10. Prove or give a counterexample:
a. A and AT have the same eigenvalues.

b. A and AT have the same eigenvectors.

11. Show that the product of the roots (real and complex) of the characteristic polyno-
mial of A is equal to detA. (Hint: If λ1, . . . , λn are the roots, show that p(t) =
±(t − λ1)(t − λ2) · · · (t − λn).)

12. Consider the linear transformation T : Mn×n → Mn×n defined by T (X) = XT. Find
its eigenvalues and the corresponding eigenspaces. (Hint: Consider the equationXT =
λX.)

13. In each of the following cases, find the eigenvalues and eigenvectors of the linear
transformation T : P3 → P3.
a. T (p)(t) = p′(t)
b.∗ T (p)(t) = tp′(t)

c. T (p)(t) = ∫ t0 p′(u) du
d. T (p)(t) = t2p′′(t)− tp′(t)

14. Suppose all the entries of the matrix B = [bij
]

are positive and
n∑
j=1
bij = 1 for all

i = 1, . . . , n. Show that, up to scalar multiples, (1, 1, . . . , 1) is the unique eigenvector
of B with eigenvalue 1. (Hint: Let x = (x1, . . . , xn) be an eigenvector; if |xk| ≥ |xi |
for all i = 1, . . . , n, then look carefully at the kth coordinate of Bx − x.)
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15. a.∗ Let V = C1(I) be the vector space of continuously differentiable functions on the
open interval I = (0, 1). Define T : V → V by T (f )(t) = tf ′(t). Prove that every
real number is an eigenvalue of T and find the corresponding eigenvectors.

b. Let V = {f ∈ C0(R) : limt→−∞ f (t)|t |n = 0 for all positive integers n}. (Why is
V a vector space?) Define T : V → V by T (f )(t) = ∫ t−∞ f (s) ds. (If f ∈ V , why
is T (f ) ∈ V ?) Find the eigenvalues and eigenvectors of T .

16. Let A and B be n× n matrices.
a. Suppose A (or B) is nonsingular. Prove that the characteristic polynomials of AB

and BA are equal.

b.∗ (more challenging) Prove the result of part a when both A and B are singular.

2 Diagonalizability

Judging by the examples in the previous section, it seems to be the case that when an n× n
matrix (or linear transformation) has n distinct eigenvalues, the corresponding eigenvectors
form a linearly independent set and will therefore give a “diagonalizing basis.” Let’s begin
by proving a slightly stronger statement.

Theorem 2.1. Let T : V → V be a linear transformation. Suppose v1, . . . , vk are eigen-
vectors of T with distinct corresponding eigenvalues λ1, . . . , λk . Then {v1, . . . , vk} is a
linearly independent set of vectors.

Proof. Let m be the largest number between 1 and k (inclusive) so that {v1, . . . , vm} is
linearly independent. We want to see thatm = k. By way of contradiction, supposem < k.
Then we know that {v1, . . . , vm} is linearly independent and {v1, . . . , vm, vm+1} is linearly
dependent. It follows from Proposition 3.2 of Chapter 3 that vm+1 = c1v1 + · · · + cmvm
for some scalars c1, . . . , cm. Then (using repeatedly the fact that T (vi ) = λivi)

0 = (T − λm+1I )vm+1 = (T − λm+1I )(c1v1 + · · · + cmvm)

= c1(λ1 − λm+1)v1 + · · · + cm(λm − λm+1)vm.

Since λi − λm+1 �= 0 for i = 1, . . . , m, and since {v1, . . . , vm} is linearly independent,
the only possibility is that c1 = · · · = cm = 0, contradicting the fact that vm+1 �= 0 (by
the very definition of eigenvector). Thus, it cannot happen that m < k, and the proof is
complete.

Remark. What is underlying this formal argument is the observation that if v ∈ E(λ) ∩
E(μ), then T (v) = λv and T (v) = μv. Hence, if λ �= μ, then v = 0. That is, if λ �= μ, we
have E(λ) ∩ E(μ) = {0}.
We now arrive at our first result that gives a sufficient condition for a linear transformation
to be diagonalizable. (Note that we insert the requirement that the eigenvalues be real
numbers; we will discuss the situation with complex eigenvalues later.)

Corollary 2.2. Suppose V is an n-dimensional vector space and T : V → V has n distinct
(real) eigenvalues. Then T is diagonalizable.

Proof. The set of the n corresponding eigenvectors will be linearly independent and will
hence give a basis for V . The matrix for T with respect to a basis of eigenvectors is always
diagonal.
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Remark. Of course, there are many diagonalizable (indeed, diagonal) matrices with repeated
eigenvalues. Certainly the identity matrix and the matrix

⎡
⎢⎢⎣

2 0 0

0 3 0

0 0 2

⎤
⎥⎥⎦

are diagonal, and yet they fail to have distinct eigenvalues.

We spend the rest of this section discussing the two ways in which the hypotheses of
Corollary 2.2 can fail: The characteristic polynomial may have complex roots or it may
have repeated roots.

EXAMPLE 1

Consider the matrix

A =
⎡
⎣

1√
2

− 1√
2

1√
2

1√
2

⎤
⎦ .

The reader may well recall from Chapter 4 that the linear transformation μA : R2 → R2

rotates the plane through an angle of π/4. Now, what are the eigenvalues of A? The
characteristic polynomial is

p(t) = t2 − (trA)t + detA = t2 − √
2t + 1,

whose roots are (by the quadratic formula)

λ =
√

2 ± √−2

2
= 1 ± i√

2
.

After a bit of thought, it should come as no surprise that A has no (real) eigenvector, as
there can be no line through the origin that is unchanged after a rotation. We leave it to the
reader to calculate the (complex) eigenvectors in Exercise 8.

We have seen that when the characteristic polynomial has distinct (real) roots, we get
a one-dimensional eigenspace for each. What happens if the characteristic polynomial has
some repeated roots?

EXAMPLE 2

Consider the matrix

A =
[

1 1

−1 3

]
.

Its characteristic polynomial isp(t) = t2 − 4t + 4 = (t − 2)2, so 2 is a repeated eigenvalue.
Now let’s find the corresponding eigenvectors:

N(A− 2I ) = N

([
−1 1

−1 1

])
= N

([
1 −1

0 0

])
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is one-dimensional, with basis {[
1

1

]}
.

It follows that A cannot be diagonalized: Since this is (up to scalar multiples) the only
eigenvector in town, there can be no basis of eigenvectors. (See also Exercise 7.)

EXAMPLE 3

By applying Proposition 1.3 of Chapter 5, we see that both the matrices

A =

⎡
⎢⎢⎢⎢⎣

2 0
O

0 2

3 1
O

0 3

⎤
⎥⎥⎥⎥⎦

and B =

⎡
⎢⎢⎢⎢⎣

2 1
O

0 2

3 0
O

0 3

⎤
⎥⎥⎥⎥⎦

have the characteristic polynomial p(t) = (t − 2)2(t − 3)2. For A, there are two linearly
independent eigenvectors with eigenvalue 2 but only one linearly independent eigenvector
with eigenvalue 3. For B, there are two linearly independent eigenvectors with eigenvalue
3 but only one linearly independent eigenvector with eigenvalue 2. As a result, neither
matrix can be diagonalized.

It would be convenient to have a bit of terminology here.

Definition. Let λ be an eigenvalue of a linear transformation. The algebraic multiplicity
of λ is its multiplicity as a root of the characteristic polynomial p(t), i.e., the highest
power of t − λ dividing p(t). The geometric multiplicity of λ is the dimension of the
λ-eigenspace E(λ).

EXAMPLE 4

For the matrices in Example 3, both the eigenvalues 2 and 3 have algebraic multiplicity
2. For matrix A, the eigenvalue 2 has geometric multiplicity 2 and the eigenvalue 3 has
geometric multiplicity 1; for matrix B, the eigenvalue 2 has geometric multiplicity 1 and
the eigenvalue 3 has geometric multiplicity 2.

From the examples we’ve seen, it seems quite plausible that the geometric multiplicity
of an eigenvalue can be no larger than its algebraic multiplicity, but we stop to give a proof.

Proposition 2.3. Let λ be an eigenvalue of algebraic multiplicity m and geometric multi-
plicity d . Then 1 ≤ d ≤ m.

Proof. Suppose λ is an eigenvalue of the linear transformation T . Then d = dim E(λ) ≥ 1
by definition. Now, choose a basis {v1, . . . , vd} for E(λ) and extend it to a basis B =
{v1, . . . , vn} for V . Then the matrix for T with respect to the basis B is of the form

A =
⎡
⎣ λId B

O C

⎤
⎦ ,
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and so, by part a of Exercise 5.1.9, the characteristic polynomial

pA(t) = det(A− tI ) = det
(
(λ− t)Id

)
det(C − tI ) = (λ− t)d det(C − tI ).

Since the characteristic polynomial does not depend on the basis, and since (t − λ)m is the
largest power of t − λ dividing the characteristic polynomial, it follows that d ≤ m.

We are now able to give a necessary and sufficient criterion for a linear transformation
to be diagonalizable. Based on our experience with examples, it should come as no great
surprise.

Theorem 2.4. Let T : V → V be a linear transformation. Let its distinct eigenvalues be
λ1, . . . , λk and assume these are all real numbers. Then T is diagonalizable if and only if
the geometric multiplicity, di , of each λi equals its algebraic multiplicity, mi .

Proof. Let V be an n-dimensional vector space. Then the characteristic polynomial of T
has degree n, and we have

p(t) = ±(t − λ1)
m1(t − λ2)

m2 · · · (t − λk)mk ;
therefore,

n =
k∑
i=1

mi.

Now, suppose T is diagonalizable. Then there is a basis B consisting of eigenvectors.

At most di of these basis vectors lie in E(λi), and so n ≤
k∑
i=1
di . On the other hand, by

Proposition 2.3, we know that di ≤ mi for i = 1, . . . , k. Putting these together, we have

n ≤
k∑
i=1

di ≤
k∑
i=1

mi = n.

Thus, there must be equality at each stage here, which implies that di = mi for all i =
1, . . . , k.

Conversely, suppose di = mi for i = 1, . . . , k. If we choose a basis Bi for each
eigenspace E(λi) and let B = B1 ∪ · · · ∪ Bk , then we assert that B is a basis for V . There
are n vectors in B, so we need only check that the set of vectors is linearly indepen-
dent. This is a generalization of the argument of Theorem 2.1, and we leave it to Exer-
cise 20.

EXAMPLE 5

The matrices

A =

⎡
⎢⎢⎣

−1 4 2

−1 3 1

−1 2 2

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣

0 3 1

−1 3 1

0 1 1

⎤
⎥⎥⎦

both have characteristic polynomial p(t) = −(t − 1)2(t − 2). That is, the eigenvalue 1
has algebraic multiplicity 2 and the eigenvalue 2 has algebraic multiplicity 1. To decide
whether the matrices are diagonalizable, we need to know the geometric multiplicity of the
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eigenvalue 1. Well,

A− I =

⎡
⎢⎢⎣

−2 4 2

−1 2 1

−1 2 1

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 −2 −1

0 0 0

0 0 0

⎤
⎥⎥⎦

has rank 1 and so dim EA(1) = 2. We infer from Theorem 2.4 that A is diagonalizable.
Indeed, as the reader can check, a diagonalizing basis is

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1

1

−1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2

1

1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
.

On the other hand,

B − I =

⎡
⎢⎢⎣

−1 3 1

−1 2 1

0 1 0

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

1 0 −1

0 1 0

0 0 0

⎤
⎥⎥⎦

has rank 2 and so dim EB(1) = 1. Since the eigenvalue 1 has geometric multiplicity 1, it
follows from Theorem 2.4 that B is not diagonalizable.

In the next section we will see the power of diagonalizing matrices in several appli-
cations.

Exercises 6.2

1.∗ Decide whether each of the matrices in Exercise 6.1.1 is diagonalizable. Give your
reasoning.

2. Prove or give a counterexample:
a. If A is an n× n matrix with n distinct (real) eigenvalues, then A is diagonalizable.

b. If A is diagonalizable and AB = BA, then B is diagonalizable.

c. If there is an invertible matrix P so that A = P−1BP , then A and B have the same
eigenvalues.

d. If A and B have the same eigenvalues, then there is an invertible matrix P so that
A = P−1BP .

e. There is no real 2 × 2 matrix A satisfying A2 = −I .

f. IfA andB are diagonalizable and have the same eigenvalues (with the same algebraic
multiplicities), then there is an invertible matrix P so that A = P−1BP .

3. Suppose A is a 2 × 2 matrix whose eigenvalues are integers. If detA = 120, explain
why A must be diagonalizable.

4.∗ Consider the differentiation operator D : Pk → Pk . Is it diagonalizable?

5. Let f1(t) = et , f2(t) = tet , f3(t) = t2et , and let V = Span (f1, f2, f3) ⊂ C∞(R). Let
T : V → V be given by T (f ) = f ′′ − 2f ′ + f . Decide whether T is diagonalizable.

6. Is the linear transformation T : Mn×n → Mn×n defined by T (X) = XT diagonaliz-
able? (See Exercise 6.1.12; Exercises 2.5.22 and 3.6.8 may also be relevant.)
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7.∗ Let A =
[

1 1

−1 3

]
. We saw in Example 2 that A has repeated eigenvalue 2 and

v1 =
[

1

1

]
spans E(2).

a. Calculate (A− 2I )2.

b. Solve (A− 2I )v2 = v1 for v2. Explain how we know a priori that this equation
has a solution.

c. Give the matrix for A with respect to the basis {v1, v2}.
This is the closest to diagonal one can get and is called the Jordan canonical form of
A. We’ll explore this thoroughly in Section 1 of Chapter 7.

8.∗ Calculate the (complex) eigenvalues and (complex) eigenvectors of the rotation matrix

Aθ =
[

cos θ − sin θ

sin θ cos θ

]
.

9. Prove that if λ is an eigenvalue of A with geometric multiplicity d, then λ is an
eigenvalue of AT with geometric multiplicity d. (Hint: Use Theorem 4.6 of Chap-
ter 3.)

10. Here you are asked to complete a different proof of Theorem 2.1.
a. Show first that {v1, v2} is linearly independent. Suppose c1v1 + c2v2 = 0, and apply
T − λ2I to this equation. Use the fact that λ1 �= λ2 to deduce c1 = 0 and, hence,
that c2 = 0.

b. Show next that {v1, v2, v3} is linearly independent. (Proceed as in part a, applying
T − λ3I to the equation.)

c. Continue.

11. Suppose A is an n× n matrix with the property that A2 = A.
a. Show that if λ is an eigenvalue of A, then λ = 0 or λ = 1.

b. Prove that A is diagonalizable. (Hint: See Exercise 3.2.13.)

12. Suppose A is an n× n matrix with the property that A2 = I .
a. Show that if λ is an eigenvalue of A, then λ = 1 or λ = −1.

b. Prove that

E(1) = {x ∈ Rn : x = 1
2 (u + Au) for some u ∈ Rn} and

E(−1) = {x ∈ Rn : x = 1
2 (u − Au) for some u ∈ Rn}.

c. Prove that E(1)+ E(−1) = Rn and deduce that A is diagonalizable.
(For an application, see Exercise 6 and Exercise 3.6.8.)

13. Suppose A is diagonalizable, and let pA(t) denote the characteristic polynomial of A.
Show that pA(A) = O. This result is a special case of the Cayley-Hamilton Theorem.

14. This problem gives a generalization of Exercises 11 and 12 for those readers who recall
the technique of partial fraction decomposition from their calculus class. Suppose
λ1, . . . , λk ∈ R are distinct and f (t) = (t − λ1)(t − λ2) · · · (t − λk). Suppose A is
an n× n matrix that satisfies the equation f (A) = O. We want to show that A is
diagonalizable.
a. By considering the partial fractions decomposition

1

f (t)
= c1

t − λ1
+ · · · + ck

t − λk ,

show that there are polynomials f1(t), . . . , fk(t) satisfying 1 =
k∑
j=1
fj (t) and
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(t − λj )fj (t)= cjf (t) for j = 1, . . . , k. Conclude that we can write I =
k∑
j=1
fj (A),

where (A− λj I )fj (A) = O for j = 1, . . . , k.

b. Show that every x ∈ Rn can be decomposed as a sum of vectors x = x1 + · · · + xk ,
where xj ∈ E(λj ) for j = 1, . . . , k. (Hint: Use the result of part a.)

c. Deduce that A is diagonalizable.

15. LetA be an n× nmatrix all of whose eigenvalues are real numbers. Prove that there is
a basis for Rn with respect to which the matrix for A becomes upper triangular. (Hint:
Consider a basis {v1, v′

2, . . . , v
′
n}, where v1 is an eigenvector. Then repeat the argument

with a smaller matrix.)

16. Let A be an orthogonal 3 × 3 matrix.
a. Prove that the characteristic polynomial p(t) has a real root.

b. Prove that ‖Ax‖ = ‖x‖ for all x ∈ R3 and deduce that only 1 and −1 can be (real)
eigenvalues of A.

c. Prove that if detA = 1, then 1 must be an eigenvalue of A.

d. Prove that if detA = 1 andA �= I , then μA : R3 → R3 is given by rotation through
some angle θ about some axis. (Hint: First show dim E(1) = 1. Then show that
μA maps E(1)⊥ to itself and use Exercise 2.5.19.)

e. (See the remark on p. 218.) Prove that the composition of rotations in R3 is again a
rotation.

17. We say an n× n matrix N is nilpotent if Nr = O for some positive integer r .
a. Show that 0 is the only eigenvalue of N .

b. Suppose Nn = O and Nn−1 �= O. Prove that there is a basis {v1, . . . , vn} for Rn

with respect to which the matrix for N becomes
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1

0 1
. . .

. . .

0 1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(Hint: Choose v1 �= 0 in C(Nn−1), and then define v2, . . . , vn appropriately to end
up with this matrix representation. To argue that {v1, . . . , vn} is linearly independent,
you might want to mimic the proof of Theorem 2.1.)

18. Suppose T : V → V is a linear transformation. Suppose T is diagonalizable (i.e., there
is a basis for V consisting of eigenvectors of T ). Suppose, moreover, that there is a
subspaceW ⊂ V with the property that T (W) ⊂ W . Prove that there is a basis forW
consisting of eigenvectors of T . (Hint: Using Exercise 3.4.17, concoct a basis for V
by starting with a basis for W . Consider the matrix for T with respect to this basis.
What is its characteristic polynomial?)

19. Suppose A and B are n× n matrices.
a. Suppose that both A and B are diagonalizable and that they have the same eigen-

vectors. Prove that AB = BA.

b. Suppose A has n distinct eigenvalues and AB = BA. Prove that every eigenvector
of A is also an eigenvector of B. Conclude that B is diagonalizable. (Query: Need
every eigenvector of B be an eigenvector of A?)

c. Suppose A and B are diagonalizable and AB = BA. Prove that A and B are
simultaneously diagonalizable; i.e., there is a nonsingular matrix P so that both
P−1AP and P−1BP are diagonal. (Hint: If E(λ) is the λ-eigenspace for A, show
that if v ∈ E(λ), then B(v) ∈ E(λ). Now use Exercise 18.)
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20.∗ a. Let λ andμ be distinct eigenvalues of a linear transformation. Suppose {v1, . . . , vk}
⊂ E(λ) is linearly independent and {w1, . . . ,w�} ⊂ E(μ) is linearly independent.
Prove that {v1, . . . , vk,w1, . . . ,w�} is linearly independent.

b. More generally, if λ1, . . . , λk are distinct and {v(i)1 , . . . , v
(i)
di

} ⊂ E(λi) is linearly

independent for i = 1, . . . , k, prove that {v(i)j : i = 1, . . . , k, j = 1, . . . , di} is lin-
early independent.

3 Applications

Suppose A is a diagonalizable matrix. Then there is a nonsingular matrix P so that

P−1AP = � =

⎡
⎢⎢⎢⎢⎣

λ1

λ2
. . .

λn

⎤
⎥⎥⎥⎥⎦
,

where the diagonal entries of � are the eigenvalues λ1, . . . , λn of A. Then it is easy to use
this to calculate the powers of A:

A = P�P−1

A2 = (P�P−1)2 = (P�P−1)(P�P−1) = P�(P−1P)�P−1 = P�2P−1

A3 = A2A = (P�2P−1)(P�P−1) = P�2(P−1P)�P−1 = P�3P−1

...

Ak = P�kP−1.

We saw in Section 6 of Chapter 1 a number of examples of difference equations, which are
solved by finding the powers of a matrix. We are now equipped to tackle these problems.

EXAMPLE 1 (The Cat/Mouse Problem)

Suppose the cat population at month k is ck and the mouse population at month k is mk ,

and let xk =
[
ck

mk

]
denote the population vector at month k. Suppose

xk+1 = Axk, where A =
[

0.7 0.2

−0.6 1.4

]
,

and an initial population vector x0 is given. Then the population vector xk can be computed
from

xk = Akx0,

so we want to compute Ak by diagonalizing the matrix A.
Since the characteristic polynomial ofA is p(t) = t2 − 2.1t + 1.1 = (t − 1)(t − 1.1),

we see that the eigenvalues of A are 1 and 1.1. The corresponding eigenvectors are

v1 =
[

2

3

]
and v2 =

[
1

2

]
,
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and so we form the change-of-basis matrix

P =
[

2 1

3 2

]
.

Then we have

A = P�P−1, where � =
[

1 0

0 1.1

]
,

and so

Ak = P�kP−1 =
[

2 1

3 2

][
1 0

0 (1.1)k

][
2 −1

−3 2

]
.

In particular, if x0 =
[
c0

m0

]
is the original population vector, we have

xk =
[
ck

mk

]
=
[

2 1

3 2

][
1 0

0 (1.1)k

][
2 −1

−3 2

][
c0

m0

]

=
[

2 1

3 2

][
1 0

0 (1.1)k

][
2c0 −m0

−3c0 + 2m0

]

=
[

2 1

3 2

][
2c0 −m0

(1.1)k(−3c0 + 2m0)

]

= (2c0 −m0)

[
2

3

]
+ (−3c0 + 2m0)(1.1)

k

[
1

2

]
.

We can now see what happens as time passes (see the data in Example 6 on pp. 69–70).
If 3c0 = 2m0, the second term drops out and the population vector stays constant. If
3c0 < 2m0, the first term still is constant, and the second term increases exponentially, but
note that the contribution to the mouse population is double the contribution to the cat
population. And if 3c0 > 2m0, we see that the population vector decreases exponentially,
the mouse population being the first to disappear (why?).

The way we computed xk above works in general for any diagonalizable matrixA. The
column vectors of P are the eigenvectors v1, . . . , vn, the entries of �k are λk1, . . . , λ

k
n, and

so, letting

P−1x0 =

⎡
⎢⎢⎢⎢⎢⎣

c1

c2

...

cn

⎤
⎥⎥⎥⎥⎥⎦
,
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we have

Akx0 = P�k(P−1x0) =

⎡
⎢⎢⎢⎣

|
v1

|

|
v2

|
· · ·

|
vn

|

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

λk1

λk2
. . .

λkn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c1

c2

...

cn

⎤
⎥⎥⎥⎥⎥⎦

(∗)

= c1λ
k
1v1 + c2λ

k
2v2 + · · · + cnλknvn.

This formula will contain all the information we need, and we will see physical interpreta-
tions of analogous formulas when we discuss systems of differential equations in Chapter 7.

EXAMPLE 2 (The Fibonacci Sequence)

We first met the Fibonacci sequence,

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . ,

in Example 9 on p. 74. Each term (starting with the third) is obtained by adding the preceding
two: If we let ak denote the kth number in the sequence, then

ak+2 = ak + ak+1, a0 = a1 = 1.

Thus, if we define xk =
[
ak

ak+1

]
, k ≥ 0, then we can encode the pattern of the sequence in

the matrix equation
[
ak+1

ak+2

]
=
[

0 1

1 1

][
ak

ak+1

]
, k ≥ 1.

In other words, setting

A =
[

0 1

1 1

]
and xk =

[
ak

ak+1

]
,

we have

xk+1 = Axk for all k ≥ 0, with x0 =
[

1

1

]
.

Once again, by computing the powers of the matrix A, we can calculate xk = Akx0, and
hence the kth term in the Fibonacci sequence.

The characteristic polynomial of A is p(t) = t2 − t − 1, and so the eigenvalues are

λ1 = 1 − √
5

2
and λ2 = 1 + √

5

2
.

The corresponding eigenvectors are

v1 =
[

1

λ1

]
and v2 =

[
1

λ2

]
.

Then

P =
[

1 1

λ1 λ2

]
and P−1 = 1√

5

[
λ2 −1

−λ1 1

]
,
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so we have [
c1

c2

]
= P−1

[
1

1

]
= 1√

5

[
λ2 − 1

1 − λ1

]
= 1√

5

[
−λ1

λ2

]
.

Now we use the formula (∗) above to calculate

xk = Akx0 = c1λ
k
1v1 + c2λ

k
2v2

= − λ1√
5
λk1

[
1

λ1

]
+ λ2√

5
λk2

[
1

λ2

]
.

In particular, reading off the first coordinate of this vector, we find that the kth number in
the Fibonacci sequence is

ak = 1√
5

(
λk+1

2 − λk+1
1

) = 1√
5

((
1+√

5
2

)k+1 −
(

1−√
5

2

)k+1
)
.

It’s not completely obvious that each such number is an integer! We would be remiss if we
didn’t point out one of the classic facts about the Fibonacci sequence: If we take the ratio
of successive terms, we get

ak+1

ak
=

1√
5

(
λk+2

2 − λk+2
1

)
1√
5

(
λk+1

2 − λk+1
1

) .

Now, |λ1| ≈ 0.618, so lim
k→∞ λ

k
1 = 0 and we have

lim
k→∞

ak+1

ak
= λ2 = 1 + √

5

2
≈ 1.618.

This is the famed golden ratio.

EXAMPLE 3 (The Cribbage Match)

In Example 8 on p. 72 we posed the following problem. Suppose that over the years in
which Fred and Barney have played cribbage, they have observed that when Fred wins a
game, he has a 60% chance of winning the next game, whereas when Barney wins a game,
he has only a 55% chance of winning the next game. What is the long-term ratio of games
won and lost by Fred?

Let pk be the probability that Fred wins the kth game and qk = 1 − pk the probability
that Fred loses the kth game. Then, as we established earlier,

[
pk+1

qk+1

]
=
[

0.60 0.45

0.40 0.55

][
pk

qk

]
,

and so, letting xk =
[
pk

qk

]
be the probability vector after k games, we have

xk+1 = Axk, where A =
[

0.60 0.45

0.40 0.55

]
.

What is distinctive about the transition matrix A, and what characterizes the linear algebra
of Markov processes, is the fact that the entries of each column of A are nonnegative and
sum to 1. Indeed, it follows from this observation that the matrix A− I is singular and
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hence that 1 is an eigenvalue. Of course, in this case, we can just calculate the eigenvalues
and eigenvectors directly: The characteristic polynomial is p(t) = t2 − 1.15t + 0.15 =
(t − 1)(t − 0.15), so the eigenvalues are λ1 = 1 and λ2 = 0.15. The corresponding eigen-
vectors are

v1 =
[

9

8

]
and v2 =

[
−1

1

]
, so

P =
[

9 −1

8 1

]
and P−1 = 1

17

[
1 1

−8 9

]
.

Using the formula (∗) once again, we have

xk = c1λ
k
1v1 + c2λ

k
2v2 = c1

[
9

8

]
+ c2(0.15)k

[
−1

1

]
,

where [
c1

c2

]
= P−1x0.

Now something very interesting happens. As k → ∞, (0.15)k → 0 and

lim
k→∞ xk = c1

[
9

8

]
= 1

17

[
9

8

]
,

no matter what the original probability vector x0 happens to be (why?). Thus, in the long
run, no matter what the win/loss ratio is at any finite stage, we expect that Fred will win
9/17 and lose 8/17 of the games. We will explore more of the general theory of Markov
processes next.

3.1 Markov Processes
The material in this subsection is quite optional. The result of Theorem 3.3 is worth
understanding, even if one skips its proof (see Exercise 15 for an easier proof of a somewhat
weaker result). But it is Corollary 3.4 that is truly useful in lots of the exercises.

We begin with some definitions.

Definition.We say a vector x ∈ Rn is a probability vector if all its entries are nonnegative

and add up to 1, i.e., xi ≥ 0 for all i = 1, . . . , n, and
n∑
i=1
xi = 1. We say a square matrix

A is a stochastic matrix if each of its column vectors is a probability vector. A stochastic
matrix A is regular if, for some r ≥ 1, the entries of Ar are all positive.

We begin by making a simple observation.

Lemma 3.1. If A is a stochastic matrix, then (1, 1, . . . , 1) is an eigenvector of AT with
eigenvalue 1. Consequently, 1 is an eigenvalue of A.

Proof. Since
n∑
i=1
aij = 1 for j = 1, . . . , n, it follows immediately that

AT

⎡
⎢⎢⎣

1
...

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
...

1

⎤
⎥⎥⎦ .
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Thus, 1 is an eigenvalue of AT. But then, from

det(A− I ) = det(A− I )T = det(AT − I ) = 0,

we infer that 1 is an eigenvalue of A as well.

Proposition 3.2. Suppose A is a regular stochastic matrix. Then the eigenvalue 1 has
geometric multiplicity 1.

Proof. Since A is regular, there is some integer r ≥ 1 so that B = Ar has all positive
entries. By Exercise 6.1.14, the eigenvalue 1 of the matrix BT has geometric multiplicity
1. By Exercise 6.2.9, the eigenvalue 1 of the matrix B has geometric multiplicity 1. But
since EA(1) ⊂ EAr (1), it must be the case that dim EA(1) = 1, as desired.

Now we are in a position to prove a powerful result. The proof does introduce some
mathematics of a different flavor, as it involves a few inequalities and estimates.

Theorem 3.3. Let A be a regular stochastic n× n matrix, and assume n ≥ 2. Then

lim
k→∞A

k =

⎡
⎢⎢⎣

|
v

|

|
v

|
· · ·

|
v

|

⎤
⎥⎥⎦ ,

where v is the unique eigenvector with eigenvalue 1 that is a probability vector. Further-
more, every other eigenvalue λ satisfies |λ| < 1.

Remark. The regularity hypothesis is needed here. For example, the identity matrix is
obviously stochastic, but the eigenvalue 1 has rather high multiplicity. On the other hand, a
stochastic matrixAmay have a certain number of 0 entries and still be regular. For example,

A =
[

0 0.5

1 0.5

]

is regular, inasmuch as A2 has all positive entries.

The impact of this theorem is the following:

Corollary 3.4. If A is an n× n regular stochastic matrix and x0 is any probability vector,
then lim

k→∞A
kx0 = v; i.e., the unique eigenvector v with eigenvalue 1 that is a probability

vector is the limiting solution of xk+1 = Axk , no matter what probability vector x0 is chosen
as the initial condition.

Proof of Theorem 3.3. We first show that for any i = 1, . . . , n, the difference between
the largest and smallest entries of the i th row of Ak approaches 0 as k → ∞. If we denote
by a(k)ij the ij -entry of Ak , then

a
(k+1)
ij =

n∑
q=1

a
(k)
iq aqj .

Denote by Mk and mk the largest and smallest entries, respectively, of the i th row of Ak;



3 Applications 283

sayMk = a
(k)
ir and mk = a

(k)
is . Then we have

a
(k+1)
ij = a

(k)
is asj +

∑
q �=s
a
(k)
iq aqj ≤ mkasj +Mk

∑
q �=s
aqj

≤ mkasj +Mk(1 − asj ), and

a
(k+1)
i� = a

(k)
ir arj +

∑
q �=r

a
(k)
iq aqj

≥ Mkar� +mk(1 − ar�).
Choose j so thatMk+1 = a

(k+1)
ij and � so that mk+1 = a

(k+1)
i� . Then we have

Mk+1 −mk+1 ≤ mkasj +Mk(1 − asj )−Mkar� −mk(1 − ar�)
= (Mk −mk)(1 − ar� − asj ).(†)

Assume for a moment that all the entries of A are positive, and denote the smallest
entry of A by α. Then we have α ≤ 1/n (why?) and so 0 ≤ 1 − 2α < 1. Then, using (†),
we have

Mk+1 −mk+1 ≤ (Mk −mk)(1 − 2α),

and so
Mk −mk ≤ (1 − 2α)k−1(M1 −m1),

which approaches 0 as k → ∞. This tells us that as k gets very large, the elements of the
i th row of Ak are very close to one another, say to a(k)i1 . That is, the column vectors of Ak

are all very close to a single vector ξ (k). Now let x be an eigenvector of A with eigenvalue
1. Then Akx = x, but Akx is also very close to

⎡
⎢⎣

|
ξ (k)

|

|
ξ (k)

|
· · ·

|
ξ (k)

|

⎤
⎥⎦

⎡
⎢⎣

|
x
|

⎤
⎥⎦ =

(
n∑
i=1

xi

)⎡
⎢⎣

|
ξ (k)

|

⎤
⎥⎦ .

Since x �= 0, we conclude immediately that
n∑
i=1
xi �= 0, and so by multiplying by the suitable

scalar, we may assume our eigenvector x satisfies
n∑
i=1
xi = 1. But now, since x is very close

to ξ (k) and the latter vector has nonnegative entries, it follows that x must have nonnegative
entries as well, and so x is the probability vector v ∈ E(1). Now we conclude that as
k → ∞,

Ak →
⎡
⎢⎣

|
v
|

|
v
|

· · ·
|
v
|

⎤
⎥⎦ ,

as we wished to show.
(A slight modification of the argument is required when A may have some 0 entries.

Since A is a regular stochastic matrix, there is an r ≥ 1 so that all the entries of Ar are
positive. We then calculate Ak+r = AkAr analogously; letting α denote the smallest entry
of Ar , we have

Mk+r −mk+r ≤ (1 − 2α)(Mk −mk),
and therefore

lim
p→∞Mk+pr −mk+pr = 0 for any k.
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Since it follows from (†) that

Mk+1 −mk+1 ≤ Mk −mk for all k,

we deduce as before that lim
k→∞Mk −mk = 0, and the proof proceeds from there.)

We have seen in the course of this argument that the one-dimensional eigenspace E(1)
is spanned by a probability vector v. Let x be an eigenvector with eigenvalue λ. Suppose
n∑
i=1
xi �= 0. Then we may assume

n∑
i=1
xi = 1 (why?). Then

v = lim
k→∞A

kx = lim
k→∞ λ

kx;
this can happen only if x = v and λ = 1. If x is not a scalar multiple of v, it must be the

case that
n∑
i=1
xi = 0. In this case,

lim
k→∞A

kx =

⎡
⎢⎢⎣

|
v

|

|
v

|
· · ·

|
v

|

⎤
⎥⎥⎦

⎡
⎢⎢⎣

|
x

|

⎤
⎥⎥⎦ =

(
n∑
i=1

xi

)⎡⎢⎢⎣
|
v

|

⎤
⎥⎥⎦ = 0,

and so we infer from
0 = lim

k→∞A
kx = lim

k→∞ λ
kx

that lim
k→∞ λ

k = 0, i.e., |λ| < 1.

Exercises 6.3

1. Let A =
[

2 5

1 −2

]
. Calculate Ak for all k ≥ 1.

2.∗ Each day 30% of the oxygen in the earth’s atmosphere is transformed into carbon
dioxide and the remaining 70% is unaffected. Similarly, 40% of the carbon dioxide is
transformed into oxygen and 60% remains as is. Find the steady-state ratio of oxygen
to carbon dioxide.5

3. Each month U-Haul trucks are driven among the cities of Atlanta, St. Louis, and
Poughkeepsie. 1/2 of the trucks in Atlanta remain there, while the remaining trucks
are split evenly between St. Louis and Poughkeepsie. 1/3 of the trucks in St. Louis
stay there, 1/2 go to Atlanta, and the remaining 1/6 venture to Poughkeepsie. And 1/5
of the trucks in Poughkeepsie remain there, 1/5 go to St. Louis, and 3/5 go to Atlanta.
Show that the distribution of U-Haul trucks approaches a steady state, and find it.

4. Jane, Dick, and Spot are playing Frisbee. Dick is equally likely to throw to Jane or
Spot; Jane always throws the Frisbee to Spot; and Spot is three times as likely to bring
the Frisbee to Jane as to Dick. In the long run, what is the probability that Dick gets
the Frisbee? (Be sure to check that the transition matrix here is regular.)

5The authors hasten to point out that the data appearing in this exercise have no basis in scientific reality.
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5.∗ Suppose each of two tubs contains two bottles of beer; two are Budweiser and two are
Beck’s. Each minute, Fraternity Freddy picks a bottle of beer from each tub at random
and replaces it in the other tub. After a long time, what portion of the time will there
be exactly one bottle of Beck’s in the first tub? at least one bottle of Beck’s?

6.∗ Gambling Gus has $200 and plays a game where he must continue playing until he has
either lost all his money or doubled it. In each game, he has a 2/5 chance of winning
$100 and a 3/5 chance of losing $100. What is the probability that he eventually loses
all his money? (Warning: The stochastic matrix here is far from regular, so there is no
steady state. A calculator or computer is required.)

7.∗ If a0 = 2, a1 = 3, and ak+1 = 3ak − 2ak−1, for all k ≥ 1, use methods of linear algebra
to determine the formula for ak .

8. If a0 = a1 = 1 and ak+1 = ak + 6ak−1 for all k ≥ 1, use methods of linear algebra to
determine the formula for ak .

9. Suppose a0 = 0, a1 = 1, and ak+1 = 3ak + 4ak−1 for all k ≥ 1. Use methods of linear
algebra to find the formula for ak .

10. If a0 = 0, a1 = 1, and ak+1 = 4ak − 4ak−1 for all k ≥ 1, use methods of linear algebra
to determine the formula for ak . (Hint: The matrix will not be diagonalizable, but you
can get close if you stare at Exercise 6.2.7.)

11.∗ If a0 = 0, a1 = a2 = 1, and ak+1 = 2ak + ak−1 − 2ak−2 for k ≥ 2, use methods of
linear algebra to determine the formula for ak .

12. Consider the cat/mouse population problem studied in Example 1. Solve the following
versions, including an investigation of the dependence on the original populations.

a. ck+1 = 0.7ck + 0.1mk

mk+1 = −0.2ck + mk

b.∗ ck+1 = 1.3ck + 0.2mk

mk+1 = −0.1ck + mk

c. ck+1 = 1.1ck + 0.3mk

mk+1 = 0.1ck + 0.9mk
What conclusions do you draw?

13. Show that when x is a probability vector andA is a stochastic matrix, thenAx is another
probability vector.

14. SupposeA is a stochastic matrix and x is an eigenvector with eigenvalue λ �= 1. Show
directly (i.e., without reference to the proof of Theorem 3.3) that (1, 1, . . . , 1) · x = 0.

15. a. LetA be a stochastic matrix with positive entries, let x ∈ Rn, and let y = Ax. Show
that

|y1| + |y2| + · · · + |yn| ≤ |x1| + |x2| + · · · + |xn|
and that equality holds if and only if all the (nonzero) entries of x have the same
sign.

b. Show that if A is a stochastic matrix with positive entries and x is an eigenvector
with eigenvalue 1, then all the entries of x have the same sign.

c. Prove using part b that if A is a stochastic matrix with positive entries, then there is
a unique probability vector in E(1) and hence dim E(1) = 1.

d. Prove that if λ is an eigenvalue of a stochastic matrix with positive entries, then
|λ| ≤ 1.

e. Assume A is a diagonalizable, regular stochastic matrix. Prove Theorem 3.3.
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4 The Spectral Theorem

We now turn to the study of a large class of diagonalizable matrices, the symmetric matrices.
Recall that a square matrix A is symmetric when A = AT. To begin our exploration, let’s
start with a general symmetric 2 × 2 matrix

A =
[
a b

b c

]
,

whose characteristic polynomial is p(t) = t2 − (a + c)t + (ac − b2). By the quadratic
formula, its eigenvalues are

λ = (a + c)±√(a + c)2 − 4(ac − b2)

2
= (a + c)±√(a − c)2 + 4b2

2
.

The first thing we notice here is that both eigenvalues are real (because the expression under
the radical is a sum of squares). When A is not diagonal to begin with, b �= 0, and so the
eigenvalues of A are necessarily distinct. Thus, in all instances, the symmetric matrix A is
diagonalizable. Moreover, the corresponding eigenvectors are

v1 =
[

b

λ1 − a

]
and v2 =

[
λ2 − c
b

]
;

note that
v1 · v2 = b(λ2 − c)+ (λ1 − a)b = b(λ1 + λ2 − a − c) = 0,

and so the eigenvectors are orthogonal. Since there is an orthogonal basis for R2 consisting
of eigenvectors ofA, we of course have an orthonormal basis for R2 consisting of eigenvec-
tors of A. That is, by an appropriate rotation of the usual basis, we obtain a diagonalizing
basis for A.

EXAMPLE 1

The eigenvalues of

A =
[

1 2

2 −2

]

are λ1 = 2 and λ2 = −3, with corresponding eigenvectors

v1 =
[

2

1

]
and v2 =

[
−1

2

]
.

By making these vectors unit vectors, we obtain an orthonormal basis

q1 = 1√
5

[
2

1

]
, q2 = 1√

5

[
−1

2

]
.

See Figure 4.1.
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FIGURE 4.1

v2

v1

In general, we have the following important result. Its name comes from the word
spectrum, which is associated with the physical concept of decomposing light into its
component colors.

Theorem 4.1 (Spectral Theorem). Let A be a symmetric n× n matrix. Then

1. The eigenvalues of A are real.

2. There is an orthonormal basis {q1, . . . ,qn} for Rn consisting of eigenvectors ofA.
That is, there is an orthogonal matrixQ so thatQ−1AQ = � is diagonal.

Before we get to the proof, we recall a salient feature of symmetric matrices. From
Proposition 5.2 of Chapter 2 we recall that for all x, y ∈ Rn and n× n matrices A we have

Ax · y = x · ATy.

In particular, when A is symmetric,

Ax · y = x · Ay.

Proof. We begin by proving that the eigenvalues of a symmetric matrix must be real. The
proof begins with a trick to turn complex entities into real. Let λ = a + bi be a (potentially
complex) eigenvalue of A, and consider the real matrix

S = (A− (a + bi)I)(A− (a − bi)I) = A2 − 2aA+ (a2 + b2)I

= (A− aI)2 + b2I.

(This is just the usual “multiply by the conjugate” trick from high school algebra.) Since
det(A− λI) = 0, it follows that6 det S = 0. Thus S is singular, and so there is a nonzero
vector x ∈ Rn such that Sx = 0.

Since Sx = 0, the dot product Sx · x = 0. Therefore,

0 = Sx · x =
((
(A− aI)2 + b2I

)
x
)

· x

= (A− aI)x · (A− aI)x + b2x · x (using symmetry)

= ‖(A− aI)x‖2 + b2‖x‖2.

Now, the only way the sum of two nonnegative numbers can be zero is for both of them to
be zero. That is, since x �= 0, ‖x‖2 �= 0, and we infer that b = 0 and (A− aI)x = 0. So
λ = a is a real number, and x is the corresponding (real) eigenvector.

Now we proceed to prove the second part of the theorem. Let λ1 be one of the eigenval-
ues ofA, and choose a unit vector q1 that is an eigenvector with eigenvalue λ1. (Obviously,

6Here we are using the fact that the product rule for determinants, Theorem 1.5 of Chapter 5, holds for matrices
with complex entries. We certainly have not proved this, but all the results in Chapter 5 work just fine for matrices
with complex entries. For a different argument, see Exercise 7.1.9.
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this is no problem. We pick an eigenvector and then make it a unit vector by dividing by
its length.) Choose {v2, . . . , vn} to be any orthonormal basis for

(
Span (q1)

)⊥. What, then,
is the matrix for the linear transformation μA with respect to the new (orthonormal) basis
{q1, v2, . . . , vn}? It looks like

B =

⎡
⎢⎢⎢⎢⎢⎣

λ1 ∗ · · · ∗
0
... C

0

⎤
⎥⎥⎥⎥⎥⎦
,

for some (n− 1)× (n− 1) matrix C and some entries ∗. By the change-of-basis formula,
we have

B = Q−1AQ = QTAQ,

becauseQ is an orthogonal matrix. Therefore,

BT = (QTAQ)T = QTATQ = QTAQ = B.

SinceB is symmetric, we deduce that the entries ∗ are all 0 and thatC is likewise symmetric.
We now consider the (n− 1)× (n− 1) symmetric matrixC: Aunit length eigenvector ofC
in Rn−1 corresponds to a unit vector q2 in the (n− 1)-dimensional subspace

(
Span (q1)

)⊥.
Continuing this process n− 2 steps further, we arrive at an orthonormal basis {q1, . . . ,qn}
consisting of eigenvectors of A.

EXAMPLE 2

Consider the symmetric matrix

A =

⎡
⎢⎢⎣

0 1 1

1 1 0

1 0 1

⎤
⎥⎥⎦ .

Its characteristic polynomial is p(t) = −t3 + 2t2 + t − 2 = −(t2 − 1)(t − 2) =
−(t + 1)(t − 1)(t − 2), so the eigenvalues of A are −1, 1, and 2. As the reader can
check, the corresponding eigenvectors are

v1 =

⎡
⎢⎢⎣

−2

1

1

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

0

−1

1

⎤
⎥⎥⎦ , and v3 =

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ .

Note that these three vectors form an orthogonal basis for R3, and we can easily obtain an
orthonormal basis by making them unit vectors:

q1 = 1√
6

⎡
⎢⎢⎣

−2

1

1

⎤
⎥⎥⎦ , q2 = 1√

2

⎡
⎢⎢⎣

0

−1

1

⎤
⎥⎥⎦ , and q3 = 1√

3

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ .

The orthogonal diagonalizing matrixQ is therefore

Q =

⎡
⎢⎢⎣

− 2√
6

0 1√
3

1√
6

− 1√
2

1√
3

1√
6

1√
2

1√
3

⎤
⎥⎥⎦ .
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EXAMPLE 3

Consider the symmetric matrix

A =

⎡
⎢⎢⎣

5 −4 −2

−4 5 −2

−2 −2 8

⎤
⎥⎥⎦ .

Its characteristic polynomial is p(t) = −t3 + 18t2 − 81t = −t (t − 9)2, so the eigenvalues
of A are 0, 9, and 9. It is easy to check that

v1 =

⎡
⎢⎢⎣

2

2

1

⎤
⎥⎥⎦

gives a basis for E(0) = N(A). As for E(9), we find

A− 9I =

⎡
⎢⎢⎣

−4 −4 −2

−4 −4 −2

−2 −2 −1

⎤
⎥⎥⎦ ,

which has rank 1, and so, as the Spectral Theorem guarantees, E(9) is two-dimensional,
with basis

v2 =

⎡
⎢⎢⎣

−1

1

0

⎤
⎥⎥⎦ and v3 =

⎡
⎢⎢⎣

−1

0

2

⎤
⎥⎥⎦ .

If we want an orthogonal (or orthonormal) basis, we must use the Gram-Schmidt process,
Theorem 2.4 of Chapter 4: We take w2 = v2 and let

w3 = v3 − projw2
v3 =

⎡
⎢⎢⎣

−1

0

2

⎤
⎥⎥⎦− 1

2

⎡
⎢⎢⎣

−1

1

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

− 1
2

− 1
2

2

⎤
⎥⎥⎦ .

It is convenient to eschew fractions, and so we let

w′
3 = 2w3 =

⎡
⎢⎢⎣

−1

−1

4

⎤
⎥⎥⎦ .

As a check, note that v1,w2,w′
3 do in fact form an orthogonal basis. As before, if we want

the orthogonal diagonalizing matrix Q, we must make these vectors unit vectors, so we
take

q1 = 1

3

⎡
⎢⎢⎣

2

2

1

⎤
⎥⎥⎦ , q2 = 1√

2

⎡
⎢⎢⎣

−1

1

0

⎤
⎥⎥⎦ , and q3 = 1

3
√

2

⎡
⎢⎢⎣

−1

−1

4

⎤
⎥⎥⎦ ,

whence

Q =

⎡
⎢⎢⎣

2
3 − 1√

2
− 1

3
√

2
2
3

1√
2

− 1
3
√

2
1
3 0 4

3
√

2

⎤
⎥⎥⎦ .

We reiterate that repeated eigenvalues cause no problem with symmetric matrices.
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We conclude this discussion with a comparison to our study of projections in Chapter
4. Note that if we write outA = Q�Q−1 = Q�QT, we see, reasoning as in Exercise 2.5.4,
that

A =

⎡
⎢⎢⎣

|
q1

|

|
q2

|
· · ·

|
qn

|

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

λ1

λ2

. . .

λn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

qT
1

qT
2
...

qT
n

⎤
⎥⎥⎥⎥⎥⎦

=
n∑
i=1

λiqiqT
i .

This is the so-called spectral decomposition of A: Multiplying by a symmetric matrix A
is the same as taking a weighted sum (weighted by the eigenvalues) of projections onto
the respective eigenspaces. (See Proposition 2.3 of Chapter 4.) This is, indeed, a beautiful
result with many applications in higher mathematics and physics.

4.1 Conics and Quadric Surfaces: A Brief Respite
from Linearity
We now use the Spectral Theorem to analyze the equations of conic sections and quadric
surfaces.

EXAMPLE 4

Suppose we are given the quadratic equation

x2
1 + 4x1x2 − 2x2

2 = 6

to graph. Notice that we can write the quadratic expression

x2
1 + 4x1x2 − 2x2

2 =
[
x1 x2

] [1 2

2 −2

][
x1

x2

]
= xTAx,

where

A =
[

1 2

2 −2

]

is the symmetric matrix we analyzed in Example 1 above. Thus, we know that

A = Q�QT, where Q = 1√
5

[
2 −1

1 2

]
and � =

[
2 0

0 −3

]
.

So, if we make the substitution y = QTx, then we have

xTAx = xT(Q�QT)x = (QTx)T�(QTx) = yT�y = 2y2
1 − 3y2

2 .

Note that the conic is much easier to understand in the y1y2-coordinates. Indeed, we
recognize that the equation 2y2

1 − 3y2
2 = 6 can be written in the form

y2
1

3
− y2

2

2
= 1,

from which we see that this is a hyperbola with asymptotes y2 = ±
√

2
3y1, as pictured in

Figure 4.2. Now recall that the y1y2-coordinates are the coordinates with respect to the
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y2

y1

FIGURE 4.2

q2 q1

FIGURE 4.3

basis formed by the column vectors of Q. Thus, if we want to sketch the picture in the
original x1x2-coordinates, we first draw in the basis vectors q1 and q2, and these establish
the y1- and y2-axes, respectively, as shown in Figure 4.3.

We can play this same game with any quadratic equation

(†) αx2
1 + 2βx1x2 + γ x2

2 = δ,

where α, β, γ, δ are real numbers. Now we set

A =
[
α β

β γ

]
,

so that our equation (†) can be written as xTAx = δ. Since A is symmetric, we can find a
diagonal matrix� and an orthogonal matrixQ so thatA = Q�QT. Thus, setting y = QTx,
we can rewrite equation (†) as yT�y = λ1y

2
1 + λ2y

2
2 = δ.

It’s worth recalling that the equation

x2
1

a2
+ x2

2

b2
= 1

represents an ellipse (with semiaxes a and b), whereas the equation

x2
1

a2
− x2

2

b2
= 1

represents a hyperbola with vertices (±a, 0) and asymptotes x2 = ± b
a
x1. We now infer

that when our coefficient matrix A has rank 2 (so that both λ1 and λ2 are nonzero), our
equation (†) represents an ellipse or a hyperbola in a rotated coordinate system. (For a
continued discussion of conic sections—and of the origin of this nomenclature—we refer
the interested reader to Section 2.2 of Chapter 7.)

Now we move on briefly to the three-dimensional setting. Quadric surfaces include
those shown in Figure 4.4: ellipsoids, cylinders, and hyperboloids of one and two sheets.
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ellipsoid cylinder hyperboloid
of one sheet

hyperboloid
of two sheets

FIGURE 4.4

There are also paraboloids (both elliptic and hyperbolic), but we will address these a bit
later. The standard equations to recognize are these:7

x2
1

a2
+ x2

2

b2
+ x2

3

c2
= 1 ellipsoid

x2
1

a2
+ x2

2

b2
= 1 elliptical cylinder

x2
1

a2
+ x2

2

b2
− x2

3

c2
= 1 hyperboloid of one sheet

−x
2
1

a2
− x2

2

b2
+ x2

3

c2
= 1 hyperboloid of two sheets

If we begin with any quadratic equation in three variables, we can proceed as we did with
two variables, beginning by writing a symmetric coefficient matrix and finding a rotated
coordinate system in which we recognize a “standard” equation.

We now turn to another example.

EXAMPLE 5

Consider the surface defined by the equation

2x1x2 + 2x1x3 + x2
2 + x2

3 = 2.

We observe that if

A =

⎡
⎢⎢⎣

0 1 1

1 1 0

1 0 1

⎤
⎥⎥⎦

is the symmetric matrix from Example 2, then

xTAx = 2x1x2 + 2x1x3 + x2
2 + x2

3 ,

and so we use the diagonalization and the substitution y = QTx as before to write

xTAx = yT�y, where � =

⎡
⎢⎢⎣

−1 0 0

0 1 0

0 0 2

⎤
⎥⎥⎦ ;

7To remember which hyperboloid equation is which, it helps to solve for x2
3 : In the case of one sheet, we get

elliptical cross sections for all values of x3; in the case of two sheets, we see that |x3| ≥ |c|.
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that is, in terms of the coordinates y = (y1, y2, y3), we have

2x1x2 + 2x1x3 + x2
2 + x2

3 = −y2
1 + y2

2 + 2y2
3 ,

and the graph of −y2
1 + y2

2 + 2y2
3 = 2 is the hyperboloid of one sheet shown in Figure 4.5.

This is the picture with respect to the “new basis” {q1, q2, q3} (given in the solution of

y3

y2

y1

FIGURE 4.5

x3

x1

x2

FIGURE 4.6

Example 2). The picture with respect to the standard basis, then, is as shown in Figure 4.6.
(This figure is obtained by applying the linear transformation μQ : R3 → R3. Why?)

The alert reader may have noticed that we’re lacking certain curves and surfaces given
by quadratic equations. If there are linear terms present along with the quadratic, we must
adjust accordingly. For example, we recognize that

x2
1 + 2x2

2 = 1

is the equation of an ellipse centered at the origin. Correspondingly, by completing the
square twice, we see that

x2
1 + 2x1 + 2x2

2 − 3x2 = 13
2

is the equation of a congruent ellipse centered at (−1, 3
4 ). However, the linear terms

become all-important when the symmetric matrix defining the quadratic terms is singular.
For example,

x2
1 − x1 = 1

defines a pair of lines, whereas
x2

1 − x2 = 1

defines a parabola. (See Figure 4.7.)

FIGURE 4.7 x1
2 – x1 = 1 x1

2 – x2 = 1
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EXAMPLE 6

We wish to sketch the surface

5x2
1 − 8x1x2 − 4x1x3 + 5x2

2 − 4x2x3 + 8x2
3 + 2x1 + 2x2 + x3 = 9.

No, we did not pull this mess out of a hat. The quadratic terms came, as might be predicted,
from Example 3. Thus, we make the change of coordinates given by y = QTx, with

Q =

⎡
⎢⎢⎣

2
3 − 1√

2
− 1

3
√

2
2
3

1√
2

− 1
3
√

2
1
3 0 4

3
√

2

⎤
⎥⎥⎦ .

Since x = Qy, we have

2x1 + 2x2 + x3 =
[
2 2 1

]
Qy =

[
2 2 1

]
⎡
⎢⎢⎣

2
3 − 1√

2
− 1

3
√

2
2
3

1√
2

− 1
3
√

2
1
3 0 4

3
√

2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
y1

y2

y3

⎤
⎥⎥⎦ = 3y1,

and so our given equation becomes, in the y1y2y3-coordinates,

9y2
2 + 9y2

3 + 3y1 = 9.

Rewriting this a bit, we have
y1 = 3(1 − y2

2 − y2
3),

y3

y1

y2

FIGURE 4.8

x3

x1

x2

FIGURE 4.9

which we recognize as a (circular) paraboloid, shown in Figure 4.8. The sketch of the
surface in our original x1x2x3-coordinates is then as shown in Figure 4.9.

Exercises 6.4

1. Find orthogonal matrices that diagonalize each of the following symmetric matrices.

a.∗
[

6 2

2 9

]
b.

[
3 4

4 −3

]
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c.

⎡
⎢⎣

2 0 0

0 1 −1

0 −1 1

⎤
⎥⎦

d.∗

⎡
⎢⎣

2 2 −2

2 −1 −1

−2 −1 −1

⎤
⎥⎦

e.∗

⎡
⎢⎣

3 2 2

2 2 0

2 0 4

⎤
⎥⎦

f.

⎡
⎢⎣

1 −2 2

−2 1 2

2 2 1

⎤
⎥⎦

g.

⎡
⎢⎢⎢⎣

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

⎤
⎥⎥⎥⎦

2.∗ Suppose A is a symmetric matrix with eigenvalues 2 and 5. If the vectors

⎡
⎢⎣

1

1

−1

⎤
⎥⎦ and⎡

⎢⎣
1

−1

0

⎤
⎥⎦ span the 5-eigenspace, what is A

⎡
⎢⎣

1

1

2

⎤
⎥⎦? Give your reasoning.

3. A symmetric matrix A has eigenvalues 1 and 2. Find A if

⎡
⎢⎣

1

1

1

⎤
⎥⎦ spans E(2).

4. Suppose A is symmetric, A

[
1

1

]
=
[

2

2

]
, and detA = 6. Give the matrix A. Explain

your reasoning clearly. (Hint: What are the eigenvalues of A?)

5. Decide (as efficiently as possible) which of the following matrices are diagonalizable.
Give your reasoning.

A =

⎡
⎢⎢⎣

5 0 2

0 5 0

0 0 5

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

5 0 2

0 5 0

2 0 5

⎤
⎥⎥⎦ ,

C =

⎡
⎢⎢⎣

1 2 4

0 2 2

0 0 3

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣

1 2 4

0 2 2

0 0 1

⎤
⎥⎥⎦ .

6. LetA be a symmetric matrix. Without using the Spectral Theorem, show that if λ �= μ,
x ∈ E(λ), and y ∈ E(μ), then x · y = 0.

7.∗ Show that if λ is the only eigenvalue of a symmetric matrix A, then A = λI .

8. Suppose A is a diagonalizable matrix whose eigenspaces are orthogonal. Prove that A
is symmetric.

9. a. Suppose A is a symmetric n× n matrix. Using the Spectral Theorem, prove that if
Ax · x = 0 for every vector x ∈ Rn, then A = O.

b. Give an example to show that the hypothesis of symmetry is needed in part a.

10. Apply the Spectral Theorem to establish that any symmetric matrixA satisfyingA2 = A

is in fact a projection matrix.

11. a. Suppose A is a symmetric n× n matrix satisfying A4 = I . Use the Spectral Theo-
rem to give a complete description of μA : Rn → Rn. (Hint: For starters, what are
the potential eigenvalues of A?)

b. What happens for a symmetric n× n matrix satisfying Ak = I for some integer
k ≥ 2?
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12. We say a symmetric matrix A is positive definite if Ax · x > 0 for all x �= 0, negative
definite ifAx · x < 0 for all x �= 0, and positive (resp., negative) semidefinite ifAx · x ≥
0 (resp., ≤ 0) for all x.
a. Show that if A and B are positive (negative) definite, then so is A+ B.

b. Show that A is positive (resp., negative) definite if and only if all its eigenvalues
are positive (resp., negative).

c. Show thatA is positive (resp., negative) semidefinite if and only if all its eigenvalues
are nonnegative (resp., nonpositive).

d. Show that if C is any m× n matrix of rank n, then A = CTC has positive eigen-
values.

e. Prove or give a counterexample: If A and B are positive definite, then so is AB +
BA.

13. Let A be an n× n matrix. Show that A is nonsingular if and only if every eigenvalue
of ATA is positive.

14. Prove that if A is a positive semidefinite (symmetric) matrix (see Exercise 12 for the
definition), then there is a unique positive semidefinite (symmetric) matrix B with
B2 = A.

15. Suppose A and B are symmetric and AB = BA. Prove there is an orthogonal matrix
Q so that bothQ−1AQ andQ−1BQ are diagonal. (Hint: Let λ be an eigenvalue ofA.
Use the Spectral Theorem to show that there is an orthonormal basis for E(λ) consisting
of eigenvectors of B.)

16. Sketch the following conic sections, giving axes of symmetry and asymptotes (if any).
a. 6x1x2 − 8x2

2 = 9

b.∗ 3x2
1 − 2x1x2 + 3x2

2 = 4

c.∗ 16x2
1 + 24x1x2 + 9x2

2 − 3x1 + 4x2 = 5

d. 10x2
1 + 6x1x2 + 2x2

2 = 11

e. 7x2
1 + 12x1x2 − 2x2

2 − 2x1 + 4x2 = 6

17. Sketch the following quadric surfaces.
a.∗ 3x2

1 + 2x1x2 + 2x1x3 + 4x2x3 = 4

b. 4x2
1 − 2x1x2 − 2x1x3 + 3x2

2 + 4x2x3 + 3x2
3 = 6

c. −x2
1 + 2x2

2 − x2
3 − 4x1x2 − 10x1x3 + 4x2x3 = 6

d.∗ 2x2
1 + 2x1x2 + 2x1x3 + 2x2x3 − x1 + x2 + x3 = 1

e. 3x2
1 + 4x1x2 + 8x1x3 + 4x2x3 + 3x2

3 = 8

f. 3x2
1 + 2x1x3 − x2

2 + 3x2
3 + 2x2 = 0

18. Let a, b, c ∈ R, and let f (x1, x2) = ax2
1 + 2bx1x2 + cx2

2 .
a. The Spectral Theorem tells us that there exists an orthonormal basis for R2 with

respect to whose coordinates (y1, y2) we have

f (x1, x2) = f̃ (y1, y2) = λy2
1 + μy2

2 .

Show that the y1y2-axes are obtained by rotating the x1x2-axes through an angle α,
where

cot 2α = a − c
2b

.

Determine the type (ellipse, hyperbola, etc.) of the conic section f (x1, x2) = 1
from a, b, and c. (Hint: Use the characteristic polynomial to eliminate λ2 in your
computation of tan 2α.)

b. Use the formula for f̃ above to find the maximum and minimum of f (x1, x2) on
the unit circle x2

1 + x2
2 = 1.
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HISTORICAL NOTES
Although we have presented an analysis of quadratic forms as an application of the notions
of eigenvalues and eigenvectors, the historical development was actually quite the opposite.
Eigenvalues and eigenvectors were first discovered in the context of quadratic forms.

In the late 1700s Joseph-Louis Lagrange (1736–1813) attempted to prove that the
solar system was stable—that is, that the planets would not ever widely deviate from their
orbits. Lagrange modeled planetary motion using differential equations. He was assisted
in his effort by Pierre-Simon Laplace (1749–1827). Together they reduced the solution of
the differential equations to what in actuality was an eigenvalue problem for a matrix of
coefficients determined by their knowledge of the planetary orbits. Without having any
official notion of matrices, they constructed a quadratic form from the array of coefficients
and essentially uncovered the eigenvalues and eigenvectors of the matrix by studying the
quadratic form. In fact, they made great progress on the problem but were not able to
complete a proof of stability. Indeed, this remains an open question!

Earlier work in quadratic forms was led by Gottfried Leibniz (1646–1716) and Leon-
hard Euler (1707–1783). The work of Carl Freidrich Gauss (1777–1855) in the early nine-
teenth century brought together many results on quadratic forms, their determinants, and
their diagonalization. In the latter half of the 1820s, it was Augustin-Louis Cauchy (1789–
1857), also studying planetary motion, who recognized some common threads throughout
the work of Euler, Lagrange, and others. He began to consider the importance of the
eigenvalues associated with quadratic forms. Cauchy worked with linear combinations of
quadratic forms, sA+ tB, and discovered interesting properties of the form when s and t
were chosen so that det(sA+ tB) = 0. He dubbed these special values of s and t charac-
teristic values. The terms characteristic value and characteristic vector are used in many
modern texts as synonyms for eigenvalue and eigenvector. The prefix eigen comes from
a German word that may be translated, for example, as “peculiar” or “appropriate.” You
may find eigenvectors and eigenvalues peculiar, but the more relevant translation is either
“innate” (since an eigenvalue is something an array is born with) or “own” or “self” (since
an eigenvector is one that is mapped on top of itself).

Like the notion of orthogonality discussed in Chapter 4, the concept of eigenvalue has
meaning when extended beyond matrices to linear maps on abstract vector spaces, such as
spaces of functions. The differential equations studied by Joseph Fourier (1768–1830) (see
the Historical Note in Chapter 4) modeling heat diffusion lend themselves to eigenvalue-
eigenfunction techniques. These eigenfunctions (eigenvectors of the differential operators
as linear maps on the vector spaces consisting of functions) generate all the solutions. (See
our discussion of normal modes in Section 3 of Chapter 7.) They arise throughout the study
of mathematical physics, explaining the tones and overtones of a guitar string or drumhead,
as well as the quantum states of atomic physics.

On a completely different note, we also explored Markov processes a bit in this chapter.
Andrei Markov (1856–1922) was one several students of Pafnuty Chebyshev (1821–1894),
who made great contributions to the field of probability and statistics. Markov studied
sequences of experimental outcomes where the future depended only on the present, not
on the past. For example, suppose you have been playing a dice game and are now $100
in the hole. The amount you will owe after the next roll, the future outcome, is a function
only of that roll and your current state of being $100 in debt. The past doesn’t matter—it
only matters that you currently owe $100. This is an example of a Markov chain. Markov
himself had purely theoretical motivations in mind, however, when studying such chains of
events. He was hoping to find simpler proofs for some of the major results of probability
theory.
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C H A P T E R 7
FURTHER TOPICS

T he three sections of this chapter treat somewhat more advanced topics. They are es-
sentially independent of one another, although the Jordan canonical form of a matrix,

introduced in Section 1, makes a subtle appearance a few times in the subsequent sections.
There is, nevertheless, a common theme: eigenvalues, eigenvectors, and their applications.
In Section 1 we deal with the troublesome cases that arose during our discussion of diago-
nalizability in Chapter 6. In Section 2, we learn how to encode rigid motions of two- and
three-dimensional space by matrices, an important topic in computer graphics. And last, in
Section 3, we will see how our work in Section 3 of Chapter 6 naturally generalizes to the
study of systems of differential equations.

1 Complex Eigenvalues and Jordan
Canonical Form

In this section, we discuss the two issues that caused us trouble in Section 2 of Chapter 6:
complex eigenvalues and the situation where geometric multiplicity is less than algebraic.

Recall that the complex numbers, denoted C, are defined to be all numbers of the form
a + bi, a, b ∈ R, with addition and multiplication defined as follows:

(a + bi)+ (c + di) = (a + c)+ (b + d)i
(a + bi) · (c + di) = (ac − bd)+ (ad + bc)i.

(The multiplication rule is easy to remember: We just expand using the distributive law and
the rule i2 = −1.)

EXAMPLE 1

(a + bi)(a − bi) = (a2 − b(−b))+ (a(−b)+ ba)i = a2 + b2.

We can visualize C as R2, using the numbers 1 and i as a basis. That is, the complex
number a + bi corresponds geometrically to the vector (a, b) ∈ R2. Given a complex num-
ber z = a + bi, the real part of z (denoted Re z) is equal to a, and the imaginary part of
z (denoted Im z) is equal to b. Not surprisingly, complex numbers z with Im z = 0 are
called real numbers; those with Re z = 0 are called (purely) imaginary. The reflection of
z = a + bi in the real axis is called its conjugate z; thus, a + bi = a − bi. The modulus of
the complex number z = a + bi is the length of the vector (a, b), and is usually denoted |z|.
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EXAMPLE 2

Let z = a + bi be a nonzero complex number. Then its reciprocal is found as follows:

1

z
= 1

a + bi = 1

a + bi · a − bi
a − bi = a − bi

(a + bi)(a − bi) = a − bi
a2 + b2

= z

|z|2 .

(Note that z �= 0 means that a2 + b2 > 0.)

Addition of complex numbers is simply addition of vectors in the plane, but multiplica-
tion is far more interesting. Introducing polar coordinates in the plane, as shown in Figure
1.1, we now write z = r(cos θ + i sin θ), where r = |z|. This is often called the polar form
of the complex number z.

FIGURE 1.1

θ

z = r(cos θ + i sin θ)

EXAMPLE 3

Consider the product
(√

3 + i)(2 + 2
√

3i
) = ((√3)(2)− (1)(2√

3)
)+ ((√3)(2

√
3)+ (1)(2))i = 8i.

Now let’s look at the picture in Figure 1.2: Using the polar representation, we discover why

FIGURE 1.2

8i

1

i

2 + 2�3i

�3 + i

the product is purely imaginary:
√

3 + i = 2
(√

3
2 + 1

2 i
) = 2

(
cos( π6 )+ sin( π6 )i

)

2 + 2
√

3i = 4
(

1
2 +

√
3

2 i
) = 4

(
cos( π3 )+ sin( π3 )i

)

(
√

3 + i)(2 + 2
√

3i) = 8
(

cos( π6 )+ sin( π6 )i
)(

cos( π3 )+ sin( π3 )i
)

= 8
((

cos( π6 ) cos( π3 )− sin( π6 ) sin( π3 )
)

+ ( cos( π6 ) sin( π3 )+ sin( π6 ) cos( π6 )
)
i
)

= 8
(

cos( π6 + π
3 )+ sin( π6 + π

3 )i
) = 8

(
cos( π2 )+ sin( π2 )i

) = 8i.
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The experience of the last example lies at the heart of the geometric interpretation of
the algebra of complex numbers.

Proposition 1.1. Let z = r(cos θ + i sin θ) and w = ρ(cosφ + i sin φ). Then

zw = rρ
(

cos(θ + φ)+ i sin(θ + φ)).
That is, to multiply two complex numbers, we multiply their moduli and add their angles.

Proof. Recall the basic trigonometric formulas

cos(θ + φ) = cos θ cosφ − sin θ sin φ and

sin(θ + φ) = sin θ cosφ + cos θ sin φ.

Now,

zw = (r(cos θ + i sin θ)
)(
ρ(cosφ + i sin φ)

)

= rρ(cos θ + i sin θ)(cosφ + i sin φ)

= rρ
(
(cos θ cosφ − sin θ sin φ)+ i(sin θ cosφ + cos θ sin φ)

)

= rρ
(

cos(θ + φ)+ i sin(θ + φ)),
as required.

Earlier (see Section 1 of Chapter 1 or Section 6 of Chapter 3) we defined a (real)
vector space to be a collection of objects (vectors) that we can add and multiply by (real)
scalars, subject to various algebraic rules. We now broaden our definition to allow complex
numbers as scalars.

Definition.Acomplex vector spaceV is a set that is equipped with two operations, vector
addition and (complex) scalar multiplication, which satisfy the following properties:

1. For all u, v ∈ V , u + v = v + u.

2. For all u, v,w ∈ V , (u + v)+ w = u + (v + w).

3. There is 0 ∈ V (the zero vector) so that 0 + u = u for all u ∈ V .

4. For each u ∈ V , there is a vector −u so that u + (−u) = 0.

5. For all c, d ∈ C and u ∈ V , c(du) = (cd)u.

6. For all c ∈ C and u, v ∈ V , c(u + v) = cu + cv.

7. For all c, d ∈ C and u ∈ V , (c + d)u = cu + du.

8. For all u ∈ V , 1u = u.

EXAMPLE 4

(a) The most basic example of a complex vector space is the set of all n-tuples of complex
numbers, Cn = {(z1, . . . , zn) : z1, . . . , zn ∈ C}. Addition and scalar multiplication
are defined component by component.

(b) As in Section 6 of Chapter 3, we have the vector space ofm× nmatrices with complex
entries.
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(c) Likewise, we have the vector space of complex-valued continuous functions on the
interval I. This vector space plays an important role in differential equations and in
the physics and mathematics of waves.

For us, the chief concern here is eigenvalues and eigenvectors. Now that we’ve ex-
panded our world of scalars to the complex numbers, it is perfectly legitimate for a complex
scalar λ to be an eigenvalue and for a nonzero vector v ∈ Cn to be an eigenvector of an
n× n (perhaps real) matrix.

EXAMPLE 5

Consider the matrix

A =
[

2 −5

1 0

]
.

We see that the characteristic polynomial of A is p(t) = t2 − 2t + 5, and so, applying the
quadratic formula, the eigenvalues are 2±√

4−20
2 = 1 ± 2i. To find the eigenvectors, we

follow the usual procedure.

E(1 + 2i): We consider

A− (1 + 2i)I =
[

1 − 2i −5

1 −1 − 2i

]

and read off the vector v1 = (1 + 2i, 1) as a basis vector.

E(1 − 2i): Now we consider

A− (1 − 2i)I =
[

1 + 2i −5

1 −1 + 2i

]
,

and the vector v2 = (1 − 2i, 1) gives us a basis.

Note that v2 = v1; this should be no surprise, sinceAv1 = Av1 = (1 + 2i)v1 = (1 − 2i)v1.
So, thinking of our matrix as representing a linear map from C2 to C2, we see that it can be
diagonalized: With respect to the basis {v1, v2}, the matrix representing μA is the diagonal
matrix [

1 + 2i

1 − 2i

]
.

We can glean a bit more information about the underlying linear map μA from R2 to
R2. Let

u1 =
[

1

1

]
and u2 =

[
−2

0

]
.

Then v1 = u1 − iu2, and we interpret the eigenvector equation in terms of its real and
imaginary parts:

A(u1 − iu2) = Av1 = (1 + 2i)v1 = (1 + 2i)(u1 − iu2) = (u1 + 2u2)+ i(2u1 − u2)

and so

Au1 = u1 + 2u2 and Au2 = −2u1 + u2.
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That is, the matrix representing the linear map μA : R2 → R2 with respect to the basis
{u1, u2} is [

1 −2

2 1

]
.

EXAMPLE 6

Let’s return to the matrix

A =

⎡
⎢⎢⎢⎣

1
6

1
3 +

√
6

6
1
6 −

√
6

3

1
3 −

√
6

6
2
3

1
3 +

√
6

6

1
6 +

√
6

3
1
3 −

√
6

6
1
6

⎤
⎥⎥⎥⎦ ,

which we first encountered in Exercise 4.3.24. A “short computation”1 reveals that the
characteristic polynomial of this matrix is p(t) = −t3 + t2 − t + 1 = −(t − 1)(t2 + 1).
Thus, A has one real eigenvalue, λ = 1, and two complex eigenvalues, ±i. We find the
complex eigenvectors by considering the linear transformation μA : C3 → C3.

E(i): We find that v1 =
⎡
⎢⎣

1 − 2
√

6i

2 + √
6i

−5

⎤
⎥⎦ gives a basis for

N(A− iI ) = N

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

1
6 − i 1

3 +
√

6
6

1
6 −

√
6

3

1
3 −

√
6

6
2
3 − i 1

3 +
√

6
6

1
6 +

√
6

3
1
3 −

√
6

6
1
6 − i

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ .

E(−i): Here v2 = v1 =
⎡
⎢⎣

1 + 2
√

6i

2 − √
6i

−5

⎤
⎥⎦ gives a basis for N(A+ iI ). We can either calculate

this from scratch or reason that (A+ iI )v1 = (A− iI )v1 = 0, since A is a matrix
with real entries.

E(1): We see that v3 =
⎡
⎢⎣

1

2

1

⎤
⎥⎦ gives a basis for

N(A− I ) = N

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

− 5
6

1
3 +

√
6

6
1
6 −

√
6

3

1
3 −

√
6

6 − 1
3

1
3 +

√
6

6

1
6 +

√
6

3
1
3 −

√
6

6 − 5
6

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ .

We should expect, following the reasoning of Section 2 of Chapter 6, that sinceA has three
distinct complex eigenvalues, we can diagonalize the matrix A working over C. Indeed,

1Although it is amusing to do the computations in this example by hand, this might be a reasonable place to give
in and use a computer program such as Maple, Mathematica, or MATLAB.
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we leave it to the reader to check that, taking

P =

⎡
⎢⎢⎣

1 − 2
√

6i 1 + 2
√

6i 1

2 + √
6i 2 − √

6i 2

−5 −5 1

⎤
⎥⎥⎦ and � =

⎡
⎢⎢⎣
i

−i
1

⎤
⎥⎥⎦ ,

we have A = P�P−1.
But does this give us any insight into μA as a linear transformation from R3 to R3?

Letting

u1 =

⎡
⎢⎢⎣

1

2

−5

⎤
⎥⎥⎦ and u2 =

⎡
⎢⎢⎣

2
√

6

−√
6

0

⎤
⎥⎥⎦ ,

we see that v1 = u1 − iu2 and v2 = u1 + iu2. Since Av1 = iv1, it now follows that

A(u1 − iu2) = i(u1 − iu2) = u2 + iu1,

and so, using the fact that u1, u2, Au1, and Au2 are all real vectors, it must be the case that

Au1 = u2 and Au2 = −u1.

Furthermore, we notice that the vectors u1, u2, and v3 give an orthogonal basis for R3.
SinceAv3 = v3 and the vectors u1 and u2 have the same length, we now infer thatμA gives
a rotation of π/2 about the axis spanned by v3, fixing v3 and rotating u1 to u2 and u2 to
−u1.

Theorem 2.1 of Chapter 6 is still valid when our scalars are complex numbers, and so
Corollary 2.2 of Chapter 6 can be rephrased in our new setting:

Proposition 1.2. Suppose V is an n-dimensional complex vector space and T : V → V

has n distinct eigenvalues. Then T is diagonalizable.

It is important to remember that this result holds in the province of complex vector
spaces, with complex eigenvalues and complex eigenvectors. However, when we start
with a linear transformation on a real vector space, it is not too hard to extend the reasoning
in Example 6 to deduce the following result.

Corollary 1.3. Suppose A is an n× n real matrix with n distinct (possibly complex)
eigenvalues. Then A is similar to a “block diagonal” matrix of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 −β1

β1 α1

. . .

αk −βk
βk αk

λ2k+1

. . .

λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where α1 ± β1i, . . . , αk ± βki are the 2k complex eigenvalues (with βj �= 0) and
λ2k+1, . . . , λn are the real eigenvalues.
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Proof. Left to the reader in Exercise 3.

EXAMPLE 7

We wish to find the “block diagonal” form of the matrix

A =

⎡
⎢⎢⎣

5 0 −2

8 7 −12

6 4 −7

⎤
⎥⎥⎦

as guaranteed us by Corollary 1.3. The characteristic polynomial of A is p(t) = −t3 +
5t2 − 11t + 15. Checking for rational roots, we find that λ = 3 is a real eigenvalue, and so
we find that p(t) = −(t − 3)(t2 − 2t + 5); thus, λ = 1 ± 2i are the complex eigenvalues
of A. The eigenvectors corresponding to the eigenvalues λ1 = 1 + 2i, λ2 = 1 − 2i, and
λ3 = 3, respectively, are

v1 =

⎡
⎢⎢⎣

2 + i
7 + i

5

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

2 − i
7 − i

5

⎤
⎥⎥⎦ , and v3 =

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ .

Now, taking

u1 =

⎡
⎢⎢⎣

2

7

5

⎤
⎥⎥⎦ , u2 =

⎡
⎢⎢⎣

−1

−1

0

⎤
⎥⎥⎦ , and u3 = v3 =

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ ,

we see thatAv1 = A(u1 − iu2) = (1 + 2i)(u1 − iu2) = (u1 + 2u2)+ i(2u1 − u2), and so

Au1 = u1 + 2u2,

Au2 = −2u1 + u2,

Au3 = 3u3.

Thus, with respect to the basis B = {u1, u2, u3}, the linear transformation μA : R3 → R3

has the matrix ⎡
⎢⎢⎣

1 −2 0

2 1 0

0 0 3

⎤
⎥⎥⎦ .

Of course, since B is not an orthogonal basis (as we had in Example 6), the geometric
interpretation of μA is a bit more subtle: The line spanned by u3 is stretched by a factor of
3, and the plane spanned by u1 and u2 is preserved.

Now we come to the much more subtle issue of what to do when the geometric multi-
plicity of one eigenvalue (or more) is less than its algebraic multiplicity. To motivate the
general arguments, we consider the following example.
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EXAMPLE 8

Let

A =
[

0 1

−4 4

]
.

Then the characteristic polynomial of A is p(t) = t2 − 4t + 4 = (t − 2)2. However, since

A− 2I =
[
−2 1

−4 2

]
,

we know that E(2) is only one-dimensional, with basis

v1 =
[

1

2

]
,

and soA is not diagonalizable. However, we are fortunate enough to observe that the vector
v1 is obviously in the column space of the matrix A− 2I . Therefore, the equation

[
−2 1

−4 2

]
x =
[

1

2

]

has a solution, for example:

v2 =
[

0

1

]
.

Since (A− 2I )v2 = v1, we have Av2 = v1 + 2v2, and the matrix representing μA with
respect to the basis {v1, v2} is

J =
[

2 1

0 2

]
.

This is called the Jordan canonical form of A.
This argument applies generally to any 2 × 2 matrix A having eigenvalue λ with alge-

braic multiplicity 2 and geometric multiplicity 1. Let’s show that in this case we must have
N(A− λI) = C(A− λI). Assume not; then we choose a basis {v1} for N(A− λI) and a
basis {v2} for C(A− λI); since v1 and v2 are nonparallel, we obtain a basis B = {v1, v2}
for R2. What’s more, we can write v2 = (A− λI)x for some x ∈ R2, and so

Av2 = A(A− λI)x = (A− λI)(Ax)

is an element of C(A− λI). Since {v2} is a basis for this subspace, we infer thatAv2 = cv2

for some scalar c. Thus, the matrix representing μA with respect to the basis B is

B =
[
λ 0

0 c

]
,

contradicting the fact that A is not diagonalizable. Thus, we conclude that C(A− λI) =
N(A− λI) and proceed as above to conclude that the Jordan canonical form of A is

[
λ 1

0 λ

]
.
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A k × k matrix of the form

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1

λ 1
. . .

. . .

λ 1

λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(with all its other entries 0) is called a k-dimensional Jordan block with eigenvalue λ.
Before proceeding to the general result, we need a fact upon which we stumbled in

Example 8.

Lemma 1.4. Let A be an n× n matrix, and let λ be any scalar. Then the subspace
V = C(A− λI) has the property that

whenever v ∈ V, it is the case that Av ∈ V.
That is, the subspace V is invariant under μA.

Proof. The one-line proof is left to the reader in Exercise 4.

Theorem 1.5 (Jordan Canonical Form). Suppose the characteristic polynomial of an
n× n complex matrix A is p(t) = ±(t − λ1)

m1(t − λ2)
m2 . . . (t − λk)mk . Then there is a

basis B for Cn with respect to which the matrix representing μA is “block diagonal”:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1

J2

. . .

Js

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For each j = 1, . . . , k, the sum of the sizes of the Jordan blocks with eigenvalue λj is
the algebraic multiplicity mj and the number of Jordan blocks with eigenvalue λj is the
geometric multiplicity dj .

Examples and Sketch of Proof. Although we shall not give a complete proof of this
result here, we begin by examining what happens when the characteristic polynomial is
p(t) = ±(t − λ)m with m = 2 or 3, and then indicate the general argument.2

Suppose A is a 2 × 2 matrix with characteristic polynomial p(t) = (t − λ)2. Then
λ is an eigenvalue of A (with algebraic multiplicity 2) and dim N(A− λI) ≥ 1. If
dim N(A− λI) = 2, then A is diagonalizable, and we have two 1 × 1 Jordan blocks in J .

2We learned of this proof, which Strang credits to Filippov, in the appendix to Strang’s Linear Algebra and Its
Applications. It also appears, in far greater detail, in Friedberg, Insel, and Spence. We hope we’ve made the
important ideas clear here.



308 Chapter 7 Further Topics

If dim N(A− λI) = 1, then dim C(A− λI) = 1 as well. As we saw in Example 8, we
must have N(A− λI) ⊂ C(A− λI) (or else A would be diagonalizable). Let {v1} be a
basis for N(A− λI). Then there is a vector v2 so that (A− λI)v2 = v1, and the matrix
representing μA with respect to the basis {v1, v2} for C2 is

[
λ 1

λ

]
,

as required. (The reader should check that {v1, v2} forms a linearly independent set.)
Now suppose A is a 3 × 3 matrix with characteristic polynomial p(t) = −(t − λ)3.

If dim N(A− λI) = 3, then A is diagonalizable, and there are three 1 × 1 Jordan blocks
in J . Suppose dim N(A− λI) = 2. Then dim C(A− λI) = 1. Could it happen that
C(A− λI) ∩ N(A− λI) = {0}? If so, taking a basis {v1, v2} for N(A− λI) and {v3} for
C(A− λI), we know B = {v1, v2, v3} is a basis for R3. Moreover, by Lemma 1.4, we
know that Av3 = cv3 for some scalar c. But we already know that Av1 = λv1 and Av2 =
λv2. These results contradict the fact that A is not diagonalizable. Thus, C(A− λI) ⊂
N(A− λI). If we choose v2 spanning C(A− λI) and {v1, v2} to be a basis for N(A− λI),
then we know there is a vector v3 so that (A− λI)v3 = v2. We leave it to the reader to
check in Exercise 5 that {v1, v2, v3} is linearly independent and that the matrix representing
μA with respect to this basis is

J =

⎡
⎢⎢⎣
λ

λ 1

λ

⎤
⎥⎥⎦ .

In particular, J contains one 1 × 1 Jordan block and one 2 × 2 block.
Last, suppose dim N(A− λI) = 1. We leave it to the reader to prove in Exercise

6 that N(A− λI) ⊂ C(A− λI). Now we apply Lemma 1.4: Thinking of μA as a linear
transformation from the two-dimensional subspace C(A− λI) to itself, the proof of Propo-
sition 2.3 of Chapter 6 shows that the characteristic polynomial must be (t − λ)2, and so
we know there is a basis {v1, v2} for C(A− λI) with the property that (A− λI)v1 = 0
and (A− λI)v2 = v1. Now, since v2 ∈ C(A− λI), there is a vector v3 ∈ C3 so that
(A− λI)v3 = v2. We claim that {v1, v2, v3} is linearly independent. For suppose that

c1v1 + c2v2 + c3v3 = 0.

Multiplying the equation by A− λI twice in succession, we obtain

c2v1 + c3v2 = 0 and c3v1 = 0,

from which we deduce that c3 = 0, hence c2 = 0, and hence c1 = 0, as required. With
respect to the basis {v1, v2, v3} for C3, the matrix representing μA becomes

J =

⎡
⎢⎢⎣
λ 1

λ 1

λ

⎤
⎥⎥⎦ ,

i.e., one 3 × 3 Jordan block.
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The proof of the general result proceeds by mathematical induction.3 Of course, the
theorem holds when n = 1. Now suppose we assume it holds for all j × j matrices for
j < n; we must prove it holds for an arbitrary n× nmatrixA. Choose an eigenvalue, λ, of
A. Then, by definition, d = dim N(A− λI) ≥ 1, and so dim C(A− λI) = n− d ≤ n− 1.
By Lemma 1.4, C(A− λI) is an invariant subspace and so, by the induction hypothesis,
there is a Jordan canonical form J for the restriction of μA to this subspace; that is, there
is a basis {w1, . . . ,wn−d} for C(A− λI) so that the matrix for μA with respect to this
basis consists of various Jordan blocks. How many blocks are there with eigenvalue λ?
If dim

(
N(A− λI) ∩ C(A− λI)) = 
, then there will be precisely 
 such blocks, since

this is the geometric multiplicity of λ for the restriction of μA to the invariant subspace
C(A− λI).

We need to see how to choose d additional vectors so as to obtain a basis for Cn. These
will come from two sources:

(i) d − 
 additional eigenvectors; and

(ii) 
 vectors coming from enlarging (by one row and one column) each of the blocks
of J with eigenvalue λ.

The first is easy. Let {v1, . . . , v
} form a basis for N(A− λI) ∩ C(A− λI); choose d − 

further vectors v
+1, . . . , vd so that {v1, . . . , v
, v
+1, . . . , vd} is a basis for N(A− λI).
The vectors v
+1, . . . , vd fulfill the first need.

The second is, unfortunately, notationally more complicated. Let’s enumerate the basis
vectors {w1, . . . ,wn−d} more carefully:

w1, . . . ,wj1︸ ︷︷ ︸
first λ-block

, wj1+1, . . . ,wj2︸ ︷︷ ︸
second λ-block

, . . . , wj
−1+1, . . . ,wj
︸ ︷︷ ︸

th λ-block

, wj
+1, . . . ,wn−d︸ ︷︷ ︸
remaining blocks of J

.

So w1, wj1+1, . . . ,wj
−1+1 are the 
 eigenvectors with eigenvalue λ in C(A− λI), and wj1 ,
wj2 , . . . ,wj
 are the “final vectors” in each of the respective blocks. Since each of the latter
vectors belongs to C(A− λI), we can find vectors u1, . . . ,u
 so that (A− λI)us = wjs
for s = 1, . . . , 
. Then in our final matrix representation for μA we will still have 
 Jordan
blocks with eigenvalueλ, each of one size larger than appeared inJ . We list then− d + 
 =
n− (d − 
) vectors appropriately, and append the d − 
 eigenvectors v
+1, . . . , vd :

w1, . . . ,wj1 , u1︸ ︷︷ ︸
first λ-block

, wj1+1, . . . ,wj2 , u2︸ ︷︷ ︸
second λ-block

, . . . , wj
−1+1, . . . ,wj
 , u
︸ ︷︷ ︸

th λ-block

,

v
+1, . . . , vd︸ ︷︷ ︸
extra eigenvectors

, wj
+1, . . . ,wn−d︸ ︷︷ ︸
remaining blocks

.

Once we check that this collection of n vectors is linearly independent, we will have a basis
for Cn with respect to which the matrix for μA will indeed be in Jordan canonical form.
Since the ideas are not difficult but the notation gets cumbersome, we’ll leave this to the
reader in Exercise 17.

Remark. It may be useful to make the following observation. For any eigenvalue μ of the
matrix A, if the geometric multiplicity of the eigenvalue μ is d, then dim C(A− μI) =
n− d . Suppose dim

(
C(A− μI) ∩ E(μ)

) = 
. Then there will be d Jordan blocks with
eigenvalue μ, of which d − 
 are 1 × 1 and 
 are larger. The sum of the sizes of all the
blocks is, of course, the algebraic multiplicity of the eigenvalue μ.

3Actually, we need the formulation called complete induction, which allows us to assume that the statement P(j)
is valid for all positive integers j ≤ k in order to deduce the validity of P(k + 1). Of course, we must first verify
that the statement P(1) is valid.
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EXAMPLE 9

Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 1 −2

0 −1 0 0 0

0 0 −1 1 2

0 2 0 1 0

0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

After a bit of work—expanding det(A− tI ) first in cofactors along the first column and
then along the first row of the only 4 × 4 matrix that appears—we find that the characteristic
polynomial of A is

p(t) = −(t − 1)3(t + 1)2.

Thus, the eigenvalues of A are 1 (with algebraic multiplicity 3) and −1 (with algebraic
multiplicity 2). Performing row reduction, we determine that

A− I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 2 2 1 −2

0 −2 0 0 0

0 0 −2 1 2

0 2 0 0 0

0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 −1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, and

A+ I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 1 −2

0 0 0 0 0

0 0 0 1 2

0 2 0 2 0

0 1 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

From this information it is easy to read off bases for E(1), C(A− I ), E(−1), and C(A+ I ),
as follows:

E(1):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

C(A− I ):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

2

−2

0

2

1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

−1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

1

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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E(−1):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

−1

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

C(A+ I ):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

2

0

0

2

1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

1

2

1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

−1

0

1

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

In particular, we observe that E(1) is two-dimensional and E(−1) is one-dimensional. This
is enough to tell us that there will be a 2 × 2 Jordan block with eigenvalue 1, a 1 × 1
Jordan block with eigenvalue 1, and a 2 × 2 Jordan block with eigenvalue −1. Explicitly:
E(1) ∩ C(A− I ) is one-dimensional, spanned by

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

1

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

and, by inspection, the vector

v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

satisfies (A− I )v2 = v1. If we take

v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

then {v1, v3} gives a basis for E(1). Then we take

v4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,
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which spans E(−1), and observe (as we saw in Example 8 and the proof of Theorem 1.5)
that E(−1) ⊂ C(A+ I ), and so we find

v5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

−1

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

with the property that (A+ I )v5 = v4. The theory tells us that {v1, v2, v3, v4, v5} must be
a linearly independent set, hence a basis for C5, and with respect to this basis we obtain the
Jordan canonical form

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1

0 1

1

−1 1

0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Exercises 7.1

1. Suppose A is a real 2 × 2 matrix with complex eigenvalues α ± βi, and suppose v =
x − iy is the eigenvector corresponding to α + βi. (Here x, y ∈ R2.)
a. First, explain why the eigenvalues of A must be complex conjugates.

b. Show that the matrix for μA with respect to the basis {x, y} is
[
α −β
β α

]
.

2. Find the eigenvalues and eigenvectors of the following real matrices, and give bases
with respect to which the matrix is (i) diagonalized as a complex linear transformation;
(ii) in the “block diagonal” form provided by Corollary 1.3.

a.

[
2 1

−1 2

]

b.∗
[

1 1

−2 3

]

c.∗

⎡
⎢⎣

1 1 2

−1 1 0

0 0 2

⎤
⎥⎦

d.

⎡
⎢⎢⎢⎣

3 −1 3 −1

3 3 −1 −1

−1 −1 3 3

−1 3 −1 3

⎤
⎥⎥⎥⎦

e.

⎡
⎢⎢⎢⎣

3 −2 0 1

2 3 1 0

0 1 3 2

1 0 −2 3

⎤
⎥⎥⎥⎦

3. Prove Corollary 1.3. (Hint: Generalize the argument in Exercise 1.)

4. Prove Lemma 1.4.
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5.∗ Verify that, in the case of a 3 × 3 matrix A with dim N(A− λI) = 2 in the proof of
Theorem 1.5, the vectors v1, v2, v3 form a linearly independent set and that the Jordan
canonical form is as given.

6. Prove that if p(t) = −(t − λ)3 and dim N(A− λI) = 1, then we must have
N(A− λI) ⊂ C(A− λI). (Hint: If N(A− λI) ∩ C(A− λI) = {0}, use the two-
dimensional case already proved to deduce that dim N(A− λI) ≥ 2.)

7. Mimic the discussion of the examples in the proof of Theorem 1.5 to analyze the case
of a 4 × 4 matrix A with characteristic polynomial:
a.∗ p(t) = (t − λ)2(t − μ)2, (λ �= μ)

b. p(t) = (t − λ)3(t − μ), (λ �= μ)

c. p(t) = (t − λ)4
8. Determine the Jordan canonical form J of each of the following matrices A; give as

well a matrix P so that J = P−1AP .

a.∗ A =
⎡
⎢⎣

3 2 −3

−1 2 1

0 1 1

⎤
⎥⎦

b. A =
⎡
⎢⎣

3 1 −2

−1 1 2

0 0 2

⎤
⎥⎦

c. A =

⎡
⎢⎢⎢⎣

3 −1 −1 0

0 1 0 0

0 0 1 1

2 −1 −1 1

⎤
⎥⎥⎥⎦

d.∗ A =

⎡
⎢⎢⎢⎣

0 −1 −1 2

−3 −1 −1 3

1 0 2 −1

−2 −2 −1 4

⎤
⎥⎥⎥⎦

e. A =

⎡
⎢⎢⎢⎣

2 2 −1 −2

0 2 0 −1

0 1 1 −1

0 1 0 0

⎤
⎥⎥⎥⎦

9. SupposeA is ann× nmatrix with all real entries and supposeλ is a complex eigenvalue
of A, with corresponding complex eigenvector v ∈ Cn. Set S = (A− λI)(A− λI).
Prove that N(S) �= {0}. (Hint: Write v = x + iy, where x, y ∈ Rn.)

10. If w, z ∈ Cn, define their (Hermitian) dot product by

w · z =
n∑
j=1

wjzj .

a. Check that the following properties hold:

(i) w · z = z · w for all w, z ∈ Cn.

(ii) (cw) · z = c(w · z) for all w, z ∈ Cn and scalars c.

(iii) (v + w) · z = (v · z)+ (w · z) for all v,w, z ∈ Cn.

(iv) z · z ≥ 0 for all z ∈ Cn and z · z = 0 only if z = 0.

b. Defining the length of a vector z ∈ Cn by ‖z‖ = √
z · z, prove the triangle inequality

for vectors in Cn:

‖w + z‖ ≤ ‖w‖ + ‖z‖ for all w, z ∈ Cn.

11. (Gerschgorin’s Circle Theorem) LetA be a complex n× nmatrix. If λ is an eigenvalue
of A, show that λ lies in at least one of the disks |z− aii | ≤ ∑

j �=i
|aij |, i = 1, . . . , n, in

C. (Hint: Use the triangle inequality from Exercise 10.)
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12. Use Exercise 11 to show that any eigenvalue λ of an n× n complex matrixA is at most

the largest sum
n∑
j=1

|aij | as i varies from 1 to n and, similarly, at most the largest sum
n∑
i=1

|aij | as j varies from 1 to n.

13. Use Exercise 12 to show that any eigenvalue λ of a stochastic matrix (see Section 3.1
of Chapter 6) satisfies |λ| ≤ 1.

14. Let T : Cn → Cn be a linear transformation. We say v ∈ Cn is a generalized eigen-
vector of T with corresponding eigenvalue λ if v �= 0 and (T − λI)k(v) = 0 for some
positive integer k. Define the generalized λ-eigenspace

Ẽ(λ) = {v ∈ Cn : v ∈ N
(
(T − λI)k) for some positive integer k}.

a. Prove that Ẽ(λ) is a subspace of Cn.

b. Prove that T (Ẽ(λ)) ⊂ Ẽ(λ).

15. a. Suppose T (w) = λw. Prove that (T − μI)k(w) = (λ− μ)kw.

b. Suppose λ1, . . . , λk are distinct scalars and v1, . . . , vk are generalized eigenvectors
of T with corresponding eigenvalues λ1, . . . , λk , respectively. (See Exercise 14 for
the definition.) Prove that {v1, . . . , vk} is a linearly independent set. (Hint: Let ρi
be the smallest positive integer so that (T − λiI )ρi (vi ) = 0, i = 1, . . . , k. Proceed
as in the proof of Theorem 2.1 of Chapter 6. If vm+1 = c1v1 + · · · + cmvm, note
that w = (T − λm+1I )

ρm+1−1(vm+1) is an eigenvector. Using the result of part a,
calculate (T − λ1I )

ρ1(T − λ2I )
ρ2 . . . (T − λmI)ρm(w) in two ways.)

16. a. Let J be a k × k Jordan block with eigenvalue λ. Show that (J − λI)k = O.

b. (Cayley-Hamilton Theorem) Let A be an n× n matrix, and let p(t) be its charac-
teristic polynomial. Show that p(A) = O. (Hint: Use Theorem 1.5.)

c. Give the polynomial q(t) of smallest possible degree so that q(A) = O. This is
called the minimal polynomial of A. Show that p(t) is divisible by q(t).

17. Prove that the set of n vectors constructed in the proof of Theorem 1.5 is linearly inde-
pendent. (Hints: We started with a linearly independent set {w1, . . . ,wn−d}. Suppose∑
akvk +∑ ciwi +∑ dsus = 0. Multiply by A− λI and check that we get only a

linear combination of the wi , which are known to form a linearly independent set.
Conclude that all the ds and ci , i �= 1, j1 + 1, . . . , j
−1 + 1, must be 0. This leaves
only the terms involving the eigenvectors w1, . . . ,wj
−1+1, and v
+1, . . . , vd , but by
construction these form a linearly independent set.)

2 Computer Graphics and Geometry

We have seen that linear transformations model various sorts of motions of space: rotations,
reflections, shears, and even projections. But all of these motions leave the origin fixed. We
also need to be able to slide objects around and look at them from different perspectives,
especially if we want to implement the programming of computer graphics. To accomplish
this in the context of linear transformations, we introduce the clever idea of setting Rn inside
Rn+1 as a hyperplane shifted vertically off the origin.

We begin by recalling the shear transformation defined in Example 2(b) of Section 2
of Chapter 2. If a is an arbitrary real number, then we have

[
1 a

0 1

][
x1

x2

]
=
[
x1 + ax2

x2

]
.
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In particular, we calculate that the copy of the x1-axis at height x2 = 1 is transformed by
the rule [

1 a

0 1

][
x1

1

]
=
[
x1 + a

1

]
;

that is, we see the underlying function

τ(x) = x + a
in action. The function τ is not linear, but we’ve managed to “encode” it by a linear
transformation by considering the action on the line x2 = 1 (rather than the x1-axis). Such
a function is called a translation of R.

We can equally well consider translations in Rn. If a ∈ Rn is an arbitrary vector, we
define the function

τa : Rn → Rn, τa(x) = x + a.

Defining the matrix

� =

⎡
⎢⎢⎢⎢⎣

|
In a

|
0 · · · 0 1

⎤
⎥⎥⎥⎥⎦
,

we then have

�

⎡
⎢⎢⎢⎢⎣

|
x

|
1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

|
τa(x)

|
1

⎤
⎥⎥⎥⎥⎦
.

The schematic diagram in Figure 2.1 makes sense in higher dimensions, provided we in-
terpret the horizontal axis as representing Rn.

FIGURE 2.1

�
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a
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a x

�( ) = 

When we compose a linear transformation of Rn (given by an n× n matrix A) with a
translation (given by a vector a ∈ Rn), we obtain an affine transformation, which may thus
be written

f (x) = Ax + a.

It should come as no surprise that this transformation can be represented analogously by
the (n+ 1)× (n+ 1) matrix

(†) � =

⎡
⎢⎢⎢⎢⎣

|
A a

|
0 · · · 0 1

⎤
⎥⎥⎥⎥⎦
.
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As a check, note that
⎡
⎢⎢⎢⎢⎣

|
A a

|
0 · · · 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

|
x

|
1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

|
Ax + a

|
1

⎤
⎥⎥⎥⎥⎦
.

Conversely, notice that any (n+ 1)× (n+ 1) matrix of the form (†) can be interpreted as
an affine transformation of Rn, defining the affine transformation f by

�

⎡
⎢⎢⎢⎢⎣

|
x

|
1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

|
f (x)

|
1

⎤
⎥⎥⎥⎥⎦
.

EXAMPLE 1

We can represent a rotation of R2 through angle π/3 about the point (1, 0) as a product of
affine transformations. We begin by thinking about how this can be achieved geometrically:
First we translate (1, 0) to the origin, next we rotate an angle of π/3 about the origin, and
then last, we translate the origin back to (1, 0). Now we just encode each of these affine
transformations in a matrix and take the product of the respective matrices:

B =

⎡
⎢⎢⎣

1 0 1

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
2 −

√
3

2 0
√

3
2

1
2 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 −1

0 1 0

0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
2 −

√
3

2
1
2√

3
2

1
2 −

√
3

2

0 0 1

⎤
⎥⎥⎦ .

The matrix on the right-hand side represents the affine transformation of R2 defined by a

rotation by π/3 about the origin followed by a translation by the vector a =
[

1/2

−√
3/2

]
. It

may be somewhat surprising that following a rotation about the origin by a translation is
the same as rotating about some other point, but a few moments’ thought will make it seem
reasonable (see also Exercise 4).

Notice that the expression for B on the left-hand side looks like the change-of-basis
formula in R3. Indeed, if we let

P =

⎡
⎢⎢⎣

1 0 1

0 1 0

0 0 1

⎤
⎥⎥⎦ and � =

⎡
⎢⎢⎣

1
2 −

√
3

2 0
√

3
2

1
2 0

0 0 1

⎤
⎥⎥⎦ ,

then B = P�P−1. We can think of P as the change-of-basis matrix, with the old basis
given by the standard basis for R3 and the new basis given by

v1 =

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦ = e1, v2 =

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦ = e2, and v3 =

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦ .

(Notice that v3 represents the point (1, 0) in the copy of R2 passing through (0, 0, 1).)
Consider the linear transformation of R3 that rotates the v1v2-plane through π/3 and leaves
the vector v3 fixed. The matrix of this linear transformation with respect to the new basis
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is �, and, by the change-of-basis formula, its matrix with respect to the standard basis is
B = P�P−1. (It is worth emphasizing that this is very much the same way we applied the
change-of-basis formula to calculate matrices for projections and rotations in Chapter 4.)

There is one last question we should answer. Suppose we’d been given the matrix
B without any further information. How might we have discovered its interpretation as
a rotation of R2 about some point? From the 2 × 2 matrix on the upper left we see the
rotation, but how do we see the point about which we are rotating? Since that point a is left
fixed by the affine transformation, the corresponding vector

⎡
⎢⎢⎢⎢⎣

|
a

|
1

⎤
⎥⎥⎥⎥⎦

∈ R3

must be an eigenvector of our matrix B with corresponding eigenvalue 1. An easy compu-
tation gives the vector v3, as expected.

EXAMPLE 2

Consider the 3 × 3 matrix

B =

⎡
⎢⎢⎣

0 1 −1

1 0 1

0 0 1

⎤
⎥⎥⎦ .

We wish to analyze the affine transformation of R2 that B represents. (Of course, the 2 × 2
matrix [

0 1

1 0

]

is quite familiar: It is the standard matrix of the reflection across the line x1 = x2. But
suppose we didn’t even remember this!) The eigenvalues of B are 1, 1, and −1, and we
find the following bases for the eigenspaces of B:

E(−1):

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1

−1

0

⎤
⎥⎦

⎫⎪⎬
⎪⎭

E(1):

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1

1

0

⎤
⎥⎦ ,

⎡
⎢⎣

0

1

1

⎤
⎥⎦

⎫⎪⎬
⎪⎭

It now follows (why?) that μB represents a reflection about the line with direction vector[
1

1

]
and passing through

[
0

1

]
, as depicted in Figure 2.2.

FIGURE 2.2
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EXAMPLE 3

Consider next the 3 × 3 matrix

B =

⎡
⎢⎢⎣

1
2

√
3

2 1
√

3
2 − 1

2 0

0 0 1

⎤
⎥⎥⎦ .

What do eigenvalues and eigenvectors tell us about B? The characteristic polynomial
of B is p(t) = −(t − 1)2(t + 1), so the eigenvalue −1 has algebraic multiplicity 1 and
the eigenvalue 1 has algebraic multiplicity 2. We determine the following bases for the
eigenspaces of B:

E(−1):

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
2

−
√

3
2

0

⎤
⎥⎦

⎫⎪⎬
⎪⎭

E(1):

⎧⎪⎨
⎪⎩

⎡
⎢⎣

√
3

2
1
2

0

⎤
⎥⎦

⎫⎪⎬
⎪⎭

Unfortunately, the geometric multiplicity of the eigenvalue 1 is only 1. But consider the
vector

v =

⎡
⎢⎢⎣

1
2

0

1

⎤
⎥⎥⎦ ;

we have

B =

⎡
⎢⎢⎣

1
2

√
3

2 1
√

3
2 − 1

2 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
2

0

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

5
4

√
3

4

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
2

0

1

⎤
⎥⎥⎦+

√
3

2

⎡
⎢⎢⎣

√
3

2

1
2

0

⎤
⎥⎥⎦ .

That is, Bv is equal to the sum of v and a scalar multiple of the (unit) vector spanning E(1).
With respect to the basis formed by

v1 =

⎡
⎢⎢⎣

1
2

−
√

3
2

0

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

√
3

2

1
2

0

⎤
⎥⎥⎦ , and v3 =

⎡
⎢⎢⎣

1
2

0

1

⎤
⎥⎥⎦ ,

the matrix representing μB is

� =

⎡
⎢⎢⎣

−1 0 0

0 1
√

3
2

0 0 1

⎤
⎥⎥⎦ .

From this we infer that μB gives a reflection of R2 about the line spanned by v2 and then
translates by the vector

√
3

2 v2. This is called a glide reflection with axis v2.
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2.1 Isometries of R and R2

Of particular interest are the isometries of Rn: these are the functions f : Rn → Rn that
preserve distance, i.e.,

‖f (x)− f (y)‖ = ‖x − y‖ for all x, y ∈ Rn.

Lemma 2.1. Every isometry f : Rn → Rn can be written in the form

f (x) = Ax + a

for some vector a ∈ Rn and some orthogonal n× n matrix A.

Proof. Let T : Rn → Rn be defined by T (x) = f (x)− f (0). Then we observe that T (0) =
f (0)− f (0) = 0, and T is also an isometry:

‖T (x)− T (y)‖ = ‖(f (x)− f (0))− (f (y)− f (0))‖ = ‖f (x)− f (y)‖ = ‖x − y‖,
as desired. It now follows from Exercise 4.4.23 that T is a linear transformation whose
standard matrix is orthogonal.

Corollary 2.2. Every isometry of Rn is given by an (n+ 1)× (n+ 1) matrix of the form
⎡
⎢⎢⎢⎢⎣

|
A a

|
0 · · · 0 1

⎤
⎥⎥⎥⎥⎦
,

where a ∈ Rn and A is an orthogonal n× n matrix.

We can now use our experience with linear algebra to classify all isometries of R and
R2. The analogous project for R3 is left for Exercise 13. Our first result is hardly a surprise,
but it’s a good warm-up for what is to follow.

Proposition 2.3. Every isometry of R is either a translation or a reflection.

Proof. Since the only orthogonal 1 × 1 matrices are [1] and [−1], it is a matter of analyzing
the 2 × 2 matrices [

1 a

0 1

]
and

[
−1 a

0 1

]
.

We understand that the former represents a translation (by a) as it stands. What about the
latter? Since the matrix is upper triangular, we recognize that its eigenvalues are −1 and 1,
the corresponding eigenvectors being[

1

0

]
and

[
a/2

1

]
.

This tells us that the isometry in question leaves the point a/2 fixed and reflects about it.
Note that the change-of-basis formula gives[

−1 a

0 1

]
=
[

1 a
2

0 1

][
−1 0

0 1

][
1 − a

2

0 1

]
.

Multiplying by

[
x

1

]
yields

[
−1 a

0 1

][
x

1

]
=
[

1 a
2

0 1

][
−(x − a

2 )

1

]
=
[
−(x − a

2 )+ a
2

1

]
,

as one can check easily by elementary algebra.
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Life in R2 is somewhat more complicated. Let’s begin by analyzing the isometries
of R2 that fix the origin. These are given by orthogonal 2 × 2 matrices, and by Exercise
2.5.19, there are two possibilities: Either we have a rotation through angle θ , given by

(†) Aθ =
[

cos θ − sin θ

sin θ cos θ

]
,

or we have the composition of a reflection and a rotation:

(‡) A = Aθ

[
1 0

0 −1

]
=
[

cos θ sin θ

sin θ − cos θ

]
.

What are the eigenvalues of the latter matrix? Its characteristic polynomial isp(t) = t2 − 1,
and so the eigenvalues are 1 and −1. The corresponding eigenvectors are

[
sin θ

1 − cos θ

]
and

[
− sin θ

1 + cos θ

]
.

We observe first that the eigenvectors are orthogonal (but of course—after all, in this case
A is symmetric). Next, using the double-angle formulas

sin θ = 2 sin θ
2 cos θ2

cos θ = 1 − 2 sin2 θ
2 ,

we see that the vector

v =
[

cos θ2
sin θ

2

]

forms a basis for E(1), and so μA gives rise to a reflection about the line through the origin
with direction vector v, as shown in Figure 2.3.

FIGURE 2.3

e2

v

e1

T(e2)

T(e1)

θ/2

Theorem 2.4. Let A be an orthogonal 2 × 2 matrix, a ∈ R2, and

� =

⎡
⎢⎢⎣

A a

0 0 1

⎤
⎥⎥⎦ .

If detA = 1 (i.e., is of the form (†) for some θ ), then there is a matrix P of the form

P =

⎡
⎢⎢⎣

I b

0 0 1

⎤
⎥⎥⎦

so that P−1�P has one of the following forms:
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1.

⎡
⎢⎣

1 0 a1

0 1 a2

0 0 1

⎤
⎥⎦ (a translation)

2.

⎡
⎢⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎥⎦ (a rotation) .

And if detA = −1 (i.e., is of the form (‡) for some θ ), then there is a matrix P of the form

P =

⎡
⎢⎢⎣

B b

0 0 1

⎤
⎥⎥⎦ ,

where B is a rotation matrix, so that P−1�P has the one of the following forms:

3.

⎡
⎢⎣

−1 0 0

0 1 0

0 0 1

⎤
⎥⎦ (a reflection)

4.

⎡
⎢⎣

−1 0 0

0 1 a

0 0 1

⎤
⎥⎦ (a glide reflection when a �= 0).

Moreover, case 3 occurs precisely when a = a1 cos θ2 + a2 sin θ
2 = 0.

Proof. When A = I , we have case 1. Next we consider what happens when

A = Aθ =
[

cos θ − sin θ

sin θ cos θ

]
.

Then 1 is an eigenvalue of the matrix � with algebraic multiplicity 1. A corresponding

eigenvector v3 must be a scalar multiple of the vector

⎡
⎢⎢⎢⎣

|
b

|
1

⎤
⎥⎥⎥⎦ for some b ∈ R2, since 1 is not

an eigenvalue of A. Thus, {e1, e2, v3} gives a basis for R3, and with respect to that basis,
the matrix becomes that in case 2. (See Exercise 4.)

When A is an orthogonal matrix with detA = −1, then A is of the form

A =
[

cos θ sin θ

sin θ − cos θ

]

for some θ . This case is somewhat more interesting, as this matrix has eigenvalues −1 and
1, and hence the eigenvalues of � are −1, 1, and 1. When E(1) is two-dimensional, we
can diagonalize � and therefore obtain case 3. Now this occurs precisely when the matrix
� − I has rank 1, and it is a straightforward computation to check that this occurs if and
only if a is orthogonal to the vector

v =
[

cos θ2
sin θ

2

]
.
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As the reader can check (see Exercise 6), a basis for E(1) is⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

cos θ2
sin θ

2

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

a1
2
a2
2

1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
.

And it is easy to check that a basis for E(−1) is⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

sin θ
2

− cos θ2
0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
.

From this we see that � corresponds to reflection across the line passing through a/2 with
direction vector v. The rotation matrix B is

B =
[

sin θ
2 cos θ2

− cos θ2 sin θ
2

]
=
[

cosα − sin α

sin α cosα

]
for α = θ

2 − π
2 .

When E(1) is only one-dimensional, we leave it to the reader to check that, with respect
to the same basis ⎧⎪⎪⎨

⎪⎪⎩

⎡
⎢⎢⎣

sin θ
2

− cos θ2
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

cos θ2
sin θ

2

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

a1
2
a2
2

1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
,

the matrix for � becomes that given in case 4, with a = a1 cos θ2 + a2 sin θ
2 . Such a trans-

formation is called a glide reflection because it is the composition of a reflection and a
translation (“glide”) by a vector parallel to the line of reflection.

Our discussion in the proof of Theorem 2.4 establishes the following corollary.

Corollary 2.5. Every isometry of R2 is either a translation, a rotation, a reflection, or a
glide reflection.

Remark. We saw that case (4) occurs when the eigenvalue 1 has algebraic multiplicity 2
but geometric multiplicity 1. In this case, as we learned in Section 1, the Jordan canonical
form of A will be ⎡

⎢⎢⎣
−1

1 1

0 1

⎤
⎥⎥⎦ .

In our case we have a, rather than 1, in the nondiagonal slot because we require that our
third basis vector have a 1 as its third entry. (See Example 3.)

2.2 Perspective Projection and Projective Equivalence
of Conics
Any time we “view” an object, our brain is processing some sort of image (“projection,”
if you will) of it on our retina. We have dealt so far with orthogonal projections (“from
infinity”) onto a subspace. Now we explore briefly the concept of perspective projection,
in which we project from a fixed point (the eye) onto a plane (not containing the eye),4 as
shown in Figure 2.4.

4Here we consider one-eyed vision. We won’t address the geometry of binocular vision, another fascinating topic.
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FIGURE 2.4

Given a point a ∈ Rn and a hyperplane H = {ξ · x = c} ⊂ Rn, we wish to give a
formula for the projection from a onto H ,a,H , as illustrated in Figure 2.5. Given a point
x, we consider the line passing through a and x and find its intersection with H . Recalling

FIGURE 2.5

a

x

H

a,H (x)

ξ · x = c

the parametric form of a line from Chapter 1, we then see

a + t (x − a) ∈ H ⇐⇒ ξ · (a + t (x − a)
) = c,

and so, after a bit of calculation, we find that the projection of x from a into H is

(∗) a,H (x) = (ξ · x − c)a + (c − ξ · a)x
ξ · (x − a)

.

EXAMPLE 4

Let a = 0 and let H = {x3 = 1} in R3. Then

a,H (x) = x
x3

=
(
x1

x3
,
x2

x3
, 1

)
.

In case it wasn’t already abundantly clear, this is decidedly not a linear transformation.
(Note that it is undefined on points x with x3 = 0. Why?)

Earlier, we figured out how to represent affine transformations by linear transformations
(one dimension higher). The question is this: Will the same trick work here? The answer
is yes, provided we understand how to work with that extra dimension!
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Definition. Let x = (x1, . . . , xn) ∈ Rn. We say that X = (X1, . . . , Xn,Xn+1) ∈ Rn+1

is a homogeneous coordinate vector for x if

X1

Xn+1
= x1,

X2

Xn+1
= x2, . . . ,

Xn

Xn+1
= xn.

(Note, in particular, that Xn+1 �= 0 here.)

For example, (x1, . . . , xn, 1) is a homogeneous coordinate vector for x; this is the repre-
sentation we used earlier in the section.

By means of homogeneous coordinates, we can use a linear transformation T : Rn+1 →
Rn+1 to induce a nonlinear function f (not necessarily everywhere defined) on Rn, as
follows. If x ∈ Rn, we take any homogeneous coordinate vector X ∈ Rn+1 for x and
declare T (X) to be a homogeneous coordinate vector of the vector f (x) ∈ Rn. Of course,
the last entry of T (X) needs to be nonzero for this to work.

When T : Rn+1 → Rn+1 is nonsingular, the induced map f is called a projective trans-
formation of Rn, which, once again, may not be everywhere defined. When we add “points
at infinity” that correspond to homogeneous coordinate vectors withXn+1 = 0, these trans-
formations are the motions of a type of non-Euclidean geometry called projective geometry.5

Of course, for our immediate application here, we do not expect nonsingularity, since we
are interested in projections.

EXAMPLE 5

Consider the linear transformation T : R4 → R4 defined by the matrix

A =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

⎤
⎥⎥⎥⎥⎦
.

In other words,

T (x) = A

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x3

⎤
⎥⎥⎥⎥⎦
.

To determine the corresponding function f on R3, we consider

A

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x3

⎤
⎥⎥⎥⎥⎦
.

Now, provided x3 �= 0, we can say that the latter vector is a homogeneous coordinate vector
for the vector

(
x1
x3
, x2
x3
, 1
) ∈ R3, which we recognize as a,H (x) from Example 4.

5For more on this beautiful and classical topic, see Shifrin, Abstract Algebra: A Geometric Approach, Chapter 8,
or Pedoe, Geometry: A Comprehensive Course.
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EXAMPLE 6

The linear transformation T : R4 → R4 that gives projection from the point a = (a1, a2, a3)

∈ R3 to the plane H with equation ξ · x = ξ1x1 + ξ2x2 + ξ3x3 = c can be computed with
a bit of patience from our formula (∗) above. We set

A =

⎡
⎢⎢⎢⎢⎣

a1

a2

a3

1

⎤
⎥⎥⎥⎥⎦
, � =

⎡
⎢⎢⎢⎢⎣

ξ1

ξ2

ξ3

−c

⎤
⎥⎥⎥⎥⎦
, and X =

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

1

⎤
⎥⎥⎥⎥⎦
.

Note that ξ · x − c = � · X. If we set

T (X) = (� · X)A − (� · A)X,

then we have

T

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎣

|
(ξ · x − c)a + (c − ξ · a)x

|
ξ · (x − a)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

(c − ξ2a2 − ξ3a3)x1 + ξ2a1x2 + ξ3a1x3 − ca1

ξ1a2x1 + (c − ξ1a1 − ξ3a3)x2 + ξ3a2x3 − ca2

ξ1a3x1 + ξ2a3x2 + (c − ξ1a1 − ξ2a2)x3 − ca3

ξ1(x1 − a1)+ ξ2(x2 − a2)+ ξ3(x3 − a3)

⎤
⎥⎥⎥⎥⎦
,

and, thus,

a,H

⎛
⎜⎜⎝

⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎣

(c − ξ2a2 − ξ3a3)x1 + ξ2a1x2 + ξ3a1x3 − ca1
ξ1(x1 − a1)+ ξ2(x2 − a2)+ ξ3(x3 − a3)

ξ1a2x1 + (c − ξ1a1 − ξ3a3)x2 + ξ3a2x3 − ca2
ξ1(x1 − a1)+ ξ2(x2 − a2)+ ξ3(x3 − a3)

ξ1a3x1 + ξ2a3x2 + (c − ξ1a1 − ξ2a2)x3 − ca3
ξ1(x1 − a1)+ ξ2(x2 − a2)+ ξ3(x3 − a3)

⎤
⎥⎥⎥⎥⎦
.

It is fairly clear that computing with matrices and homogeneous coordinate vectors is
superior to working with such complicated rational functions.

EXAMPLE 7

The “default” view when the powerful mathematics software Mathematica draws a cube of
edge 1 centered at the origin is shown in Figure 2.6. This comes from the command

Graphics3D[Cuboid[],Boxed -> False, Axes -> True,
AxesLabel -> {"x", "y", "z"}, ViewPoint->{1.3, -2.4, 2.0}]

Note that the ViewPoint command gives the location of the point from which we “view”
the object (perhaps the point from which we project?). Another perspective is shown in
Figure 2.7, using

ViewPoint->{4.4, 2.6, -4.0}
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z

x

y

FIGURE 2.6

z

x

y

FIGURE 2.7

Of course, the folks at Mathematica don’t tell us what the viewing plane is! To explore
such issues, we refer the interested reader to Exercises 11 and 12.

Circles, ellipses, parabolas, and hyperbolas are called conic sections for a reason.
Figure 2.8 should make that plain. Using our new tools, we can now show that these figures

FIGURE 2.8

are all projectively the same. That is, with our eye at the origin in R3, the circle

x2
1 + x2

2 = 1, x3 = 1

may appear as a circle, an ellipse, a parabola, or a hyperbola, depending on what plane H
we choose as our “viewing screen.” Since we are projecting from the origin, which is the
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vertex of the cone
x2

1 + x2
2 = x2

3 ,

the projection of the circle ontoH is just the intersection of the cone with the planeH . We
consider here just the family of planes

Ht : (− sin t)x2 + (cos t)x3 = 1

(as illustrated in Figure 2.8). Since it is tricky to determine the equation of an intersection,
we make a change of coordinates in R3, depending on t , so that Ht is always given by the
plane y3 = 1 in the new coordinates y1, y2, y3. That is, let

Q =

⎡
⎢⎢⎣

1 0 0

0 cos t − sin t

0 sin t cos t

⎤
⎥⎥⎦ .

Then, as usual, x = Qy, and so the equation of the cone becomes

y2
1 + (cos 2t)(y2

2 − y2
3)− 2(sin 2t)y2y3 = 0.

Intersecting with the plane y3 = 1 gives the equation of the conic section

y2
1 + (cos 2t)y2

2 − 2(sin 2t)y2 = cos 2t.

As we know from Chapter 6, when 0 ≤ t < π/4 this curve is an ellipse (indeed, a circle when
t = 0), when t = π/4 it is a parabola, and when π/4 < t ≤ π/2 it is a hyperbola. These
are pictured in Figure 2.9 for t = 0, π/12, π/6, π/4, π/3, 5π/12, and π/2, respectively.

FIGURE 2.9

Remark. There is an alternative interpretation of the calculation we’ve just done. If we
think of X = (x1, x2, x3) as a homogeneous coordinate vector of x = (x1, x2) ∈ R2, then
the equation of the cone x2

1 + x2
2 = x2

3 becomes the equation of the circle x2
1 + x2

2 = 1
when we set x3 = 1. If we instead set x2 = 1, then we obtain the equation of the hyperbola
−x2

1 + x2
3 = 1. More interestingly, when we set x3 = √

2 − x2, we obtain the equation of
a parabola, x2

1 − 2
√

2x2 = 2.
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Exercises 7.2

1. In each case, give the 3 × 3 matrix representing the isometry of R2 and then use your
answer to fit the isometry into our classification scheme.

a.∗ First translate by

[
1

1

]
, and then rotate π/2 about the point (−1, 0).

b.∗ First reflect across the line x1 + x2 = 1, and then translate by

[
1

1

]
.

c. First rotate π/4 about the origin, and then reflect across the line x1 + x2 = 1.

2. Analyze each of the following isometries f : R2 → R2, f (x) = Ax + a (according to
the classification in Theorem 2.4).

a. A =
[

0 1

−1 0

]
, a =

[
2

0

]

b.∗ A =
[

1 0

0 −1

]
, a =

[
−1

1

]

c. A =
[

−1 0

0 1

]
, a =

[
1

0

]

d. A =
[

0 1

1 0

]
, a =

[
1

0

]

e. A = 1√
2

[
1 1

1 −1

]
, a =

[√
2 − 1

1

]

3. Use techniques of linear algebra to find all the isometries of R2 that fix the origin and
a.∗ map the x1-axis to itself.

b. map the x1-axis to the x2-axis.

4. Let θ �= 0. Show that

� =

⎡
⎢⎢⎣

cos θ − sin θ a1

sin θ cos θ a2

0 0 1

⎤
⎥⎥⎦

represents a rotation through angle θ about the point 1
2

(
a1 − a2 cot θ2 , a1 cot θ2 + a2

)
.

(Hint: To solve for the appropriate eigenvector, you might want to use Cramer’s Rule,
Proposition 2.3 of Chapter 5.)

5. Let� =

⎡
⎢⎢⎢⎢⎣

|
A a

|
0 · · · 0 1

⎤
⎥⎥⎥⎥⎦

. Prove that the eigenvalues of� consist of the eigenval-

ues of A and 1.

6. Check the details in the proof of Theorem 2.4.

7. Analyze the matrices

⎡
⎢⎣

1

0

1

⎤
⎥⎦ and

⎡
⎢⎢⎢⎣

1

1

0

1

⎤
⎥⎥⎥⎦

a. as affine transformations of R2 and R3, respectively.

b. as linear transformations of homogeneous coordinate vectors. From what points
can we interpret these as perspective projections?
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8. Prove that an affine transformation of R2 that leaves three noncollinear points fixed must
be the identity. (Hint: Represent the affine transformation by a 3 × 3 matrix �; use
part a of Exercise 1.6.11 to show that the eigenvectors of � are linearly independent.)

9. Given two triangles �PQR and �P ′Q′R′ ⊂ R2, prove that there is an affine transfor-
mation of R2 carrying one to the other.

10. a.∗ Given two trios P , Q, R and P ′, Q′, R′ of distinct points in R, prove there is a
projective transformation f of R with f (P ) = P ′, f (Q) = Q′, and f (R) = R′.

b. We say three or more points in R2 are in general position if no three of them are
ever collinear. Given two quartets P ,Q, R, S and P ′,Q′, R′, S ′ of points in general
position in R2, prove there is a projective transformation f of R2 with f (P ) = P ′,
f (Q) = Q′, f (R) = R′, and f (S) = S ′. (See Exercise 9.)

11. In this exercise we explore the problem of displaying three-dimensional images on a
two-dimensional blackboard, piece of paper, or computer screen. (A computer or good
graphics calculator will be helpful for experimentation here.)
a. Fix a plane H ⊂ R3 containing the x3-axis, say (cos θ)x1 + (sin θ)x2 = 0, and

fix a = (a1, a2, a3) /∈ H . Find the 4 × 4 matrix that represents projection from a
onto H .

b. Since we want to view on a standard screen, give a matrix that rotates H to the
x1x2-plane, sending the x3-axis to the x2-axis.

c. By multiplying the two matrices you’ve found and deleting the row of 0’s, show
that the resulting linear transformation T : R4 → R3 is given by the matrix

A =

⎡
⎢⎢⎣

a2 −a1 0 0

a3 cos θ a3 sin θ a1 cos θ + a2 sin θ 0

cos θ sin θ 0 −a1 cos θ − a2 sin θ

⎤
⎥⎥⎦ .

d. Experiment with different values of a and θ to obtain an effective perspective. You
might compute the image of the unit cube (with one vertex at the origin and edges
aligned on the coordinate axes). Pictured in Figure 2.10 are two images of the cube,
first with a = (5, 4, 3) and θ = π/6, next with a = (4, 6, 3) and θ = π/4.

FIGURE 2.10

e. What happens if you try usual orthogonal projection onto a plane (and then rotate that
plane, as before)? Show that if we take the plane with unit normal 1√

2
(cos θ, sin θ, 1),

the resulting projection R3 → R2 is given by

B =
[

− sin θ cos θ 0

− 1
2 cos θ − 1

2 sin θ 1
2

]
.
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f. Experiment as before. For example, if we take θ = π/6, then the image of the unit
cube is as pictured in Figure 2.11. What conclusions do you reach?

FIGURE 2.11

12. In this exercise we give the answer to the puzzle of how Mathematica draws its 3D
graphics. Suppose we specify a ViewPoint a ∈ R3 and tell Mathematica to draw an
object centered at the origin. The command ViewVertical specifies the direction
in R3 that “should be vertical in the final image”; the default is the usual e3-axis. (A
computer algebra system may be helpful here.)
a. Given a “viewpoint” a ∈ R3, a �= 0, letH be the plane through the origin with nor-

mal vector a. Find the matrix P representing the projection a,H in homogeneous
coordinates.

b. Find a 4 × 4 matrix R that represents the rotation of R3 carrying H to the plane
x3 = 0 and carrying the “vertical direction” inH to the e2-axis. (Hint: The “vertical
direction” in H should be the direction of the projection of e3 onto H .)

c.∗ Finally, by calculating the matrix RP , give the formula by which Mathematica
draws the picture on the e1e2-plane when we specify ViewPoint -> a.

d. Do some experimentation with Mathematica to convince yourself that we have
solved the puzzle correctly!

13. In this exercise we analyze the isometries of R3.
a. If A is an orthogonal 3 × 3 matrix with detA = 1, show that A is a rotation matrix.

(See Exercise 6.2.16.) That is, prove that there is an orthonormal basis for R3 with
respect to which the matrix takes the form

⎡
⎢⎢⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎥⎥⎦ .

b. IfA is an orthogonal 3 × 3 matrix with detA = −1, show that there is an orthonor-
mal basis for R3 with respect to which the matrix takes the form

⎡
⎢⎢⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 −1

⎤
⎥⎥⎦ .

That is, μA is the composition of a reflection across a plane with a rotation of that
plane. Such a transformation is called a rotatory reflection when θ �= 0.
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c. If A is an orthogonal 3 × 3 matrix and a ∈ R3, prove that the matrix
⎡
⎢⎢⎢⎢⎣

|
A a

|
0 0 0 1

⎤
⎥⎥⎥⎥⎦

is similar to a matrix of one of the following forms:
⎡
⎢⎢⎢⎢⎣

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 −1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

1 0 0 a1

0 1 0 a2

0 0 1 a3

0 0 0 1

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

1 0 0 a1

0 1 0 a2

0 0 −1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎣

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 a3

0 0 0 1

⎤
⎥⎥⎥⎥⎦
.

The last such matrix corresponds to what’s called a screw motion (why?).

d. Conclude that any isometry of R3 is either a rotation, a reflection, a translation, a
rotatory reflection, a glide reflection, or a screw.

3 Matrix Exponentials and Differential Equations

Another powerful application of linear algebra comes from the study of systems of ordinary
differential equations (ODEs). This turns out to be just a continuous version of the difference
equations we studied in Section 3 of Chapter 6.

For example, in the cat/mouse problem, we used a matrix A to relate the population
vector xk at time k to the population vector xk+1 at time k + 1 by the equation xk+1 = Axk .
To think of this truly as a difference equation, we consider the difference

xk+1 − xk = Axk − xk = (A− I )xk = Ãxk,

where Ã = A− I . If now, instead of measuring the population at discrete time intervals,
we consider the population vector to be given by a differentiable function6 of time, e.g.,

x(t) =
[
x1(t)

x2(t)

]
, then we get the differential equation analogue

dx
dt

= Ax(t), where
dx
dt

= x′(t) =
[
x ′

1(t)

x ′
2(t)

]
.

6Of course, the entries of a true population vector can take on only integer values, but we are taking a differentiable
model that interpolates those integer values.
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We can rewrite this as a system of linear differential equations:

dx1

dt
= a11x1(t)+ a12x2(t)

dx2

dt
= a21x1(t)+ a22x2(t).

In this case, the coefficients aij are independent of t , and so we call this a constant-coefficient
system of ODEs.

The main problem we address in this section is the following. Given ann× n (constant)
matrix A and a vector x0 ∈ Rn, we wish to find all differentiable vector-valued functions
x(t) so that

dx
dt

= Ax(t), x(0) = x0.

(The vector x0 is called the initial value of the solution x(t).)

EXAMPLE 1

Suppose n = 1, so thatA = [a] for some real number a. Then we have simply the ordinary
differential equation

dx

dt
= ax(t), x(0) = x0.

The trick of “separating variables” that the reader probably learned in her integral calculus
course leads to the solution7

dx

dt
= ax(t)

dx

x
= a dt

∫
dx

x
=
∫
a dt

ln |x| = at + c
x(t) = Ceat (where we have set C = ±ec).

Using the fact that x(0) = x0, we find that C = x0 and so the solution is

x(t) = x0e
at .

As we can easily check, dx
dt

= ax(t), so we have in fact found a solution. Do we know
there can be no more? Suppose y(t) were any solution of the original problem. Then the
function z(t) = y(t)e−at satisfies the equation

dz

dt
= dy

dt
e−at + y(t) (−ae−at) = (ay(t)) e−at + y(t) (−ae−at) = 0,

and so z(t)must be a constant function. Since z(0) = y(0) = x0, we see that y(t) = x0e
at .

The original differential equation (with its initial condition) has a unique solution.

7If the formal manipulation makes you feel uneasy, then use the chain rule to notice that 1
x(t)

dx
dt

= d
dt

ln |x(t)|.
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EXAMPLE 2

Consider perhaps the simplest possible 2 × 2 example:

dx1

dt
= ax1(t)

dx2

dt
= bx2(t)

with the initial conditions x1(0) = (x1)0, x2(0) = (x2)0. In matrix notation, this is the ODE

dx
dt

= Ax(t), x(0) = x0, where

A =
[
a 0

0 b

]
, x(t) =

[
x1(t)

x2(t)

]
, and x0 =

[
(x1)0

(x2)0

]
.

Since x1(t) and x2(t) appear completely independently in these equations, we infer from
Example 1 that the unique solution of this system of equations will be

x1(t) = (x1)0e
at , x2(t) = (x2)0e

bt .

In vector notation, we have

x(t) =
[
x1(t)

x2(t)

]
=
[
eat 0

0 ebt

]
x0 = E(t)x0,

where E(t) is the diagonal 2 × 2 matrix with entries eat and ebt . This result is easily
generalized to the case of a diagonal n× n matrix.

Before moving on to more complicated examples, we introduce some notation. Re-
member that for any positive integer k, the symbol k!, read “k factorial,” denotes the product
k! = 1 · 2 · · · · · (k − 1) · k. By convention, 0! is defined to be 1. We also recall that for any
real number x,

(†) ex =
∞∑
k=0

xk

k! = 1 + x + 1

2
x2 + 1

6
x3 + · · · + 1

k!x
k + . . .

(see Exercise 15). Now, given an n× nmatrix A, we define a new n× nmatrix eA, called
the exponential of A, by the “power series”

eA = I + A+ 1

2
A2 + 1

6
A3 + · · · + 1

k!A
k + . . . =

∞∑
k=0

Ak

k! .

In general, trying to compute this series directly is extremely difficult, because the coeffi-
cients of Ak are not easily expressed in terms of the coefficients of A; indeed, it is not at all
obvious that this power series will converge (but see Exercise 16). However, when A is a
diagonal matrix, it is easy to compute eA, because we know that if

A =

⎡
⎢⎢⎢⎢⎣

λ1

λ2

. . .

λn

⎤
⎥⎥⎥⎥⎦
, then Ak =

⎡
⎢⎢⎢⎢⎣

λk1

λk2
. . .

λkn

⎤
⎥⎥⎥⎥⎦
,
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and so eA will likewise be diagonal, with its i th diagonal entry
∞∑
k=0

λki

k! = eλi .

That is,

if A =

⎡
⎢⎢⎢⎢⎣

λ1

λ2

. . .

λn

⎤
⎥⎥⎥⎥⎦
, then eA =

⎡
⎢⎢⎢⎢⎣

eλ1

eλ2

. . .

eλn

⎤
⎥⎥⎥⎥⎦
.

Using this notation, we see that the matrix E(t) that appeared in Example 2 above is just
the matrix etA.

Indeed, when A is diagonalizable, there is an invertible matrix P so that� = P−1AP

is diagonal. Thus, A = P�P−1 and Ak = P�kP−1 for all positive integers k, and so

eA =
∞∑
k=0

Ak

k! =
∞∑
k=0

P�kP−1

k! = P

( ∞∑
k=0

�k

k!

)
P−1 = Pe�P−1.

EXAMPLE 3

Let A =
[

2 0

3 −1

]
. Then A = P�P−1, where

� =
[

2

−1

]
and P =

[
1 0

1 1

]
.

Then we have

et� =
[
e2t

e−t

]
and etA = Pet�P−1 =

[
e2t 0

e2t − e−t e−t

]
.

When A(t) is a matrix-valued function of t—or, if you prefer, a matrix whose en-
tries are functions aij (t)—we define the derivative, just as for vector functions above, by
differentiating entry by entry:8

dA

dt
= A′(t) = [a′

ij (t)
]
.

The result of Example 2 generalizes to the n× n case. Indeed, as we saw in Chapter 6,
whenever we can solve a problem for diagonal matrices, we can solve it for diagonalizable
matrices by making the appropriate change of basis. So we should not be surprised by the
following result.

8Not surprisingly, many of the usual rules of calculus have analogous matrix formulations, provided one is careful
about the order of multiplication. For example, if A(t) and B(t) are matrices whose entries are differentiable
functions of t , then d

dt
(A(t)B(t)) = A′(t)B(t)+ A(t)B ′(t). One can prove this entry by entry, but it is more

insightful to writeA′(t) = lim
h→0

(
A(t + h)− A(t))/h and use the usual proof of the product rule from first-semester

calculus.
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Proposition 3.1. LetA be a diagonalizable n× nmatrix. The general solution of the initial
value problem

(∗)
dx
dt

= Ax(t), x(0) = x0

is given by x(t) = etAx0.

Proof. As above, since A is diagonalizable, there are an invertible matrix P and a diagonal
matrix � so that A = P�P−1 and etA = Pet�P−1. Since the derivative of the diagonal
matrix

et� =

⎡
⎢⎢⎢⎢⎢⎣

etλ1

etλ2

. . .

etλn

⎤
⎥⎥⎥⎥⎥⎦

is obviously
⎡
⎢⎢⎢⎢⎢⎣

d
dt
etλ1

d
dt
etλ2

. . .

d
dt
etλn

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

λ1e
tλ1

λ2e
tλ2

. . .

λne
tλn

⎤
⎥⎥⎥⎥⎥⎦

= �et�,

then we have

d

dt

(
etA
) = d

dt

(
Pet�P−1

) = P

(
d

dt
et�
)
P−1

= P
(
�et�

)
P−1

= (P�P−1)(P et�P−1) = AetA.

We can now check that x(t) = etAx0 is indeed a solution:

dx
dt

= d

dt

(
etAx0

) = (AetA)x0 = A(etAx0) = Ax(t),

as required.
Now suppose that y(t) is a solution of the equation (∗), and consider the vector function

z(t) = e−tAy(t). Then, by the product rule, we have

dz
dt

= d

dt

(
e−tA
)
y(t)+ e−tA

(dy
dt

)

= −Ae−tAy(t)+ e−tA(Ay(t)
) = (−Ae−tA + e−tAA)y(t)

= 0,

since Ae−tA = e−tAA (why?). This implies that z(t) must be a constant vector, and so

z(t) = z(0) = y(0) = x0,

whence y(t) = etAz(t) = etAx0 for all t , as required.

Remark. A more sophisticated interpretation of this result is the following: If we view the
system (∗) of ODEs in a coordinate system derived from the eigenvectors of the matrix A,
then the system is uncoupled.
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EXAMPLE 4

Continuing Example 3, we see that the general solution of the system dx
dt

= Ax(t) has the
form

x(t) =
[
x1(t)

x2(t)

]
= etA

[
c1

c2

]
for appropriate constants c1 and c2

=
[

c1e
2t

c1e
2t − c1e

−t + c2e
−t

]
= c1e

2t

[
1

1

]
+ (c2 − c1)e

−t
[

0

1

]
.

Of course, this is the expression we get when we write

x(t) = etA

[
c1

c2

]
= P

(
et�P−1

[
c1

c2

])

and obtain the familiar linear combination of the columns of P (which are the eigenvectors
of A). If, in particular, we wish to study the long-term behavior of the solution (see the
discussion in Section 3 of Chapter 6), we observe that lim

t→∞ e
−t = 0 and lim

t→∞ e
2t = ∞, so that

x(t) behaves like c1e
2t

[
1

1

]
as t → ∞. In general, this type of analysis of diagonalizable

systems is called normal mode analysis, and the vector functions

e2t

[
1

1

]
and e−t

[
0

1

]

corresponding to the eigenvectors are called the normal modes of the system.

To emphasize the analogy with the solution of difference equations in Section 3 of
Chapter 6 and the formula (∗) on p. 279, we rephrase Proposition 3.1 so as to highlight the
normal modes.

Corollary 3.2. Suppose A is diagonalizable, with eigenvalues λ1, . . . , λn and correspond-
ing eigenvectors v1, . . . , vn, and write A = P�P−1, as usual. Then the solution of the
initial value problem

dx
dt

= Ax(t), x(0) = x0

is

x(t) = etAx0 = Pet�(P−1x0)

=

⎡
⎢⎢⎣

|
v1

|

|
v2

|
· · ·

|
vn

|

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

eλ1t

eλ2t

. . .

eλnt

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c1

c2
...

cn

⎤
⎥⎥⎥⎥⎥⎦

(††)

= c1e
λ1tv1 + c2e

λ2tv2 + · · · + cneλntvn,
where

P−1x0 =

⎡
⎢⎢⎢⎢⎢⎣

c1

c2
...

cn

⎤
⎥⎥⎥⎥⎥⎦
.

Note that the general solution is a linear combination of the normal modes eλ1tv1, . . . , e
λntvn.
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Even when A is not diagonalizable, we may differentiate the exponential series term
by term9 to obtain

d

dt

(
etA
) = d

dt

(
I + tA+ t2

2!A
2 + t3

3!A
3 + · · · + tk

k!A
k + tk+1

(k + 1)!A
k+1 + . . .

)

= A+ tA2 + t2

2!A
3 + · · · + tk−1

(k − 1)!A
k + tk

k!A
k+1 + . . .

= A
(
I + tA+ t2

2!A
2 + · · · + tk−1

(k − 1)!A
k−1 + tk

k!A
k + . . .

)
= AetA.

Thus, we have the following theorem.

Theorem 3.3. Suppose A is an n× n matrix. Then the unique solution of the initial value
problem

dx
dt

= Ax(t), x(0) = x0

is x(t) = etAx0.

EXAMPLE 5

Consider the differential equation dx
dt

= Ax(t) when

A =
[

0 −1

1 0

]
.

The unsophisticated (but tricky) approach is to write this system out explicitly:

dx1

dt
= −x2(t)

dx2

dt
= x1(t)

and differentiate again, obtaining

d2x1

dt2
= −dx2

dt
= −x1(t)

(∗∗)
d2x2

dt2
= dx1

dt
= −x2(t).

That is, our vector function x(t) satisfies the second-order differential equation

d2x
dt2

= −x(t).

Now, the equations (∗∗) have the “obvious” solutions

x1(t) = a1 cos t + b1 sin t and x2(t) = a2 cos t + b2 sin t

for some constants a1, a2, b1, and b2 (although it is far from obvious that these are the
only solutions). Some information was lost in the process; in particular, since dx1

dt
= x2, the

constants must satisfy the equations

a2 = −b1 and b2 = a1.

9One cannot always differentiate infinite sums term by term, but it is proved in an analysis course that it is valid
to do so with power series such as this.
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That is, the vector function

x(t) =
[
x1(t)

x2(t)

]
=
[
a cos t − b sin t

a sin t + b cos t

]
=
[

cos t − sin t

sin t cos t

][
a

b

]

gives a solution of the original differential equation.
On the other hand, Theorem 3.3 tells us that the general solution should be of the form

x(t) = etAx0,

and so we suspect that

e

⎛
⎜⎝t

⎡
⎢⎣

0 −1

1 0

⎤
⎥⎦

⎞
⎟⎠

=
[

cos t − sin t

sin t cos t

]

should hold. Well,

etA = I + tA+ t2

2!A
2 + t3

3!A
3 + t4

4!A
4 + . . .

=
[

1 0

0 1

]
+ t
[

0 −1

1 0

]
+ t2

2!

[
−1 0

0 −1

]
+ t3

3!

[
0 1

−1 0

]
+ t4

4!

[
1 0

0 1

]
+ . . .

=
⎡
⎣1 − t2

2! + t4

4! + . . . −t + t3

3! − t5

5! + . . .
t − t3

3! + t5

5! + . . . 1 − t2

2! + t4

4! + . . .

⎤
⎦ .

Since the power series expansions (Taylor series) for sine and cosine are, indeed,

sin t = t − 1

3! t
3 + 1

5! t
5 + · · · + (−1)k

1

(2k + 1)! t
2k+1 + . . .

cos t = 1 − 1

2! t
2 + 1

4! t
4 + · · · + (−1)k

1

(2k)! t
2k + . . . ,

the formulas agree.
Another approach to computing etA is to diagonalizeA over the complex numbers (the

first part of Section 1 is needed here). The characteristic polynomial of A is p(t) = t2 + 1,
with roots ±i. That is, the eigenvalues of A are i and −i, with corresponding eigenvectors

v1 =
[

1

−i

]
and v2 =

[
1

i

]
,

as the reader can easily check. That is,

A = P�P−1, where � =
[
i 0

0 −i

]
and P =

[
1 1

−i i

]
.

Thus,

etA = Pet�P−1 =
[

1 1

−i i

][
eit 0

0 e−it

]
1

2

[
1 i

1 −i

]

= 1

2

[
eit + e−it i(eit − e−it )

−i(eit − e−it ) eit + e−it
]
.
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Now comes one of the great mathematical relationships of all time, the discovery of which
is usually attributed to Euler:10 If we substitute it for x in the equation (†) on p. 333, we t
obtain

eit =
∞∑
k=0

(it)k

k! = 1 + it − 1

2! t
2 − i 1

3! t
3 + 1

4! t
4 + . . .

=
(

1 − 1

2! t
2 + 1

4! t
4 + . . .

)
+ i
(
t − 1

3! t
3 + 1

5! t
5 + . . .

)
= cos t + i sin t.

Then it follows immediately that

etA = 1

2

[
eit + e−it i(eit − e−it )

−i(eit − e−it ) eit + e−it
]

=
[

cos t − sin t

sin t cos t

]
,

exactly as before.

EXAMPLE 6

Consider the matrix

A =
[

1 2

−2 1

]
,

whose characteristic polynomial is p(t) = t2 − 2t + 5. Thus, the eigenvalues of A are
1 ± 2i, with respective eigenvectors

v1 =
[

1

i

]
and v2 =

[
1

−i

]
.

The general solution of the differential equation dx
dt

= Ax is given by

x(t) = c1e
(1+2i)t

[
1

i

]
+ c2e

(1−2i)t

[
1

−i

]

= c1e
t (cos 2t + i sin 2t)

[
1

i

]
+ c2e

t (cos 2t − i sin 2t)

[
1

−i

]
,

and, separating this expression into its real and imaginary parts, we obtain

= (c1 + c2)e
t

[
cos 2t

− sin 2t

]
+ i(c1 − c2)e

t

[
sin 2t

cos 2t

]

= et

[
cos 2t sin 2t

− sin 2t cos 2t

][
c1 + c2

i(c1 − c2)

]
.

10Although Euler published this in 1743, the result was apparently first discovered by Cotes in 1714. See Maor,
e: The Story of a Number.
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Since the matrixA is real, the real and imaginary parts of x(t)must be solutions, and indeed,
the general solution is a linear combination of the normal modes

et

[
cos 2t

− sin 2t

]
and et

[
sin 2t

cos 2t

]
.

Solution curves are spirals emanating from the origin (as t → −∞) with exponentially
increasing radius.

EXAMPLE 7

Let’s now consider the case of a non-diagonalizable matrix, such as

A =
[

2 1

0 2

]
.

The system

dx1

dt
= 2x1 + x2

dx2

dt
= 2x2

is already partially uncoupled, so we know that x2(t) must take the form x2(t) = ce2t for
some constant c. Now, in order to find x1(t), we must solve the inhomogeneous ODE

dx1

dt
= 2x1(t)+ ce2t .

In elementary differential equations courses, one is taught to look for a solution of the form

x1(t) = ae2t + bte2t ;
in this case,

dx1

dt
= (2a + b)e2t + (2b)te2t = 2x1(t)+ be2t ,

and so taking b = c gives the desired solution to our equation. That is, the solution to the
system is the vector function

x(t) =
[
ae2t + cte2t

ce2t

]
=
[
e2t te2t

0 e2t

][
a

c

]
.

The explanation of the trick is quite simple. Let’s calculate the matrix exponential etA

by writing

A =
[

2 0

0 2

]
+
[

0 1

0 0

]
= 2I + B, where B =

[
0 1

0 0

]
.

The powers of A are easy to compute because B2 = 0: By the binomial theorem (see
Exercise 2.1.15),

(2I + B)k = 2kI + k2k−1B,
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and so

etA =
∞∑
k=0

tk

k!A
k =

∞∑
k=0

tk

k!
(
2kI + k2k−1B

)

=
∞∑
k=0

(2t)k

k! I +
∞∑
k=0

tk

k!
(
k2k−1

)
B

= e2t I + t
∞∑
k=1

(2t)k−1

(k − 1)!B = e2t I + t
∞∑
k=0

(2t)k

k! B

= e2t I + te2tB =
[
e2t te2t

0 e2t

]
.

A similar phenomenon occurs with any matrix in Jordan canonical form (see Exercises 4
and 8).

Let’s consider the general nth-order linear ODE with constant coefficients:

(�) y(n)(t)+ an−1y
(n−1)(t)+ · · · + a2y

′′(t)+ a1y
′(t)+ a0y(t) = 0.

Here a0, a1, . . . , an−1 are scalars, and y(t) is assumed to be n-times differentiable; y(k)(t)
denotes its kth derivative. We can use the power of Theorem 3.3 to derive the following
general result. (See Section 6 of Chapter 3 for a discussion of the vector space C∞(I) of
infinitely differentiable functions on an interval I.)

Theorem 3.4. Let n be a positive integer. The set of solutions of the nth-order ODE (�) is
an n-dimensional subspace of C∞(R), the vector space of infinitely differentiable functions
defined on R. In particular, the initial value problem

y(n)(t)+ an−1y
(n−1)(t)+ · · · + a2y

′′(t)+ a1y
′(t)+ a0y(t) = 0

y(0) = c0, y ′(0) = c1, y ′′(0) = c2, . . . , y(n−1)(0) = cn−1

has a unique solution.

Proof. The trick is to concoct a way to apply Theorem 3.3. We introduce the vector function
x(t) defined by

x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(t)

y ′(t)
y ′′(t)
...

y(n−1)(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and observe that it satisfies the first-order system of ODEs

dx
dt

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y ′(t)
y ′′(t)
y ′′′(t)
...

y(n)(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

0 0 0
. . . 0

...
...

...
. . .

...

−a0 −a1 −a2 · · · −an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(t)

y ′(t)
y ′′(t)
...

y(n−1)(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Ax(t),
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where A is the obvious matrix of coefficients. We infer from Theorem 3.3 that the general
solution is x(t) = etAx0, so

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(t)

y ′(t)
y ′′(t)
...

y(n−1)(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= etA

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0

c1

c2

...

cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= c0v1(t)+ c1v2(t)+ · · · + cn−1vn(t),

where vj (t) are the columns of etA. In particular, if we let q1(t), . . . , qn(t) denote the first
entries of the vector functions v1(t), . . . , vn(t), respectively, we see that

y(t) = c0q1(t)+ c1q2(t)+ · · · + cn−1qn(t);
that is, the functions q1, . . . , qn span the vector space of solutions of the differential equation
(�). Note that these functions are infinitely differentiable since the entries of etA are. Last,
we claim that these functions are linearly independent. Suppose that for some scalars
c0, c1, . . . , cn−1, we have

y(t) = c0q1(t)+ c1q2(t)+ · · · + cn−1qn(t) = 0 for all t.

Then, differentiating, we have the same linear relation among all of the kth derivatives of
q1, . . . , qn, for k = 1, . . . , n− 1, and so we have

etA

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0

c1

c2

...

cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= c0v1(t)+ c1v2(t)+ · · · + cn−1vn(t) = 0.

Since etA is an invertible matrix (see Exercise 13), we infer that c0 = c1 = · · · = cn−1 = 0,
and so {q1, . . . , qn} is linearly independent.

EXAMPLE 8

Let

A =
[
−3 2

2 −3

]
,

and consider the second -order system of ODEs

d2x
dt2

= Ax, x(0) = x0,
dx
dt
(0) = x′

0.

The experience we gained in Example 5 suggests that if we can uncouple this system (by
finding eigenvalues and eigenvectors), we should expect to find normal modes that are
sinusoidal in nature.

The characteristic polynomial of A is p(t) = t2 + 6t + 5, and so its eigenvalues are
λ1 = −1 and λ2 = −5, with corresponding eigenvectors

v1 =
[

1

1

]
and v2 =

[
1

−1

]
.



3 Matrix Exponentials and Differential Equations 343

(Note, as a check, that because A is symmetric, the eigenvectors are orthogonal.) As usual,
we write P−1AP = �, where

� =
[
−1

−5

]
and P =

[
1 1

1 −1

]
.

Let’s make the “uncoupling” change of coordinates y = P−1x, i.e.,

y =
[
y1

y2

]
= 1

2

[
1 1

1 −1

][
x1

x2

]
.

Then the system of differential equations becomes

d2y
dt2

= P−1 d
2x
dt2

= P−1Ax = �P−1x = �y,

i.e.,

d2y1

dt2
= −y1

d2y2

dt2
= − 5y2,

whose general solution is

y1(t) = a1 cos t + b1 sin t

y2(t) = a2 cos
√

5t + b2 sin
√

5t.

This means that in the original coordinates, we have x = Py, i.e.,

x(t) =
[
x1(t)

x2(t)

]
=
[

1 1

1 −1

][
a1 cos t + b1 sin t

a2 cos
√

5t + b2 sin
√

5t

]

= (a1 cos t + b1 sin t)

[
1

1

]
+ (a2 cos

√
5t + b2 sin

√
5t)

[
1

−1

]
.

The four constants can be determined from the initial conditions x0 and x′
0. For example,

if we start with

x0 =
[

1

0

]
and x′

0 =
[

0

0

]
,

then a1 = a2 = 1
2 and b1 = b2 = 0. Note that the form of our solution looks very much like

the normal mode decomposition of the solution (††) of the first-order system on p. 336.
A physical system that leads to this differential equation is the following. Hooke’s Law

says that a spring with spring constant k exerts a restoring force F = −kx on a massm that
is displaced x units from its equilibrium position (corresponding to the “natural length” of
the spring). Now imagine a system, as pictured in Figure 3.1, consisting of two masses (m1

andm2) connected to each other and to walls by three springs (with spring constants k1, k2,
and k3). Denote by x1 and x2 the displacement of masses m1 and m2, respectively, from

FIGURE 3.1

k1 k3k2
m2m1
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equilibrium position. Hooke’s Law, as stated above, and Newton’s second law of motion
(“force = mass × acceleration”) give us the following system of equations:

m1
d2x1

dt2
= −k1x1 + k2(x2 − x1) = − (k1 + k2)x1 + k2x2

m2
d2x2

dt2
= k2(x1 − x2)− k3x2 = k2x1 − (k2 + k3)x2.

Setting m1 = m2 = 1, k1 = k3 = 1, and k2 = 2 gives the system of differential equations
with which we began. Here the normal modes correspond to sinusoidal motion with x1 = x2

(so we observe the masses moving “in parallel,” the middle spring staying at its natural
length) and frequency 1 and to sinusoidal motion with x1 = −x2 (so we observe the masses
moving “in antiparallel,” the middle spring compressing symmetrically) and frequency

√
5.

The general solution is a superposition of these two motions.
In Exercise 11 we ask the reader to solve this problem by converting it to a system of

first-order differential equations, as in the proof of Theorem 3.4.

Exercises 7.3

1. Calculate etA and use your answer to solve dx
dt

= Ax, x(0) = x0.

a.∗ A =
[

1 5

2 4

]
, x0 =

[
6

−1

]

b. A =
[

0 1

1 0

]
, x0 =

[
1

3

]

c. A =
[

1 3

3 1

]
, x0 =

[
5

1

]

d.∗ A =
[

1 1

−1 3

]
, x0 =

[
2

−1

]

e.∗ A =
⎡
⎢⎣

−1 1 2

1 2 1

2 1 −1

⎤
⎥⎦, x0 =

⎡
⎢⎣

2

0

4

⎤
⎥⎦

f. A =
⎡
⎢⎣

1 −2 2

−1 0 −1

0 2 −1

⎤
⎥⎦, x0 =

⎡
⎢⎣

3

−1

−4

⎤
⎥⎦

2. Solve d2x
dt2

= Ax, x(0) = x0, dx
dt
(0) = x′

0.

a.∗ A =
[

1 5

2 4

]
, x0 =

[
7

0

]
, x′

0 =
[

−5

2

]

b. A =
[

0 1

1 0

]
, x0 =

[
−2

2

]
, x′

0 =
[

1

3

]

c. A =
[

1 3

3 1

]
, x0 =

[
−2

4

]
, x′

0 =
[

2 − 3
√

2

2 + 3
√

2

]

d.∗ A =
[

0 1

0 0

]
, x0 =

[
1

2

]
, x′

0 =
[

2

1

]

3. Find the motion of the two-mass, three-spring system in Example 8 when
a. m1 = m2 = 1 and k1 = k3 = 1, k2 = 3

b. m1 = m2 = 1 and k1 = 1, k2 = 2, k3 = 4

c.∗ m1 = 1, m2 = 2, k1 = 1, and k2 = k3 = 2
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4.∗ Let

J =

⎡
⎢⎢⎣

2 1

2 1

2

⎤
⎥⎥⎦ .

Calculate etJ .

5.∗ By mimicking the proof of Theorem 3.4, convert the following second-order differential
equations into first-order systems and use matrix exponentials to solve them.
a. y ′′(t)− y ′(t)− 2y(t) = 0, y(0) = −1, y ′(0) = 4

b. y ′′(t)− 2y ′(t)+ y(t) = 0, y(0) = 1, y ′(0) = 2

6. Check that if A is an n× n matrix and the n× n differentiable matrix function E(t)
satisfies dE

dt
= AE(t) and E(0) = I , then E(t) = etA for all t ∈ R.

7. Verify that d
dt

sin t = cos t and d
dt

cos t = − sin t by differentiating the power series
expansions of sin and cos.

8. a. Consider the n× n matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

0 1
. . .

. . .

0 1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Calculate B2, B3, . . . , Bn. (Hint: Bn = O.)

b. Let J be an n× n Jordan block with eigenvalue λ. Show that

etJ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

eλt teλt 1
2 t

2eλt · · · 1
(n−1)! t

n−1eλt

eλt teλt · · · 1
(n−2)! t

n−2eλt

. . .
. . .

...

eλt teλt

eλt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(Hint: Write J = λI + B, and use Exercise 2.1.15 to find J k .)

9. Use the results of Exercise 8 and Theorem 3.4 to give the general solution of the
differential equations:
a. y ′′(t)− 2λy ′(t)+ λ2y(t) = 0

b. y ′′′(t)− 3λy ′′(t)+ 3λ2y ′(t)− λ3y(t) = 0

c. y(4) − 4λy ′′′(t)+ 6λ2y ′′(t)− 4λ3y ′(t)+ λ4y(t) = 0

10. Let a, b ∈ R. Convert the constant coefficient second-order differential equation

y ′′(t)+ ay ′(t)+ by(t) = 0

into a first-order system by letting x(t) =
[
y(t)

y ′(t)

]
. Considering separately the cases

a2 − 4b �= 0 and a2 − 4b = 0, use matrix exponentials to find the general solution.
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11. By introducing the vector function

z(t) =

⎡
⎢⎢⎢⎢⎣

x1(t)

x2(t)

x ′
1(t)

x ′
2(t)

⎤
⎥⎥⎥⎥⎦
,

show that the second-order system d2x
dt2

= Ax(t) in Example 8 can be expressed as a
first-order system dz

dt
= Bz(t), where

B =

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−3 2 0 0

2 −3 0 0

⎤
⎥⎥⎥⎥⎦
.

Find the eigenvalues and eigenvectors of B, calculate etB , and solve the original prob-
lem. (Hint: Part c of Exercise 5.1.9 gives a slick way to calculate the characteristic
polynomial of B, but it’s not too hard to do so directly.)

12. Find the solutions of the systems d2x
dt2

= Ax(t) in Exercise 2 by converting them to
first-order systems, as in Exercise 11.

13. Let A be a square matrix.
a. Prove that AetA = etAA.

b. Prove that (eA)−1 = e−A. (Hint: Differentiate the product etAe−tA.)

c. Prove that ifA is skew-symmetric (i.e.,AT = −A), then eA is an orthogonal matrix.

14. Prove that det(eA) = etrA. (Hint: First assumeA is diagonalizable. In the general case,
apply the result of Exercise 6.2.15, which also works with complex matrices.)

15. (For those who’ve thought about convergence issues) Check that the power series
expansion

f (x) =
∞∑
k=0

xk

k!
converges for any real number x and that f (x) = ex , as follows.
a. Fix x �= 0 and choose an integer K so that K ≥ 2|x|. Then show that for k > K ,

we have |x|k
k! ≤ C ( 1

2

)k−K
, where C = |x|

K
· . . . · |x|

2 · |x|
1 is a fixed constant.

b. Conclude that the series
∞∑

k=K+1

|x|k
k! is bounded by the convergent geometric series

C
∞∑
j=1

1
2j and therefore converges and, thus, that the entire original series converges

absolutely.

c. It is a fact that every convergent power series may be differentiated (on its interval of
convergence) term by term to obtain the power series of the derivative (see Spivak,
Calculus, Chapter 24). Check that f ′(x) = f (x) and deduce that f (x) = ex .

16. (For those who’ve thought about convergence issues) Check that the power series
expansion for eA converges for any n× n matrix, as follows. (Thinking of the vector
space Mn×n of n× n matrices as Rn

2
makes what follows less mysterious.)

a. If A = [aij
]
, set ‖A‖ =

√
n∑

i,j=1
a2
ij . Prove that

(i) ‖cA‖ = |c|‖A‖ for any scalar c

(ii) ‖A+ B‖ ≤ ‖A‖ + ‖B‖ for any A,B ∈ Mn×n
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(iii) ‖AB‖ ≤ ‖A‖‖B‖ for any A,B ∈ Mn×n. (Hint: Express the entries of the
matrix product in terms of the row vectors Ai and the column vectors bj .) In
particular, deduce that ‖Ak‖ ≤ ‖A‖k for all positive integers k.

b. It is a fact from analysis that if vk ∈ RN is a sequence of vectors in RN with the

property that
∞∑
k=1

‖vk‖ converges (in R), then
∞∑
k=1

vk converges (in RN ). Using this

fact, prove that
∞∑
k=0

Ak

k! converges for any matrix A ∈ Mn×n.

c. (For those who know what a Cauchy sequence is) Prove the fact stated in part b.

HISTORICAL NOTES
The Jordan of the Jordan canonical form is not Wilhelm Jordan, mentioned in earlier his-
torical notes, but Camille Jordan (1838–1922), a brilliant French mathematician. Jordan
was interested in algebra and its application to geometry. In particular, he studied algebraic
objects called groups, which are used to study symmetry—in Jordan’s case, the structure of
crystals. In 1870, Jordan published his most important work, a summary of group theory
and related algebraic notions, in which he introduced the “canonical form” for matrices of
transformations that now bears his name. At the time, mathematicians were very active in
many countries. Given the lack of modern communication methods, it was not uncommon
for someone to “discover” a result that had already been discovered. The history is fuzzy,
but a number of different people, including Karl Weierstrass (1815–1897), Henry Smith
(1826–1883), and Hermann Grassmann (1809–1877), might also be given credit. Ferdi-
nand Frobenius (1849–1917), publishing after Jordan, explained the Jordan canonical form
in its most general terms.

In this chapter you also encountered a contemporary application of linear algebra to
projection on a computer screen or, more generally speaking, to the concept of perspective.
Questions about perspective date back to the ancient Greeks. Euclid (ca. 325–265 BCE), in
one of his many lasting works, Optics, raised numerous questions on perspective, wondering
how simple geometric objects such as a circle appear when viewed from different planes.

Later discourses on perspective can be found during the fifteenth and sixteenth cen-
turies, but not from mathematicians. The painter Leonardo Da Vinci (1452–1519) thought
of painting as a projection of the three-dimensional world onto a two-dimensional world and
sought the best way to perform this “mapping.” The Italian architect Fillipo Brunelleschi
(1377–1446) formulated perspective in a mathematical way and defined the concept of the
“vanishing point,” that place where parallel lines meet in one’s view. It was the German
scientist and astronomer Johannes Kepler (1571–1630) who adopted the interpretation that
there was a point at infinity through which lines could be drawn.

Kepler’s idea paved the way for a mathematical point of view of perspective and
projection, leading to the field called projective geometry. His work led to study by Girard
Desargues (1591–1661), René Descartes (1597–1650), and Étienne Pascal (1588–1651)
and his son, Blaise (1623–1662). The field then lay dormant until the early nineteenth
century, at which time Jean-Victor Poncelet (1788–1867) did seminal work on projective
duality.
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FOR FURTHER READING

More on Linear Algebra
Bretscher, Otto, Linear Algebra with Applications, Third Edition, Prentice Hall, 2004. A

bit more depth on dynamical systems, discrete and continuous.
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An advanced book that includes a proof of the algorithm based on iterating the QR
decomposition to calculate eigenvalues and eigenvectors numerically.
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Mac Tutor History of Mathemathics Archive. University of St. Andrews, Scotland. http://

www-history.mcs.st-and.ac.uk/. An informative, searchable, and amazingly compre-
hensive resource.
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ANSWERS TO SELECTED EXERCISES

1.1.3 (4, 3, 7), (0, 5,−1), (2,−1, 3)

1.1.5 a., b. yes; c. no

1.1.6 b. x = (−1, 2)+ t (3, 1); f. x = (1, 2, 1)+ t (1,−1,−1) ; h. x = (1, 1, 0,−1)+
t (1,−2, 3,−1)

1.1.8 a. no; b., c. yes

1.1.9 a., c. yes; b., d. no

1.1.10 b. x = (1, 1, 1)+ s(−3, 0, 1)+ t (1, 3, 1)
1.1.12 The planes P1 and P4 are the same. Note that (0, 2, 1) = (1, 1, 0)+ 1(1, 0, 1)+

1(−2, 1, 0); both vectors (1,−1,−1) and (3,−1, 1) are in the plane spanned by
(1, 0, 1) and (−2, 1, 0). Thus, every point of P4 lies in the plane P1. On the
other hand, (1, 1, 0) = (0, 2, 1)+ 1(1,−1,−1)+ 0(3,−1, 1), and both vectors
(1, 0, 1) and (−2, 1, 0) are in the plane spanned by (1,−1,−1) and (3,−1, 1).
So every point of P1 lies in the plane P4. This means that P1 = P4. Similarly,
P2 = P3.

1.1.15 The battle plan is to let
−→
AB = x and

−→
AC = y and then to express

−→
AE and−→

AQ as linear combinations of x and y. We are given the facts that
−→
AD = 2

3 x

and
−→
CE = 2

5

−→
CB = 2

5 (x − y). Therefore,
−→
AE = −→

AC + −→
CE = y + 2

5 (x − y) =
2
5 x + 3

5 y = 1
5 (2x + 3y). On the other hand, becauseQ is the midpoint of CD, we

have
−→
AQ = −→

AC + 1
2

−→
CD = y + 1

2

(
2
3 x − y

) = 1
2 y + 1

3 x = 1
6 (2x + 3y). Compar-

ing the final expressions for
−→
AE and

−→
AQ, we see that

−→
AQ = 5

6

−→
AE, so c = 5/6.

1.1.23 Suppose that � and P intersect; then there must be a point, x, contained in both. This
means that there are real numbers r , s, and t satisfying x = x0 + rv = su + tv.
Then x0 = su + tv − rv = su + (t − r)v, so x0 ∈ Span (u, v), whence x0 ∈ P.

1.2.1 c. −25, θ = arccos(−5/13); f. 2, θ = arccos(1/5)

1.2.2 c. − 5
13 (7,−4), − 5

13 (1, 8); f. (−1, 0, 1), 1
25 (3,−4, 5)

1.2.4 arccos
√

2/3 ≈ 0.62 radians ≈ 35.3◦

1.2.6 Since θ = arccos(−1/6), we have x · y = ‖x‖‖y‖ cos θ = −1.
Then (x + 2y) · (x − y) = ‖x‖2 − x · y + 2(y · x)− 2‖y‖2 = 9 + 1 − 2 − 8 =
0, so (x + 2y) and (x − y) are orthogonal, by definition.

1.2.10 π/6

1.2.14 Let x = −→
CA and y = −→

CB. Then
−→
AB = y − x, and

‖−→AB‖2 = ‖y − x‖2 = ‖y‖2 − 2y · x + ‖x‖2 = a2 − 2ab cos θ + b2 .

1.3.1 b. x1 − x2 + x3 = 1; d. x1 − 2x2 + x3 = 1; f. x1 + x2 + x3 + x4 = 0

1.3.2 a., d. x1 + 2x2 − x3 = 3; b., c. x1 + 2x2 − x3 = 2

1.3.3 c. x = (5, 0, 0, 0)+ x2(−1, 1, 0, 0)+ x3(1, 0, 1, 0)+ x4(−2, 0, 0, 1); d. x =
(4, 0, 0, 0)+ x2(2, 1, 0, 0)+ x3(−3, 0, 1, 0)+ x4(0, 0, 0, 1)
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1.3.4 c. 1/
√

3; e. 2/9

1.3.6 a. x = x2(−5, 1, 0)+ x3(2, 0, 1); b. (3, 0, 0), x = (3, 0, 0)+ x2(−5, 1, 0)+
x3(2, 0, 1); c. x = x2(−5, 1, 0, 0)+ x3(2, 0, 1, 0)+ x4(−1, 0, 0, 1),
x = (3, 0, 0, 0)+ x2(−5, 1, 0, 0)+ x3(2, 0, 1, 0)+ x4(−1, 0, 0, 1)

1.3.7 a. a = (2,−3). b. |c|/‖a‖ = 5/
√

13. Remember that this comes from choosing
a point x0 on the line, say x0 = (1,−1), and projecting the vector x0 onto the
normal vector a. c. The line through 0 with direction vector a has parametric
equation x = t (2,−3). This line intersects the given line when 2(2t)− 3(−3t) =
5, i.e., when t = 5/13. Thus, p = 5

13 (2,−3) is the point on the line closest to the
origin. ‖p‖ = 5/

√
13 checks with our answer to part b. d. We choose a point

x0 = (1,−1) on the line and find the length of the projection of x0 − w onto the
normal vector a: ‖proja(x0 − w)‖ = |a · (x0 − w)|/‖a‖ = 2/

√
13. e. The line

through w with direction vector a has parametric equation x = (3, 1)+ t (2,−3).
This line intersects the given line when 2(3 + 2t)− 3(1 − 3t) = 5, i.e., when
t = 2/13. This gives the point q = w + 2

13 a on the line. The distance is therefore
‖q − w‖ = ‖ 2

13 a‖ = 2√
13

.

1.3.10 a. ax1 + bx2 = 0 (a and b arbitrary real numbers, not both 0)

1.4.1 b. x = (−2, 0, 1)+ x2(−2, 1, 0)

1.4.2 b., c., d., f., g. are in echelon form; c. and g. are in reduced echelon form.

1.4.3 a.

⎡
⎢⎣

1 0 −1

0 1 −1

0 0 0

⎤
⎥⎦, x = x3

⎡
⎢⎣

1

1

1

⎤
⎥⎦; e.

[
1 −2 0 1

0 0 1 −1

]
,

x = x2

⎡
⎢⎢⎢⎣

2

1

0

0

⎤
⎥⎥⎥⎦+ x4

⎡
⎢⎢⎢⎣

−1

0

1

1

⎤
⎥⎥⎥⎦; g.

⎡
⎢⎢⎢⎣

1 0 2 0 2

0 1 1 0 1

0 0 0 1 −1

0 0 0 0 0

⎤
⎥⎥⎥⎦,

x = x3

⎡
⎢⎢⎢⎢⎢⎢⎣

−2

−1

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

+ x5

⎡
⎢⎢⎢⎢⎢⎢⎣

−2

−1

0

1

1

⎤
⎥⎥⎥⎥⎥⎥⎦

1.4.4 a. x =
⎡
⎢⎣

2

−1

0

⎤
⎥⎦+ x3

⎡
⎢⎣

1

−1

1

⎤
⎥⎦; c. inconsistent

1.4.5 b. x = x2(0, 1, 0)+ x3(1, 0, 1)

1.4.8 x = (1/
√

2, 1/
√

2, 0)

1.4.10 a. (1,−1,−1, 1)

1.4.11 a. x = s(−1, 1, 1, 0)+ t (−1,−2, 0, 1)

1.4.13 Use Proposition 2.1. For each i = 1, . . . , m, we have Ai · (cx) = c(Ai · x) and
Ai · (x + y) = Ai · x + Ai · y.

1.5.1 b = v1 − v2 + v3

1.5.2 b. yes; a., c. no

1.5.3 b. 2b1 + b2 − b3 = 0; d. None.
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1.5.7 b. A =
[

0 1 0 1

0 0 1 1

]
; d. A =

[
1 −1 1

1 −1 1

]
.

1.5.8 a. 0, 3; b. for α = 0, b must satisfy b2 = 0; for α = 3, b must satisfy b2 = 3b1.

1.5.12 a. none, as Ax = 0 is always consistent; b. take r = m = n; e. take r < m and
r < n

1.5.14 a. Afurther hint: By repeatedly doing row operation (iii), we can obtain a row of 0’s
in the matrix, so the echelon form must have a row of 0’s. An alternative approach is
this: Because the sum of the rows is 0, any vector b for whichAx = b is consistent
must satisfy b1 + · · · + bm = 0. (To see this, note that if Ax = b, then this means
that Aix = bi , so 0 = (A1 + · · · + Am)x = A1x + · · · + Amx = b1 + · · · + bm.)
Thus, by Proposition 5.1, we must have rank(A) < m.

1.6.1 64%, 32

1.6.5 y = 3x2 − 5x + 1

1.6.9 center (−1, 2), radius 5

1.6.12 a. (a, b, c, d, e) = (3, 6, 5, 1, 3)

1.6.13 a. (A,B,C,D) = 1
2 (1, 1, 3, 3)

1.6.14 a. I1 = 3 amps; b. I3 = 3 amps; c. I3 = V
(

1
R1

+ 1
R2

)

1.6.16 b. No matter what the original cat and mouse populations are, the cats proliferate
and the mice die out.

2.1.1 b.

[
0 3

2 5

]
; f.

[
5 8

13 20

]
; g.

[
1 4 5

3 10 11

]
; h. not defined; k.

[
4 4

5 6

]
;

l.

⎡
⎢⎣

0 1 2

1 2 1

2 7 8

⎤
⎥⎦

2.1.5 a. As a hint, see part a of Exercise 1.2.16.

2.1.7 b. Either A =
[

0 β

0 0

]
or

[
0 0

β 0

]
for some real number β or A =

α

[
1 β

−1/β −1

]
, α any real number, β �= 0.

2.2.3 a. Since T

([
1

0

])
=
[

2

−3

]
, that is the first column of A. For the second col-

umn, we need T

([
0

1

])
= T

([
2

1

]
− 2

[
1

0

])
= T

([
2

1

])
− T

(
2

[
1

0

])
=

T

([
2

1

])
− 2T

([
1

0

])
=
[

−1

1

]
− 2

[
2

−3

]
=
[

−5

7

]
, and this is the second

column of A. Thus, A =
[

2 −5

−3 7

]
.

2.2.4 b., c., e. yes; a., d., f. no

2.2.5 b. A =
[

1
2

1
2

1
2

1
2

]
; e. A =

[
− 2

5 − 4
5

1
5

2
5

]
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2.2.6 a. S:

[
0 −1

−1 0

]
, T :

[
0 −1

1 0

]
; b.

[
1 0

0 −1

]
; c.

[
−1 0

0 1

]

2.3.1 a. A−1 =
[

3 −2

−1 1

]
; e. A−1 =

⎡
⎢⎣

−1 3 −2

−1 2 −1

2 −3 2

⎤
⎥⎦; g. A−1 =

⎡
⎢⎣

−1 2 1

5 −8 −6

−3 5 4

⎤
⎥⎦

2.3.2 b. A−1 =
⎡
⎢⎣

−2 0 1

9 −1 −3

−6 1 2

⎤
⎥⎦, x =

⎡
⎢⎣

0

2

−1

⎤
⎥⎦;

d. A−1 =

⎡
⎢⎢⎢⎣

1 −1 0 0

0 1 −3 2

0 0 4 −3

0 0 −1 1

⎤
⎥⎥⎥⎦, x =

⎡
⎢⎢⎢⎣

2

−1

1

0

⎤
⎥⎥⎥⎦

2.3.3 a. BA2B−1; b. BAnB−1; c. assuming A invertible, BA−1B−1

2.3.4 Since Ax = 7x, we have x = (A−1A)x = A−1(Ax) = A−1(7x) = 7(A−1x), and
so A−1x = 1

7 x.

2.3.8 Note thatA(A2 − 3I ) = −I , soA(3I − A2) = I . Of course, (3I − A2)A = I as
well, so A−1 = 3I − A2.

2.4.1 a.

⎡
⎢⎣

1

1

1 1

⎤
⎥⎦

⎡
⎢⎣

1

1

−3 1

⎤
⎥⎦

⎡
⎢⎣

1

2 1

1

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0

2 1 0

−1 1 1

⎤
⎥⎦,

−b1 + b2 + b3 = 0; e.

[
1

−2 1

]
, none;

g.

⎡
⎢⎢⎢⎣

1

1

1

− 1
2 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1

1

−2 1

1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1

1

1

1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1

−1 1

1

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0

−1 1 0 0

2 −2 1 0

0 1 − 1
2 1

⎤
⎥⎥⎥⎦, b2 − 1

2b3 + b4 = 0

2.4.2 a.

⎡
⎢⎣

1

2 1

−1 1 1

⎤
⎥⎦; e.

[
1

−2 1

]
; g.

⎡
⎢⎢⎢⎣

1

−1 1

2 −2 1

0 1 − 1
2 1

⎤
⎥⎥⎥⎦

2.4.3 a.

⎡
⎢⎣

1

−2 1

3 −1 1

⎤
⎥⎦

⎡
⎢⎣

1 0 −1

0 3 −3

0 0 0

⎤
⎥⎦; e.

[
1

2 1

][
1 −2 1 0

0 0 1 −1

]
;

g.

⎡
⎢⎢⎢⎣

1

1 1

2 1

−1 1
2 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 −1 1 1 0

0 1 1 0 1

0 0 0 2 −2

0 0 0 0 0

⎤
⎥⎥⎥⎦
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2.4.4 a. L =

⎡
⎢⎢⎢⎣

1

1 1

0 1 1

2 1 2 1

⎤
⎥⎥⎥⎦, U =

⎡
⎢⎢⎢⎣

1 0 1 1 1

0 1 −2 0 −1

0 0 0 −1 2

0 0 0 0 0

⎤
⎥⎥⎥⎦;

b. R =

⎡
⎢⎢⎢⎣

1 0 1 0 3

0 1 −2 0 −1

0 0 0 1 −2

0 0 0 0 0

⎤
⎥⎥⎥⎦

2.4.6 a. Solving Ly = b and Ux = y, we find y = (2, 3,−6) and x = (−8,−1, 6);
c. Solving Ly = b and Ux = y, we find y = (5, 4,−10) and x = (−11,−2, 10).

2.4.10 a. Fix i. Let E1 be the elementary matrix corresponding to adding cji times row
i to row j (j �= i), and let E2 be the elementary matrix corresponding to adding
cki times row i to row k (k �= i, j ). Then multiplying by E1E2 first adds cki times
row i to row k and then adds cji times row i to row j . Since row i stays the
same throughout, this is the same as first adding cji times row i to row j and then
adding cki times row i to row k, i.e., multiplying by E2E1. Thus, E1E2 = E2E1.
This matrix has 1’s on the diagonal, cji as the ji-entry, cki as the ki-entry, and 0’s
elsewhere. In reducing a matrix to echelon form, we can therefore multiply by a
single matrix to clear out the entries below a pivot.

Similarly, E−1
1 has 1’s on the diagonal, −cji as the ji-entry, and 0’s elsewhere;

then (E1E2)
−1 will have 1’s on the diagonal, −cji as the ji-entry, −cki as the

ki-entry, and 0’s elsewhere. We can therefore obtain L by multiplying r matrices,
one for each pivot.

2.5.1 b.

[
0 0

5 5

]
; e.

[
1 5 7

2 8 10

]
; g.

⎡
⎢⎣

1 3

4 10

5 11

⎤
⎥⎦; j.

[
6 4

4 5

]
; k.

⎡
⎢⎣

1 2 1

2 5 4

1 4 5

⎤
⎥⎦

2.5.2 a.

⎡
⎢⎣

1 2 1

2 4 2

1 2 1

⎤
⎥⎦; b.

[
6
]
; f.
[

5
]

2.5.3 b.
1

25

[
16 12

12 9

]

2.5.5 (AB)T = BTAT = BA; thus (AB)T = AB if and only if BA = AB.

2.5.15 Since (ATA)x = 0, we have (ATA)x · x = 0. By Proposition 5.2, 0 = AT(Ax) ·
x = Ax · Ax = ‖Ax‖2, and so ‖Ax‖ = 0. This means that Ax = 0.

2.5.17 A hint: It suffices to see why Aθx · y = x · A−1
θ y. Since rotation doesn’t change

the length of vectors, we only need to see that the angle between Aθx and y is the
same as the angle between x and A−1

θ y.

2.5.19 d. By c., every orthogonal matrix can be written either as Aθ or as Aθ

[
1 0

0 −1

]
.

2.5.20 b. IfA is orthogonal, thenA−1 = AT, and so (A−1)T(A−1) = (AT)TAT = AAT =
I by part e of Exercise 19.

3.1.1 b., e., g., h. yes; a., c., d., f., i. no

3.1.2 d. yes; a., b., c. no
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3.1.3 The argument is valid only if there is some vector in the subspace. The first
criterion is equivalent to the subspace’s being nonempty.

3.1.9 a. Span
(
(1, 1, 1)

)
; d. {0}

3.1.10 If v ∈ V ∩ V ⊥, then v · v = 0, so v = 0. Moreover, 0 ∈ V ∩ V ⊥, so V ∩ V ⊥ =
{0}.

3.1.12 Suppose v ∈ V . Then v · w = 0 for every w ∈ W , so, by definition, v ∈ W⊥.

3.2.1 Let’s show that R(B) ⊂ R(A) if B is obtained by performing any
row operation on A. Obviously, a row interchange doesn’t affect the
span. If Bi = cAi and all the other rows are the same, c1B1 +
· · · + ciBi + · · · + cmBm = c1A1 + · · · + (cic)Ai + · · · + cmAm, so any vec-
tor in R(B) is in R(A). If Bi = Ai + cAj and all the other rows are
the same, then c1B1 + · · · + ciBi + · · · + cmBm = c1A1 + · · · + ci(Ai + cAj )+
· · · + cmAm = c1A1 + · · · + ciAi + · · · + (cj + cci)Aj + · · · + cmAm, so once
again any vector in R(B) is in R(A).

To see that R(A) ⊂ R(B), we observe that the matrix A is obtained from B

by performing the (inverse) row operation (this is why we need c �= 0 for the
second type of row operation). Since R(B) ⊂ R(A) and R(A) ⊂ R(B), we have
R(A) = R(B).

3.2.2 a. C(A) = {b : 2b1 − b2 = 3b1 + b3 = 0}; b. C(A) = R3

3.2.3 a. X =
[

2 −1 0

3 0 1

]
, Y any 2 × n matrix whose columns are scalar multiples

of (1, 3)

3.2.4 a. b1 − b2 − b3 = 0; b. Since N(AT) = C(A)⊥, we need to find C(A)⊥. From a.
we know that (1,−1,−1) ∈ C(A)⊥, but does it span? If we had c ∈ C(A)⊥ that
were not a multiple of (1,−1,−1), then we would have a new constraint c · b = 0
for a vector b to lie in C(A). Then C(A) would be at most a line, rather than the
plane we obtained in a.

3.2.5 R(A): (1, 2, 1, 1), (0, 0, 2,−2); C(A): (1, 2, 1), (0, 1,−1);
N(A): (−2, 1, 0, 0), (−2, 0, 1, 1)

3.2.6 b.

⎡
⎢⎣

1 0 −1 −1

0 1 0 0

0 1 0 0

⎤
⎥⎦

3.2.8 a.

⎡
⎢⎣

0 0 1

0 0 0

0 0 0

⎤
⎥⎦

3.2.9 �⇒ : Recall that μA is one-to-one if μA(x) = μA(y) implies x = y. Assume
μA is one-to-one and that x ∈ N(A). Then μA(x) = 0 = μA(0), so x = 0. Thus,
N(A) = {0}.
⇐� : Suppose N(A) = {0} andμA(x) = μA(y). ThenμA(x − y) = 0, so x − y ∈
N(A), from which we conclude that x − y = 0, i.e., x = y. This shows that μA is
one-to-one.

3.3.2 a., b., d., e. yes; c., f. no

3.3.3 d. yes; a., b., c. no

3.3.4 b. (0, 2,−1); d. (2,−1, 1, 0)
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3.3.5 a. R(A): (3,−1), C(A): (1, 2,−3), N(A): (1, 3), N(AT): (2,−1, 0), (3, 0, 1);
c. R(A): (1, 0, 2), (0, 1,−1), C(A): (1, 1, 1, 1), (1, 2, 1, 0), N(A): (−2, 1, 1),
N(AT): (1, 0,−1, 0), (−2, 1, 0, 1)

3.3.6 {(−3, 2, 1, 0), (−2, 0, 0, 1)}
3.3.13 Suppose there is a nontrivial linear combination

(∗) 0 = d1v1 + · · · + dkvk,
where some di �= 0. Given any vector v = c1v1 + c2v2 + · · · + ckvk , add the
equation for 0 to obtain v = (c1 + d1)v1 + · · · + (ck + dk)vk . These are distinct
expressions since some di �= 0. We can obtain infinitely many distinct expressions
by multiplying the equation (∗) by arbitrary scalars s ∈ R.

3.3.14 Suppose c1v1 + c2v2 + · · · + c�v� = 0. Then we have c1v1 + · · · + c�v� +
0v�+1 + · · · + 0vk = 0, so linear independence of {v1, . . . , vk} tells us that all
the coefficients must be 0. That is, c1 = · · · = c� = 0, as required.

3.3.23 A hint: Use the definition ofU + V to show that the vectors span. To establish lin-
ear independence, suppose c1u1 + c2u2 + · · · + ckuk + d1v1 + · · · + d�v� = 0.
Then what can you say about the vector c1u1 + c2u2 + · · · + ckuk = −(d1v1 +
· · · + d�v�)?

3.4.1 a. {(1, 2, 3), (3, 4, 7)}, dim 2

3.4.3 f. R(A): {(1, 0,−1, 2, 0, 1), (0, 1, 1, 3, 0,−2), (0, 0, 0, 0, 1,−1)},
C(A): {(1, 0,−1, 0), (1, 1, 2, 4), (0,−2, 1,−1)},
N(A): {(1,−1, 1, 0, 0, 0), (−2,−3, 0, 1, 0, 0), (−1, 2, 0, 0, 1, 1)},
N(AT): {(1, 1, 1,−1)}

3.4.5 a. {(−3,−2, 1, 0), (−4, 5, 0, 1)}; b. {(1, 0, 3, 4), (0, 1, 2,−5)}

3.4.8 a.

⎡
⎢⎣

2 −1 0

0 0 0

2 −1 0

⎤
⎥⎦; c.

⎡
⎢⎣

2 0 1

0 2 1

2 2 2

⎤
⎥⎦

3.4.9 b. R(A): {(1, 1, 2, 1), (0, 0, 2,−1)}, N(A): {(−1, 1, 0, 0), (−4, 0, 1, 2)},
C(A): {(1, 1,−2), (0, 1, 0)}, N(AT): {(2, 0, 1)}

3.4.10 b.

⎡
⎢⎢⎣

1
3b1

1
3b1 + 1

2b2

1
3b1 − 1

2b2

⎤
⎥⎥⎦

3.4.13 Since U is a matrix in echelon form, its last m− r rows are 0. When we consider
the matrix productA = BU , we see that every column ofA is a linear combination
of the first r columns of B; hence, these r column vectors span C(A). Since
dim C(A) = r , these column vectors must give a basis (see Proposition 4.4).

3.4.14 a. Calculate dimensions: If dim V = k, then dim V ⊥ = n− k, and dim(V ⊥)⊥ =
n− (n− k) = k = dim V . Since we know thatV ⊂ (V ⊥)⊥, applying Proposition
4.3, we deduce that V = (V ⊥)⊥.

3.5.1 dim N(A) = 1 because the graph is connected; dim N(AT) = 2 because there
are two independent loops; dim R(A) = 5 − dim N(A) = 4; dim C(A) = 6 −
dim N(AT) = 4.

3.5.3 dim N(A) = 1 because the graph is connected; dim N(AT) = 3 because there
are three independent loops; dim R(A) = 4 − dim N(A) = 3; dim C(A) = 6 −
dim N(AT) = 3.
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3.6.2 a., c., e. yes; b., d., f. no

3.6.3 a., f., g. yes; b., c., d., e. no

3.6.4 mn

3.6.5 dim U = dim L = 1
2n(n+ 1), dim D = n

3.6.6 a. not a subspace since 0 does not have this property; c. a one-dimensional
subspace with basis {e−2t }; f. a two-dimensional subspace with basis {cos t, sin t}:
show that if f lies in this subspace and has the properties f (0) = a and f ′(0) =
b, then f (t) = a cos t + b sin t (Hint: Consider g(t) = f (t)− a cos t − b sin t
and show that h(t) = (g(t))2 + (g′(t))2 is a constant); g. Guess two linearly
independent exponential solutions, and it will follow from Theorem 3.4 of Chapter
7 that these form a basis.

3.6.10 b. {In}
3.6.14 a. f (t) = t gives a basis; b. f (t) = t − 1

2 gives a basis.

3.6.15 b. f (t) = t2 − t + 1
6 gives a basis.

3.6.16 f (t) = 19 − 112t + 110t2 gives a basis.

3.6.18 Hint: Use the addition formulas for sin and cos to derive the formulas

sin kt sin �t = 1
2

(
cos(k − �)t − cos(k + �)t) ,

sin kt cos �t = 1
2

(
sin(k + �)t − sin(k − �)t) .

3.6.20 a. Suppose x and y are in the given subset. Then there are constants C and D
so that |xk| ≤ C and |yk| ≤ D for all k; thus |xk + yk| ≤ |xk| + |yk| ≤ C +D for
all k, so x + y is in the subset. (Note we’ve used the triangle inequality, Exercise
1.2.18.) And |cxk| = |c||xk| ≤ |c|C for all k, so cx is in the subset. Since 0 is
obviously in the subset, it must be a subspace.

4.1.1 b. (−1, 0, 1, 3)

4.1.3 a. V ⊥ is spanned by a = (1, 1, 2), soPV ⊥ = 1

‖a‖2
aaT = 1

6

⎡
⎢⎣

1

1

2

⎤
⎥⎦
[

1 1 2
]

=

1

6

⎡
⎢⎣

1 1 2

1 1 2

2 2 4

⎤
⎥⎦; so PV = I − PV ⊥ = 1

6

⎡
⎢⎣

5 −1 −2

−1 5 −2

−2 −2 2

⎤
⎥⎦.

b. Let A =
⎡
⎢⎣

1 −2

1 0

−1 1

⎤
⎥⎦. Then ATA =

[
3 −3

−3 5

]
, and so PV =

A(ATA)−1AT = 1

6

⎡
⎢⎣

1 −2

1 0

−1 1

⎤
⎥⎦
[

5 3

3 3

][
1 1 −1

−2 0 1

]
= 1

6

⎡
⎢⎣

5 −1 −2

−1 5 −2

−2 −2 2

⎤
⎥⎦ .

4.1.6 x = 1

14

[
1

4

]
;

1

14

⎡
⎢⎣

5

6

−3

⎤
⎥⎦.
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4.1.9 a. Fitting y = a to the data yields the inconsistent systemAa = b, withA =

⎡
⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎦

and b =

⎡
⎢⎢⎢⎣

0

1

3

5

⎤
⎥⎥⎥⎦. Then ATA = [4] and ATb = [9], so a = 9/4. (Notice this is just

the average of the given y-values.) As the theory predicts, the sum of the errors is
(0 − 9

4 )+ (1 − 9
4 )+ (3 − 9

4 )+ (5 − 9
4 ) = 0; c. a = 1

4 , b = 29
20 , c = 23

20 .

4.1.11 a ≈ 1.866, k ≈ 0.878.

4.1.13 Suppose projV x = p and projV y = q. Then x − p and y − q are vectors in V ⊥.
Then

x + y = (p + q)+ ((x + y)− (p + q)
) = (p + q)︸ ︷︷ ︸

∈V
+ ((x − p)+ (y − q)

)
︸ ︷︷ ︸

∈V ⊥

,

so projV (x + y) = p + q, as required. Similarly, since

cx = c
(
p + (x − p)

) = (cp)+ (cx − cp) = (cp)︸︷︷︸
∈V

+ c(x − p)︸ ︷︷ ︸
∈V ⊥

,

we infer that projV (cx) = cp, as well.

4.1.17 a. 1/
√

6

4.2.2 c. q1 = 1√
2
(1, 0, 1, 0), q2 = 1

2 (1, 1,−1, 1), q3 = 1√
2
(0, 1, 0,−1)

4.2.4 a. w1 = (1, 3, 1, 1), w2 = 1
2 (1,−1, 1, 1), w3 = (−2, 0, 1, 1);

b. projV (4,−1, 5, 1) = (4,−1, 3, 3); c. PV =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1/2 1/2

0 0 1/2 1/2

⎤
⎥⎥⎥⎦

4.2.5 a. w1 = (1,−1, 0, 2), w2 = 1
2 (1, 1, 2, 0); b. p = (1,−1, 0, 2); c. x = (1, 0)

4.2.7 b. Since rank(A) = 2, we know that C(A) = R2. Row reducing the

augmented matrix

[
1 1 1 b1

0 1 −1 b2

]
yields one solution (of many possi-

ble) v = (b1 − b2, b2, 0). The key point is that the unique solution ly-
ing in the row space is obtained by projecting an arbitrary solution onto
R(A). The rows of A are orthogonal, so to find the solution in the
row space, we take x = projR(A)v = v·(1,1,1)

‖(1,1,1)‖2 (1, 1, 1)+ v·(0,1,−1)
‖(0,1,−1)‖2 (0, 1,−1) =

b1
3 (1, 1, 1)+ b2

2 (0, 1,−1) = ( 1
3b1,

1
3b1 + 1

2b2,
1
3b1 − 1

2b2).

4.2.8 a. Q =

⎡
⎢⎢⎣

1√
2

1√
6

1√
2

− 1√
6

0 2√
6

⎤
⎥⎥⎦, R =

[√
2 1√

2

0
√

3√
2

]
; b. Q =

⎡
⎢⎢⎢⎢⎢⎣

1√
2

0 − 1
2

0 1√
2

− 1
2

1√
2

0 1
2

0 1√
2

1
2

⎤
⎥⎥⎥⎥⎥⎦

,

R =

⎡
⎢⎢⎣

√
2

√
2 1√

2

0
√

2 1√
2

0 0 1

⎤
⎥⎥⎦
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4.2.11 b. The i th row of A−1 is aT
i /‖ai‖2.

4.2.12 a. {1, t}, (projV f )(t) = 4
3 − t ; d. {1, cos t, sin t}, (projV f )(t) = 2 sin t

4.3.1 a. Rotating the vector e1 by −π/4 gives the vector
1√
2

[
1

−1

]
; reflecting that

vector across the line x1 = x2 gives
1√
2

[
−1

1

]
. Similarly, rotating e2 by −π/4

gives the vector
1√
2

[
1

1

]
, which is left unchanged by the reflection. Thus, the

standard matrix for T is
1√
2

[
−1 1

1 1

]
.

4.3.3 a. This symmetry carries e1 to e2, carries e2 to −e1, and leaves e3 fixed. Thus,

the standard matrix is

⎡
⎢⎣

0 −1 0

1 0 0

0 0 1

⎤
⎥⎦. Since the columns of this matrix form an

orthonormal set, the matrix is orthogonal.

4.3.5 a. The change-of-basis matrix is P =
[

2 1

3 2

]
, whose inverse is P−1 =

[
2 −1

−3 2

]
. Thus, [T ]B = P−1[T ]standP =

[
36 24

−55 −37

]
.

4.3.7

⎡
⎢⎣

−7 24 8

−4 14 5

5 −17 −6

⎤
⎥⎦

4.3.11
1

9

⎡
⎢⎣

7 4 −4

4 1 8

−4 8 1

⎤
⎥⎦

4.3.14

⎡
⎢⎣

− 3
5 − 4

5 0

− 4
5

3
5 0

0 0 1

⎤
⎥⎦

4.3.16
1

17

⎡
⎢⎢⎢⎣

3 1 5 4

1 6 −4 7

5 −4 14 1

4 7 1 11

⎤
⎥⎥⎥⎦

4.3.24 a. v1 = (1, 2, 1); b. v2 = 1√
2
(−1, 0, 1), v3 = 1√

3
(1,−1, 1); c.

⎡
⎢⎣

1 0 0

0 0 1

0 −1 0

⎤
⎥⎦;

d. T is a rotation of −π/2 around the line spanned by (1, 2, 1) (as viewed from
high above that vector).

4.3.26 a. If we write x = y1v1 + y2v2 + y3v3, the equation of the curve of intersection
becomes y2

1 + sin2 φ y2
2 = 1, y3 = 0.



Answers to Selected Exercises 361

4.4.1 a.

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎦, ker(T ) = {O}, image (T ) = M2×2;

b.

⎡
⎢⎢⎢⎣

1 0 2 0

0 1 0 2

3 0 4 0

0 3 0 4

⎤
⎥⎥⎥⎦, ker(T ) = {O}, image (T ) = M2×2

4.4.2 a.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1

2
. . .

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4.4.3 Let f, g ∈ P3. Then, using the usual differentiation rules, T (f + g)(t) =
(f + g)′′(t)+ 4(f + g)′(t)− 5(f + g)(t) = (f ′′(t)+ g′′(t))+ 4(f ′(t)+
g′(t))− 5(f (t)+ g(t)) = (f ′′(t)+ 4f ′(t)− 5f (t)

)+ (g′′(t)+ 4g′(t)−
5g(t)

) = T (f )(t)+ T (g)(t), so T (f + g) = T (f )+ T (g). For any scalar
c, we have T (cf )(t) = (cf )′′(t)+ 4(cf )′(t)− 5(cf )(t) = cf ′′(t)+ 4cf ′(t)−
5cf (t) = c

(
f ′′(t)+ 4f ′(t)− 5f (t)

) = cT (f )(t), so T (cf ) = cT (f ). Thus, T
is a linear transformation.
To compute the matrix A, we need to apply T to each of the basis vectors v1 =
1, v2 = t , v3 = t2, v4 = t3: T (v1) = −5 = −5v1, T (v2) = 4 − 5t = 4v1 − 5v2,
T (v3) = 2 + 4(2t)− 5t2 = 2v1 + 8v2 − 5v3, and T (v4) = 6t + 4(3t2)− 5t3 =
6v2 + 12v3 − 5v4. Thus, the matrix is as given in the text.

4.4.4 a. We use the matrix A from Example 5 and apply Theorem 4.2. Since
W = W′, we have Q = I . The change-of-basis matrix from V to V′ is

P =

⎡
⎢⎢⎢⎣

1 −1 1 −1

0 1 −2 3

0 0 1 −3

0 0 0 1

⎤
⎥⎥⎥⎦. So [T ]V,W = Q−1AP = AP =

⎡
⎢⎣

0 1 −2 3

0 0 2 −6

0 0 0 3

⎤
⎥⎦.

Note that this checks with T (1) = 0, T (t − 1) = 1, T ((t − 1)2) = 2(t − 1), and
T ((t − 1)3) = 3(t − 1)2.

4.4.8 a. T
(
u + t (v − u)

) = T (u)+ tT (v − u) = T (u)+ t(T (v)− T (u))

4.4.14 a. no; b. ker(T ) = Span (1 − 2t, 1 − 3t2, 1 − 4t3), image (T ) = R; d. ker(T ) =
{0}, image (T ) = {g ∈ P : g(0) = 0}

5.1.1 b. −4; d. 6

5.1.8 c.
∏
i<j

(ti − tj ), where
∏

denotes product.

5.1.10 detA = ±1

5.2.1 b. −4; d. 6

5.2.2 a. −4/3; b.

⎡
⎢⎣

2 0 −1

− 4
3

1
3

2
3

5
3 − 2

3 − 1
3

⎤
⎥⎦
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5.2.3 −3;

⎡
⎢⎣

−1 0 1

2 1 −2

− 4
3 − 2

3
5
3

⎤
⎥⎦

5.2.5 a. t2 − 5t − 6; e. t2 − 4t + 4; f. −t3 + 9t ; j. −t3 + 4t2 − t − 6

5.3.1 a. −7

5.3.2 a. −2

6.1.1 a. eigenvalues −1, 6; eigenvectors (−5, 2), (1, 1);
f. eigenvalues 2, 2; only eigenvector (1, 1);
g. eigenvalues −3, 0, 3; eigenvectors (−1, 0, 1), (1,−1, 1), (1, 2, 1);
j. eigenvalues 1, 1, 2; eigenvectors (0, 1, 0), (1, 0, 0);
n. eigenvalues −1, 2, 3; eigenvectors (1, 1, 1), (2, 1, 2), (−1, 1, 1)

6.1.13 b. eigenvectors tk , k = 0, 1, 2, 3, with corresponding eigenvalue k

6.1.15 a. For any real number λ, f (t) = tλ spans E(λ).

6.1.16 Hint for b.: Prove pAB(t2) = pBA(t
2) by considering the matrix

[
tI A

B tI

]
and

multiplying on the left by either

[
tI −A
O I

]
or

[
I O

−B tI

]
.

6.2.1 a., g., n. diagonalizable; f., j. not diagonalizable

6.2.4 A hint: See Exercise 17.

6.2.7 a. O; b. (2, 3); C(A− 2I ) = N(A− 2I ) because of part a.; c.

[
2 1

0 2

]

6.2.8 cos θ ± i sin θ , eigenvectors (1,∓i)
6.3.2 4 : 3

6.3.5 2/3; 5/6

6.3.6 9/13

6.3.7 ak = 2k + 1

6.3.11 ak = 1
3

(
2k + (−1)k+1

)

6.3.12 b. xk =
[
ck

mk

]
= (c0 + 2m0)(1.1)k

[
−1

1

]
+ (c0 +m0)(1.2)k

[
2

−1

]
, so—no

matter what the original cat and mouse populations—the cats proliferate and the
mice die out.

6.4.1 a. 1√
5

[
−2 1

1 2

]
; d.

⎡
⎢⎢⎣

2√
6

0 1√
3

1√
6

1√
2

− 1√
3

− 1√
6

1√
2

1√
3

⎤
⎥⎥⎦; e. 1

3

⎡
⎢⎣

−2 1 2

2 2 1

1 −2 2

⎤
⎥⎦

6.4.2 (2, 2, 4)

6.4.7 There is an orthogonal matrix Q so that Q−1AQ = 	 = λI . But then A =
Q(λI)Q−1 = λI .

6.4.16 b. ellipse y2
1 + 2y2

2 = 2, where y = 1√
2

[
1 −1

1 1

]
x;

c. parabola y1 = 5y2
2 − 1, where y = 1

5

[
3 −4

4 3

]
x.
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6.4.17 a. hyperboloid of 1 sheet −2y2
1 + y2

2 + 4y2
3 = 4,

where y =

⎡
⎢⎢⎣

0 − 1√
3

2√
6

1√
2

1√
3

1√
6

− 1√
2

1√
3

1√
6

⎤
⎥⎥⎦

T

x; d. hyperbolic paraboloid (saddle surface)

−y2
1 + 3y2

3 + √
3y2 = 1, where y =

⎡
⎢⎢⎣

0 − 1√
3

2√
6

1√
2

1√
3

1√
6

− 1√
2

1√
3

1√
6

⎤
⎥⎥⎦

T

x.

7.1.2 b. (1, 1 + i), (1, 1 − i),
[

2 + i 0

0 2 − i

]
; (1, 1), (0,−1),

[
2 −1

1 2

]
;

c. (1,−1, 1), (1, i, 0), (1,−i, 0),
⎡
⎢⎣

2 0 0

0 1 + i 0

0 0 1 − i

⎤
⎥⎦,

(1,−1, 1), (1, 0, 0), (0,−1, 0),

⎡
⎢⎣

2 0 0

0 1 −1

0 1 1

⎤
⎥⎦

7.1.5 Suppose, as in the proof, that (A− λI)v3 = v2 and {v1, v2} gives a basis for
N(A− λI). Suppose now that c1v1 + c2v2 + c3v3 = 0. Multiplying by A− λI
gives c3v2 = 0, and so we must have c3 = 0. But since {v1, v2} is known to be a
linearly independent set, we now infer that c1 = c2 = 0 as well.

7.1.7 a. Possible Jordan canonical forms of A are

when dim E(λ) = 2, dim E(μ) = 2:

⎡
⎢⎢⎢⎢⎣

λ

λ

μ

μ

⎤
⎥⎥⎥⎥⎦

,

when dim E(λ) = 1, dim E(μ) = 2:

⎡
⎢⎢⎢⎢⎣

λ 1

λ

μ

μ

⎤
⎥⎥⎥⎥⎦

,

when dim E(λ) = 2, dim E(μ) = 1:

⎡
⎢⎢⎢⎢⎣

λ

λ

μ 1

μ

⎤
⎥⎥⎥⎥⎦

,

when dim E(λ) = 1, dim E(μ) = 1:

⎡
⎢⎢⎢⎢⎣

λ 1

λ

μ 1

μ

⎤
⎥⎥⎥⎥⎦

.
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7.1.8 a. J =
⎡
⎢⎣

2 1 0

0 2 1

0 0 2

⎤
⎥⎦, P =

⎡
⎢⎣

1 −1 −1

1 1 0

1 0 0

⎤
⎥⎦;

d. J =

⎡
⎢⎢⎢⎢⎢⎣

1 1

1 1

1

2

⎤
⎥⎥⎥⎥⎥⎦

, P =

⎡
⎢⎢⎢⎣

0 0 1 1

1 −1 −1 0

1 1 0 0

1 0 0 1

⎤
⎥⎥⎥⎦

7.2.1 a. 
 =

⎡
⎢⎢⎣

0 −1 −2

1 0 2

0 0 1

⎤
⎥⎥⎦, a rotation through angle π/2 about the point (−2, 0);

b. 
 =

⎡
⎢⎢⎣

0 −1 2

−1 0 2

0 0 1

⎤
⎥⎥⎦, a reflection about the line x1 + x2 = 2

7.2.2 b. glide reflection: reflect about the line x2 = 1
2 and translate by

[
−1

0

]

7.2.3 a. If 
 =
[

A a

0 0 1

]
, then 


⎡
⎢⎣

0

0

1

⎤
⎥⎦ =

⎡
⎢⎣

0

0

1

⎤
⎥⎦ and 


⎡
⎢⎣

1

0

0

⎤
⎥⎦ =

⎡
⎢⎣

±1

0

0

⎤
⎥⎦. Since A

must be orthogonal, 


⎡
⎢⎣

0

1

0

⎤
⎥⎦ =

⎡
⎢⎣

0

±1

0

⎤
⎥⎦. Thus, there are four possible isometries:

the identity, reflection across the x1-axis, reflection across the x2-axis, and rotation
by π .

7.2.10 a. It is easiest to show that we can take the points 0, 1, and −1, say, to any three
points, a, b, and c. (Then by composition of functions we can take P , Q, R to
0, 1, −1 and then to P ′, Q′, R′.) In terms of homogeneous coordinates, then, we

want

[
0

1

]
to go to

[
a

1

]
,

[
1

1

]
to multiple of

[
b

1

]
, and

[
−1

1

]
to some multiple of

[
c

1

]
. Some straightforward algebra leads to 
 =

[
λb − a a

λ− 1 1

]
with λ = 2 c−a

c−b .

7.2.12 c. f (x1, x2, x3) = 1√
a2

1+a2
2

(
a·(x−a)

)
[

‖a‖2(a2x1 − a1x2)

‖a‖(a1a3x1 − a2
1x3 + a2(a3x2 − a2x3)

)
]

7.3.1 a. −e−t
[

−5

2

]
+ e6t

[
1

1

]
; d. e2t

(
(2 − 3t)

[
1

1

]
− 3

[
0

1

] )
; e. e−3t

⎡
⎢⎣

−1

0

1

⎤
⎥⎦+

2

⎡
⎢⎣

1

−1

1

⎤
⎥⎦+ e3t

⎡
⎢⎣

1

2

1

⎤
⎥⎦

7.3.2 a. (− cos t + sin t)

[
−5

2

]
+ (e

√
6t + e−

√
6t )

[
1

1

]
; d.

[
1
6 t

3 + t2 + 2t + 1

t + 2

]
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7.3.3 c. normal modes e±it
[

1

1

]
and e±2it

[
2

−1

]

7.3.4

⎡
⎢⎣
e2t te2t 1

2 t
2e2t

0 e2t te2t

0 0 e2t

⎤
⎥⎦

7.3.5 a. y(t) = e2t − 2e−t ; b. y(t) = et + tet
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LIST OF BLUE BOXES

Topic Page

Grab paper and pencil 4
Advice for geometric proofs 6
Appearance of why? in text 8
Language of sets 9
When are two sets equal? 12
Draw a sketch and decide what you really need to show 14
What are you given and what do you need to show? 17
Proof by contradiction and reduction to a special case 18
Use properties rather than definition of dot product 20
If and only if, and converse 21
What does it mean to solve an equation? 23
Specializing from the general 27
Looking for examples and counterexamples 52
The use of if in definitions 81
The meaning of arbitrary 83
Thinking of matrices as vectors 83
Functions: domain, range, one-to-one, and onto 88
Exploring matrix multiplication 90
Working with nonsingular matrices 90
Existence and uniqueness 91
Examples don’t make a proof 92
Verifying and disproving a multi-part definition 93, 128
More on existence and uniqueness 124
One-to-one functions 145
The syntax of independence 146
Whenever you must prove linear independence … 146
Proof by contrapositive 148
When are two numbers equal? 158
Built-in check for eigenvalues 265
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INDEX

affine subspace, 199
affine transformation, 315
angle, 23, 24, 182
area, 255

signed, 256
associative property, see matrix multiplication,

associative property

basis, 149, 179
orthogonal, 200, 204
orthonormal, 204, 287
standard, 149, 184, 209

binomial theorem, 91

Cartesian equation, 8, 31
cat/mouse, 70, 277
Cauchy-Schwarz Inequality, 24, 27, 182
Cavalieri’s principle, 256
Cayley-Hamilton Theorem, 275, 314
centroid, 17
change-of-basis formula, 215
change-of-basis matrix, 215, 231, 262
characteristic polynomial, 265–267
checkerboard, 247
coefficients, 36
cofactor, 247
collinear, 10
column space, 136

basis for, 161
column vector, see vector, column
complete induction, 309
complex numbers, 299

multiplication of, 301
complex vector space, 301
conic section, 290–291
conjugate, 299
consistent, 55–58, 136
constraint equation, 57, 114, 139, 163
continuous functions, vector space of, 178
contradiction, proof by, 18
contrapositive, 148
converse, 21, 148
cookies, 25, 122
coordinates, 150, 202
cosine, power series of, 338
counterexample, 52
Cramer’s Rule, 250

cross product, 259
curve fitting, 64–65
cylinder, 291

derivative, 225
determinant, 239, 240, 242
diagonal, 82
diagonalizable, 219, 261, 270, 273, 275, 276,

286
simultaneously, 276, 296

difference equation, 69, 277
differentiable, 178

continuously, 178
differential equations, system of, 332–344
dimension, 158
direction, 1
direction vector, 7
discrete dynamical system, 70
distance, 30, 32, 200
distributive property, 19, 59, 87
domain, 88
dot product, 19, 313

echelon form, 43
reduced, 43–47, 52

eigenspace, 263
eigenvalue, 262

complex, 266, 302
eigenvector, 74, 262

generalized, 314
electric circuit, 67, 173
elementary matrix, 111, 241
elementary operations, 37
elementary row operations, 41, 240
ellipse, 291
ellipsoid, 291
equality of sets, proving, 12
Euler’s formula, 339
exponential series, 333

Fibonacci sequence, 74, 279
finite-dimensional, 179
Fred, 267
Fred (and Barney), 72, 280
free variable, 37, 43
function

one-to-one, 88
onto, 88
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function space, 176
function, one-to-one, 145

Gauss-Jordan elimination, 53
Gaussian elimination, 45, 104
general solution, 32, 37, 45

standard form of, 45
generalized eigenvector, 314
Gerschgorin’s Circle Theorem, 313
glide reflection, 321
golden ratio, 280
Gram-Schmidt process, 204
graph, directed, 86, 171

homogeneous coordinate vector, 324
homogeneous system, 59
Hooke’s Law, 343
hyperbola, 290
hyperboloid, 291
hyperplane, 32

identity map, 93
identity matrix, 61, 87
if and only if, 21
image, 88, 136, 225
imaginary part, 299
implication, 21
incidence matrix, 171
inconsistent, 49, 55
inconsistent system, 196

least squares solution, 193
infinite-dimensional, 179
inhomogeneous system, 59
initial value, 332
inner product space, 181
intersection, 33, 37, 48, 56, 131, 135
inverse matrix, 104

formula for, 106, 251
left, 102
right, 102

invertible, see matrix, invertible
isometry, 319

Jordan block, 307
Jordan canonical form, 275, 306

exponential of, 341, 345

kernel, 225
Kirchhoff’s laws, 67, 68, 173, 175

Lagrange interpolation, 65, 183
leading entry, 43
least squares line, 196
least squares solution, 193, 197
left inverse, 102
left nullspace, 138

basis for, 161

length, 1, 10
Leslie matrix, 71
line, 7

of regression, 196
linear combination, 11, 54

trivial, 145
linear map, 92, 208, 224
linear transformation, 91, 92, 208, 224

matrix for, 209, 228
linearity properties, 92
linearly dependent, 145, 179
linearly independent, 145, 179
loop, 68, 172
LU decomposition, 116

Markov process, 280–284
matrices

equality of, 39
matrix, 39

addition, 82
augmented, 41, 56
block, 90, 109
block diagonal, 304
change-of-basis, 215, 231, 262
diagonal, 82
exponential, 333
identity, 61, 87
invertible, 104, 105, 108
lower triangular, 82
nonsingular, 61, 104, 105, 151, 241, 296
orthogonal, 123, 206, 245
permutation, 91
positive (negative) definite, 296
powers, 86
product, 84, 110

not commutative, 85
singular, 61
skew-symmetric, 119
square, 82
standard, 98, 209
symmetric, 119, 286
upper (lower) triangular, 241
upper triangular, 82
zero, 82

matrix multiplication, see also matrix, product
associative property, 87, 89, 108, 120, 158
distributive property, 59, 87

median, 6
minimal polynomial, 314
modulus, 299
multiplicity

algebraic, 272, 305, 309
geometric, 272, 305, 309

necessity, 21
nilpotent, 276
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node, 67, 86, 171
noncollinear, 10
nonparallel, 3, 11
nonsingular, see matrix, nonsingular
normal equations, 192
normal mode, 336, 344
normal vector, 28, 128
nullity, 164
Nullity-Rank Theorem, 165
nullspace, 136

basis for, 160

Ohm’s Law, 67, 175
orthogonal, 20

basis, 200, 204
complement, 133, 165, 192
matrix, see matrix, orthogonal
set, 200
subspaces, 134

orthonormal basis, 200, 204, 287

parabola, 293
paraboloid, 294
parallel, 3, 11, 147
parallelogram law, 4
parameter, 7
parametric equation, 7, 11, 14, 32
particular solution, 45, 59
perpendicular, 19
perspective projection, 322
pivot, 43

column, 43
variable, 37, 43

plane, 11
polar form, 300
polynomials, vector space of, 178
power series, exponential, 333
probability vector, 280, 281
product, see dot product or matrix, product
product rule, 241
projection, 22, 121, 192, 202, 290

perspective, 322
projection matrix, 194
projective transformation, 324
proof by contradiction, 18
pun, atrocious, 219
Pythagorean Theorem, 10, 20, 259

QR decomposition, 205, 266
quadric surface, 291–294

range, 88
rank, 46, 58, 164
Rational Roots Test, 266
real part, 299
reduced echelon form, 43–47, 52

reflection, 94, 209, 319, 321
reflection across �, 95
reflection matrix, 95
regression, line of, 196
right inverse, 102
rotation, 94, 321, 330
rotation matrix, 98, 101, 102, 217–218
rotatory reflection, 330
row space, 138

basis for, 160
row vector, see vector, row

scalar multiplication, 2, 10, 82
scalar product, 19
screw, 331
set(s), 9

equality of, 12
shear, 93, 314
shoe-sock theorem, 108
signed area, 256
signed length, 23
signed volume, 256
similar, 219, 266
sine, power series of, 338
singular, see matrix, singular
span, 12, 129, 130, 179
spectral decomposition, 290
Spectral Theorem, 287
standard basis, 149, 184, 209
standard matrix, 209
stochastic matrix, 281, 314
stoichiometry, 66
subset, 12
subspace, 127, 177

affine, 199
invariant, 307
trivial, 128, 152

sufficiency, 21
sum of subspaces, 132

trace, 186, 267
transition matrix, 74, 280
translation, 7, 59, 315, 319, 321
transpose, 119, 172

determinant of, 242
triangle inequality, 27, 313
trivial solution, 60, 61
trivial subspace, 128, 152

unique solution, 60, 61, 104
unit vector, 2

variable
free, 43
pivot, 43

vector, 1
addition, 3
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column, 39, 53, 82
commodity, 25
homogeneous coordinate, 324
normal, 28, 128
price, 25
probability, 281
row, 39, 81

subtraction, 4
unit, 2

vector addition, 10
vector space, 176

finite-dimensional, 179
infinite-dimensional, 179, 180

ViewPoint, 325
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